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ABSTRACT 

Entity mining is still a troublesome open problem. In past years 

many approaches allowed to automate the generation of 

equivalence links between references using schema matching or 

various heuristics based on the recognition of similar property 

values. In contrast, few of them considered the analysis of the 

network of equivalence links (“equivalence network”) as an 

indication of the likelihood and strength of the equivalence. 

Following this basic idea, in this paper we apply the well known 

Girvan and Newman algorithm to partition existing equivalence 

networks into clusters of co-references and gain an insight of their 

nature, size and composition. 

Categories and Subject Descriptors 

H [Information Systems]: Models and Principles; H.1 [Models 

and Principles]: Miscellaneous; H.3.3 [Information Storage and 

Retrieval]: Information Search and Retrieval — information 

filtering. 
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1. INTRODUCTION 
Could a URI reference (URIRef) be thought as exactly “attached” 

to its referent? Could it make sense to talk about entity 

“identifiers” or would it be better to talk about more ambiguous 

“references”, i.e., placeholders for any model that satisfies the 

formal semantics of the Semantic Web (Hayes)1? Booth [1] 

observes that the aforementioned question, which in the past has 

been often regarded as fundamental in the debate about identity 

on the Web, is relatively unimportant. As long as an entity, 

identified by whatsoever URIRef, is associated to at least one 

description containing machine understandable information, this 

information can be automatically processed and used by 

applications. 

Yet the proliferation of references poses a practical problem in 

Linked Data. From [2] we learn that using multiple references for 

the same entity (in short, “co-references”) is a fault-tolerant 

approach, lowers the barrier to enter the Linked Data and helps in 

maintaining traceability of different “views” of the same entity by 

various data publishers. On the contrary, the opposite party [3] 

                                                                 

1  See for example P. Hayes. Message to www-rdf-

comments@w3.org,2003. 

http://lists.w3.org/Archives/Public/www-tag/2003Jul/0198.html 

(accessed March, 21 2011). 

 

 

observes that co-references make difficult entity “consolidation”. 

In fact, allowing anyone to issue a new URIRef for any entity 

results in the open problem of objectively stating the degree of 

matching of different descriptions about the same entity [4]. 

In the past the vision of a single, canonical “entity identifier” has 

inspired at least two major European projects (the ReSIST 

Network of Excellence2 and the OKKAM project3).  In [5], for 

instance, Jaffri describes a “Consistent Reference Service” (CRS) 

that aggregates entity co-references into bundles. Each bundle 

contains only one preferred reference (“canon”) and a number of 

other co-references (“duplicates”). To obtain “consistent 

references” at a scale, the CRS recommends using the canon 

instead of duplicates; in many cases, however, the canon is a 

random choice of the system and is no more “representative” than 

its duplicates. Differently, Bouquet [6] proposes a solution based 

on “OkkamIDs”, a new class of identifiers that “directly refer” to 

entities. As opposite to different descriptions provided by single 

data publishers, the notion of direct reference is realized by means 

of a shared entity profile, i.e. an associated description, accessible 

by dereferencing the OkkamID and containing information agreed 

and consolidated by the Web community. Being shared by the 

community of its users, the entity profile tends to become as much 

complete and exhaustive as possible. According to Bouquet, this 

feature would provide the answer to the argument, raised in [7], 

that the user (i.e., the data publisher or consumer) tends “to 

observe [only] a small portion of [a reference] use”; thus, 

implicitly, her knowledge about the referenced entity remains 

ambiguous. 

At the time of writing, however, neither the CRS nor OkkamIDs 

seem to have provided the ultimate solution for entity 

identification. Nevertheless, they contributed to raise an 

interesting multidisciplinary discussion on this topic and to 

provide good theoretical and practical inputs to several related 

researches. In particular, the main lesson learned from these 

experiences was that community (i.e. inter-domain) consensus is 

fundamental. This realization seems to suggest that the task of 

evaluating an equivalence link as correct or incorrect often 

requires a global perspective. A “bird-eye view” of the entire set 

of co-references and of their equivalence links could probably 

provide more useful indications about the strength of a given 

equivalence. As a matter of fact, the Linked Data cloud has begun 

                                                                 

2 The ReSIST European Newtork of Excellence co-funded by the 

European Commission (GA 026764) ran from January 2006 to 

March 2009, http://www.resist-noe.org/ (accessed March, 21 

2011). 

3 The OKKAM project co-funded by the European Commission 

(GA 215032) ran from January 2008 to June 2010, 

http://www.okkam.org/ (accessed March, 21 2011). Copyright is held by the author/owner(s). 

LDOW2012, April 16, 2012, Lyon, France. 



to show widely referred nodes tending to attract a large portion of 

incoming equivalence links, and becoming, for the Linked Data 

community, more representative of an entity than others. At a 

closer look, however, this observable fact presents at least three 

particular features: it is distributed, because, for each entity, more 

than one node might aspire to become an “authority”. It is also 

dynamic, as it varies, over the time, according to the raising of 

new pay-level domains4 publishing their entity descriptions as 

Linked Data. Last but not least, it is aggregative: groups of co-

references, coming from different domains, tend to aggregate into 

clusters. But, despite its popularity, few works have focused on 

the analysis of this phenomenon. Actually, previous works, which 

we will describe in section 2, have provided similar investigations 

on equivalence links; but none of them, to the best of our 

knowledge, analyzed the tendency, shown by co-references, to 

form clusters. Therefore, the main contribution of this paper will 

consist in getting a first insight into this trend – ignoring, for the 

time being, its dynamics. To this end, in section 3 we will 

illustrate a methodology to detect clusters of nodes in equivalence 

networks (i.e. networks formed by equivalence links) based on the 

well known community detection algorithm developed by Girvan 

and Newman. Next, in section 4, we will present the results of an 

experiment made applying the algorithm to a dataset of about 1.7 

million equivalence links that we collected by means of the 

Sindice5 search engine API. Then we will discuss some interesting 

observed patterns, and propose a synoptic diagram showing the 

average composition of a cluster as a function of its cardinality 

(section 5). Finally we will draw the conclusions and hint at future 

developments and possible applications of our methodology. 

2. RELATED WORKS 
Entity matching has been addressed mainly by providing tools to 

automate the generation of equivalence links, using schema 

analysis [8] or heuristics that recognize similar property values 

[9]. These works are indeed related to our approach: by 

publishing equivalence links on the Linked Data in form of 

owl:sameAs statements, they served to progressively build the 

precious ground relevant for the cluster analysis we are going to 

present.  

However, contrary to the synthesis of new potential equivalence 

links, we are interested in a methodology that allows isolating 

groups of co-references perceived by the Liked Data community 

as “consistent”, i.e. as mostly referring to given entity. 

Analysis of existing similarity and equivalence links has been 

performed in the past by Hu (2008) [10] and Ding (2010) [11]. In 

particular, Hu considered not only explicit equivalences (i.e., RDF 

statements containing the owl:sameAs predicate), but also other 

predicates that may provide hints on the equivalence of two 

resources, namely inverse functional properties, functional 

properties and maximum cardinality. However, his experimental 

                                                                 

4 Pay-level domain is the term used to identify a domain 

subordinate to a generic top level domain or to a country code 

top level domain. In the remainder of this paper, and for the 

sake of simplicity, we will often use the term “domain” to refer 

to a pay-level domain. 

5 Sindice, The Semantic Web Index, http://sindice.com/ (accessed 

March, 21 2011). 

 

 

results on a large-scale dataset (76 million URIrefs) have shown 

that the bulk (99.8%) of equivalence relations is given by explicit 

statements. Interesting enough, Hu also considered the 

“authoritativeness” of the context in which the equivalence 

statements appeared, showing that only 6% of the over 7 million 

equivalence statements he analyzed appeared in RDF documents 

reachable by dereferencing the subject as well as the object of the 

statement, 66% by dereferencing either the subject or the object 

whereas 27% were in other documents. Therefore, an indexing 

service (such as e.g., Sindice) is generally needed in order to 

discover existing statements from these documents as well. 

Ding was the first researcher that used the term “sameAs 

networks” to denote those RDF graphs formed by only RDF 

statements containing the owl:sameAs predicates. He 

performed a statistical investigation explicitly focused on these 

networks involving about 8 million equivalence links among 

nodes arranged into 2 million weakly connected components. He 

found that the in-degree (i.e. the number of incoming 

owl:sameAs links per node) distribution exhibited the power 

law pattern characteristic of scale-free networks. Another result in 

Ding’s experiment was that the highly referenced nodes were from 

relatively few domains such as dbpedia.org, freebase.com, 

geonames.org. 

3. PROPOSED APPROACH 
We need to look at the development of node “clusters”, i.e. groups 

of nodes within which equivalence links are much more dense 

than between them. A similar phenomenon has been found in 

many complex networks [12], finally encouraging the two 

physicians Newman and Girvan [13] to develop an ad hoc 

algorithm facilitating cluster detection. Before introducing their 

algorithm, however, we need to formalize the concept of graph, 

path, connected component, modularity and edge betweenness. 

Let I, B, L be disjoint infinite sets of URIRefs, blank nodes and 

literals.  

 

Definition 1. RDF Graph. A RDF triple is a tuple (s,p,o) ∈ I ∪ B 

x I x I ∪ B ∪ L, with s ∈ I ∪ B, p ∈ I, o ∈ I ∪ B ∪ L, and s said 

subject, p said predicate, o said object. An RDF graph is a set of 

RDF triples. A subject or an object of a RDF triple is called a 

node of the graph.  

 

Definition 2. RDF Subgraph. A subgraph of a RDF graph G is a 

RDF graph whose RDF triples are a subset of those in G. 

 

Definition 3. SameAs Network. A sameAs network is a RDF 

graph whose RDF triples are all in the form (s,owl:sameAs,o). 

  

Definition 4. Arcs and Edges. Let G be an RDF graph. A 

predicate in a RDF triple in G is called an arc of G and is 

represented as a direct link from the subject to the object. An edge 

of G is any undirected link between two nodes. 

 

In the following of our discussion it will be not critical to consider 

the direction of the links in a RDF graph G. Therefore we will 

assume that for each arc in G connecting two nodes m and n there 

is always an associated edge that connects m with n. 



 

Definition 5. Neighbours. Two nodes that are connected by an 

edge are said to be neighbours. 

 

Definition 6. Undirected Path. An undirected path is a sequence 

of edges that connects one node to another. 

 

Definition 7. Connected Component. A (weakly) connected RDF 

graph is a RDF graph where there exists an undirected path 

between any pair of nodes. A (weakly) connected component of a 

RDF graph G is any RDF subgraph of G that is connected. 

 

Definition 8. Partitions and Partition Set of a Graph. A partition 

set of a graph G is any subgraph G’ obtained from G by removing 

as many arcs as needed to fragment G into a set of exhaustive 

disjoint connected components, said partitions, Si, so that 1<i<|G|, 

G’= Si, Si ∩ Sj = φ i≠j. 

 

In practice, a partition set represents one of the possible 

dissections of the original graph into sets of nodes called 

partitions. Now, our problem is to find the “best” partition set, i.e. 

the one which most closely depicts the tendency of the nodes in 

the original graph to arrange themselves into clusters. To this end, 

let us consider a RDF graph G of cardinality |G| and let G’ be one 

of its partition sets. Let e={eij} be the symmetric matrix whose 

element eij∈[0,1] represents the fraction of total edges, in G, 

connecting nodes that in the partition set G’ would belong to 

partition Si with nodes that in G’ would belong to Sj. The element 

eii represents the fraction of edges connecting nodes within 

partition Si. Denoting with Tr(x) the trace of the matrix x, ∑(x) the 

sum of its elements and x·y the multiplication of matrices x and y, 

we can enunciate the following definition and theorem: 

 

Definition 9. (Girvan and Newman) Modularity. The quantity Q 

= Tr(e) – ∑(e·e) ∈[0,1] is called modularity. 

 

Theorem 1. Given a partition set G’ of a graph G, the modularity 

in Definition 9 quantifies the fraction of edges in G falling inside 

the partitions of the partition set G’ minus the expected value that 

the same quantity would have in a graph H having the same 

partition set G’ but random connections between all its nodes. 

 

Demonstration of this theorem is given in [13]. Intuitively, the 

modularity estimates “how much” the arrangement of links falling 

in the considered partitions differs from a random pattern. 

Therefore, to detect a meaningful “community structure”, i.e. a 

tendency of nodes to aggregate into groups – instead of falling 

randomly – Q should present relatively high values, say in the 

range [0.3,0.8]; According to Newman and Girvan, in fact, values 

greater than Q=0.8 have not yet been found in any natural 

network. 

We now finally define the notion of cluster. 

 

Definition 10. Cluster. A cluster is any partition Si in the partition 

set G’ of a graph G that shows the optimal (highest) modularity. 

 

Clusters are therefore the partitions of the partition set(s)6 that 

maximizes the modularity. Note that the modularity is a property 

defined for the graph itself, with respect to the considered 

partition set. It is not a property of each single partition in the 

partition set. 

In order to detect clusters, Newman and Girvan proposed an 

algorithm based on the removal of edge presenting the highest 

“betweenness”, which is  below defined. 

 

Definition 11. Edge Betweenness. The betweenness of edge e is 

the number of shortest paths between pairs of nodes that run along 

it. 

 

Note that edges with high betweenness are likely to connect 

different clusters, because they are part of the maximum number 

of shortest paths connecting nodes from different clusters. 

The simplest algorithm proposed by  Girvan and Newman 

progressively computes the edge e with highest betweenness in a 

graph G, removes it and computes the modularity of the resulting 

graph G’ (a partition set of the original graph) until the highest 

modularity value is found. In table 1 we propose a slightly 

modified version of this algorithm which returns the maximum 

modularity value in partition sets with less than nmax connected 

components. This algorithm considers only partition sets that 

exhibit modularity greater than a given threshold Qmin. To collect 

more meaningful results, we decided to feed the algorithm with 

only sameAs networks with a sufficient number of edges (safely 

we considered only networks with cardinality greater than 15 

nodes). Furthermore we experimentally set nmax=6 (likely a 

reasonable value compared to the original semantics of 

owl:sameAs) and Qmin=0.35. 

4. EXPERIMENTAL RESULTS 
We collected our dataset from Sindice using Sindice4J API (a 

Java wrapper for Sindice Search and Cache API). We performed 

all computations on a machine equipped with i686 Intel Xeon 

CPU 3060 2.40GHz processor, 1,048,772kB RAM, and featured 

Gentoo Linux Base System 1.12 OS, kernel 2.6.18-xen, Java v6.0 

and Aduna Sesame v2.60 back end by Gentoo Linux MySQL 

v5.1. Graph algorithms were implemented using JUNG API v2.0. 

The hardware equipment we used was definitely cheaper than the 

one described in previous experiments, thanks to the choice of 

using Sindice Cache API and storing locally only equivalence 

statements instead of caching full datasets. 

In Table 2 we provide some statistics of our experiments 

compared with the ones presented by Hu [10] and Ding [11]. The 

total amount of RDF statements, calculated by using the methods 

provided by Sindice Cache API, was 314,922,780 – certainly less 

than the one handled by Ding, but comparable with the number of 

statements considered by Hu. The number of different 

owl:sameAs statements found in the dataset was 1,722,938, 

representing 0.55% of the total amount of statements, a 

percentage closer to the one reported by Ding than the one 

provided by Hu. 

                                                                 

6 There might be more than one partition set showing the same 

modularity. 



Applying the algorithm in Table 1, we restricted the dataset to 

only sameAs networks with cardinality greater than 15 nodes and 

having a modularity Q>0.35 when split in 6 clusters at most. In 

our dataset 2,922 networks presented these features.  

 

Table 1.  A cluster detection algorithm. The algorithm iteratively removes the edge with 

the highest betweenness and computes the modularity of the resulting graph until the 

highest value is found. 

Input: G, a sameAs network 

Output: a set of clusters in G 

1 nmax � 6 

2 Qmin � 0,35 

3 Q � 0 

4 if |G|<16 then return void 

5 repeat { 

6 e � edge with highest betweenness in G 

7 remove e from G  

8 if modularity(G)>Q then Q � modularity(G) 

9 } until (number of connected components in G)<nmax 

10 if Q>Qmin then return (connected components in G) 

11 else return void 

 

Table 2.  A comparison of statistics of our experiment with the previous ones performed by 

Hu (2008) and Ding (2010). For each experiment, we report the number of equivalence 

statements as an absolute value and as a fraction of the total amount of considered 

statements. 

 Our Ding [11] Hu [10] 

Year 2012 2010 2008 

Source Sindice BTC 2010 Falcons 

RDF statements 314,922,780 3,171,184,130 596,418,935 

Eq. statements 1,722,938 9,358,227 7,880,906 

Ratio 0.55% 0.30% 1.32% 

 

 

About 80% of the networks were fragmented in either five or six 

clusters; the remaining ones were partitioned into three or four 

clusters; none into two clusters. The maximum modularity ranged 

from 0.35 to 0.67; its distribution, shown in Figure 1, presented 

two peaks around 0.51 and 0.62 (respectively 24% and 19% of the 

whole population). 

Proceeding with a manual inspection we found that the algorithm 

isolated clusters more precisely referring to an entity from clusters 

containing less specific references. For instance, the conceptual 

entity “sergeant” was found in a sameAs network partitioned into 

four clusters with modularity Q=0,44. The biggest cluster was 

mainly formed by nodes from dbpedia.org, suggesting slightly 

different meanings for the same concept: sergeant instructor, 

detective sergeant, senior sergeant, etc. The second relevant 

cluster, more consistently referring to the concept of police 

sergeant, was formed by six co-references from five different 

domains.  

Sometimes our detections revealed different location entities 

wrongly stated to represent the same place. For instance, the 

component referring to Abuja, since 1991 the new capital of 

Nigeria, mistakenly appeared in the sameAs network containing 

Lagos, the former capital of the country. The algorithm clearly 

isolated Abuja from other two clusters referring to Lagos with a 

maximum modularity Q=0.49.  

Similarly, the network containing the node 

<http://umbel.org/umbel/sc/Italy> was partitioned 

into three clusters with maximum modularity Q=0,49. One of the 

clusters however contained only co-references to Mendocino, a 

Victorian village near San Francisco, CA, renowned for its award 

winning wines. 

5. DISCUSSION 
After the manual inspection we noted that edges with high 

betweenness generally corresponded to mistakenly added 



owl:sameAs links. However, sometimes removed links were 

from the collections maintained in okkam.org, the entity search 

portal created by the OKKAM project. Nodes from this domain 

were often acting as “hubs”, showing an elevated number of 

outgoing arcs but no incoming links. They frequently appeared in 

paths connecting two or more clusters. Thus, their outgoing arcs, 

presenting an elevated betweenness, were often removed. 

 

Figure 1. Distribution of the highest modularity in about three thousand sameAs networks with cardinality greater than 15 nodes 

and modularity Q>0.35 when split in 6 clusters at most. 

 

Almost all the networks presented two typical clusters: The first 

one characteristically contained nodes from dbpedia.org and fu-

berlin.de that were often linked to a central node from 

freebase.com (or sometimes from mpii.de). The second typical 

cluster included a smaller number (about 5-10) of heterogeneous 

nodes coming from various domains (umbel.org, opencyc.org, 

nyt.com, freebase.com, mpii.de, etc.)  

To account for this phenomenon, we measured out the average 

composition of each cluster and plotted it as a function of the 

cluster’s cardinality. The result was the “cluster spectrometry” 

depicted in Figure 2.  

This diagram shows three main different areas. Clusters with 

cardinality 1 or 2 are prevalently made of nodes coming from 

dbpedia.org and fu-berlin.de. In particular, clusters with 

cardinality 1 account for isolated nodes, whereas those with 

cardinality 2 quite often represent couple of nodes interlinking 

resources in these two domains. 

The contribution from more domains becomes evident from 

clusters with cardinality greater than 2, which begin to show a 

more heterogeneous composition. From cardinality 3 to about 

cardinality 12, dividing the cluster’s cardinality by the number of 

involved domains we obtain a ratio close to 1, which means one 

node per domain on average. We observe that these clusters likely 

represent the “core” of Linked Data, as they contain 

interconnected nodes from several different domains describing 

the same entity. These clusters prove the existence of a set of well 

aligned “synonyms”, which, together with their associated 

descriptions, contribute to determine the generic meaning of an 

entity as shared by the Linked Data community. 

Clusters with cardinality greater than 12 progressively drop this 

characteristic composition and begin to be more homogeneous. 

For instance, we can observe how contributions from 

freebase.com, nyt.com and opencyc.org progressively decrease 

with the number of nodes, in favor of clusters generally 

dominated by nodes from dbpedia.org and fu-berlin.de. Moreover, 

these clusters often consist of hyponyms (i.e. more specialized 

terms) connected to a central node but not interlinked each others. 

One trivial explanation for this is that, at the time of writing, only 

DBpedia provides finer granule definitions while other data 

providers often publish more generic definitions. However, these 

semantic nuances have not been captured during the linkage and 

have been flattened as “equivalences” with the corresponding 

hyperonym (i.e. more generic tem). 

We are aware that our investigation covered only 1% of the over 

30 billion RDF statements in Linked Data and possibly even 

fewer samples having restricted the study to only networks 

compliant with the criteria illustrated in section 3. However, we 

believe that the discovered behavior could be also found in larger 

portions of Linked Data and we plan to perform a more 

exhaustive analysis extending our investigation to larger datasets. 

Possible criticism is also related to the bias introduced by Sindice. 

Many RDF statements that have been cached by Sindice are no 

more in the Linked Data cloud, which is continuously refining 

and evolving. Many faulty equivalences seem to have been 

corrected on the dereferenceable online version of the source 

documents. Clearly this bias can be reduced by repeating the 

experiment and using a more recent version of Sindice caches. 

Nevertheless, we noted that the presence of faulty equivalences 

represented a good benchmark for our algorithm, which was able 

to clearly detect clusters consistently referring to an entity and to 

keep them separate from others. 

6. CONCLUSIONS AND FUTURE WORKS 
Entity consolidation has been subject of many researches in past 

years, with many efforts focused on providing algorithms and 

tools to automate the generation of equivalence links in Linked 
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Figure 2. Average composition of clusters as a function of their size. The clusters prove the existence of a set of well aligned 

synonyms, which, together with their associated descriptions, contribute to determine the meaning of an entity as shared by the 

Linked Data community. 

 

Data. Now that Linked Data has passed its bootstrapping phase, 

with several billions of equivalence links available, link analysis 

could provide novel meaningful results to previously unanswered 

questions. 

In this paper we used the already deployed equivalence links to 

run a cluster detection algorithm based on edge betweenness and 

Newman and Girvan modularity.  

Analyzing the results we found typical recurring clusters 

consisting in a small number of heterogeneous nodes that we 

believe to represent the bulk of consolidated entity references in 

the Linked Data cloud. 

This finding inspired us to provide our own answer to the identity 

debate we mentioned in the introduction of this paper: rather than 

looking at an unique stable identifier for an entity, one should 

accept the existence of a dynamic set of “synonyms”, arranged 

into clusters and contributing to create the “meaning” of that 

entity as understood by the Linked Data community. This does 

not preclude the possibility to detect most representative nodes 

(for instance, the ones with the highest in-degree and cluster 

coefficient [14], or authority rank [15]), but this is not strictly 

necessary and does not seem to offer any particular advantage 

except probably the “psychological” one of having solved the 

quest for an unique entity identifier. Most likely, the very problem 

behind entity identification is not “how many” identifiers, but 

“which ones” should be used to refer to an entity. In this paper we 

attempted to provide a first answer to this question from a novel 

perspective, the link analysis, which in our opinion might reveal 

several new understandings of Linked Data in the near future.  

There are several future directions of investigation: for instance, 

one potential important finding that we highlighted was that 

mistakenly added links showed the highest edge betweenness. 

This suggests an interesting novel technique to detect misleading 

equivalences (and thus different entities) at a scale. However, in 

order to mechanize this procedure, an automatic verification step 

– which we have not yet implemented – is necessary. At a first 

glance, this verification necessarily requires a deeper analysis of 

the involved nodes, and of their properties other than 

owl:sameAs (for instance: literal properties, type, etc.). 

However, under the assumption that similar entities should 

present similar structures in their set of links, an interesting 

alternative could be using link analysis algorithms that measure 

the similarity between the link sets of the different nodes. This 

technique, called “blockmodelling”, has been proposed in the past 

for the analysis of social networks [16]. 

As another direction of research, we plan to broaden our 

methodology by introducing more sophisticated cluster detection 

techniques. The Girvan-Newmann edge betweenness algorithm 

we used requires that each node must appear in one and only one 

cluster. This condition is probably too strong. Existing algorithms 

based on a combination of edge betweenness and vertex 

betweenness [17] remove this limitation and might produce more 

meaningful results. 

Moreover we believe that other interesting features – e.g.,  

relationships between clusters – might be unveiled by applying 

more advanced detection techniques such as, for instance, the 

“mesoscopic” analysis of connected components recently 

proposed by Arenas et al. [18]. 
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