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Abstract. The history of an ontology development project, including its 

intermediate products, together with the executed activities, and the decisions 

made, might be of great importance in other future ontology developments. 

However, current tools supporting this kind of projects do not capture such 

information; thus, the process trace is lost, and any new ontology development 

project would start from scratch. This paper presents a framework meant to do 

overcome these deficiencies, allowing the capture and trace of such projects. 

1. Introduction 

Until the mid-90s, ontologies were developed without addressing systematic procedures. 

Therefore, the ontology development process was an art rather than an engineering 

activity [Fernández-López et al., 1999]. In the last decade, many ontology development 

processes have changed from the traditional ones, performed by isolated knowledge 

engineers or domain experts, into collaborative processes executed by mixed teams 

[Bernaras et al. 1996]. In such teams, experts in knowledge acquisition and modeling, 

domain specialists, and experts in implementation languages collaborate to build 

ontologies, according to well-established methodologies. The expertise of each team 

member, as well as the executed activities, and the decisions made during the 

development process might be of great importance in future projects. However, current 

tools supporting ontology development processes do not capture such information; thus, 

the process trace is lost, and any new project would start from scratch. In fact, once a 

given ontology development process is finished, the things that remain are mainly 

isolated design products (e.g., requirement specifications, competency questions, class 

diagrams, specific language implementations, etc.), without an explicit representation of 

how these products were obtained, and with no capture of the rationale behind the 

process. In addition, ontology building is turning into a more professional engineering 

activity that needs to be managed and measured in order to obtain high quality results; 

and such management requires an explicit representation of the development process. 

The issues pointed out before constitute essential challenges that need to be addressed.  

 In order to tackle them, this contribution proposes ONTOTracED, a framework 

to represent, capture and trace ontology development processes. This paper is organized 
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as follows: after discussing some issues about ontology development processes in 

Section 2, the framework components are presented in detail in Section 3. Finally, 

Section 4 concludes the paper and offers paths to future work. 

2. Ontology development processes 

Ontology Engineering (OE) is a relatively new field concerning ontology development 

processes, the ontology life cycle, the methods and methodologies for building 

ontologies, and the tool suites and languages that support them. A series of 

methodologies have been reported in the literature in the last two decades. An extensive 

state-of-the-art overview of these methodologies can be found in Gómez-Pérez et al. 

(2004). In addition, Cristani and Cuel (2005) have proposed a framework to compare 

ontology engineering methodologies and evaluated the established ones accordingly. The 

first contributions in the field, which are due to several authors [Gruber 1993], 

[Grüninger and Fox 1995], [Uschold et al. 1998], [Uschold and Gruninger 1996], set the 

grounds for many subsequent proposals. Gruber’s work [Gruber 1993] discussed some 

basic ontology design criteria associated with the quality of the developed ontology, as 

well as related to the methodology used to build it. Gruninger and Fox (1995) provided a 

building methodology based on Competency Questions. Methontology [Fernández-

López et al. 1999] which is an ontology development process, proposed an ontology 

lifecycle based on evolving prototypes and specific techniques to address each activity of 

the approach. With emphasis on knowledge management, Staab et al. (2001) proposed 

On-To-Knowledge. Other approaches, related to industry or research projects, include 

the methods used for building CyC, SENSUS [Swartout et al. 1997] and Neon [Suárez-

Figueroa et al. 2012]. These works report different principles, design criteria, and stages 

of the development process. However, no one is yet emerging as a clear reference [De 

Nicola et al. 2009]. Despite recent advances, there are few computational tools 

supporting the above mentioned methodologies. Neon Toolkit supports the Neon 

methodology and allows scheduling the stages that will be included in the design of a 

specific ontology. However, such tool neither captures the operations actually executed 

when adding a concept, a relation among concepts, etc., nor the rationale behind such 

operations. Consequently, there is still room for improvement in the OE field. 

3. A framework to capture and trace the ontology development process 

Generally, at the end of an ontology development process the things that remain are 

mainly unconnected design products (e.g. the requirements specification, competency 

questions, ontology class diagrams, the ontology implementation in a specific language, 

etc.), without an explicit representation of how they were obtained, and with no capture 

of  the history and rationale behind the project. More specifically, there is no trace of the 

activities that have led to any of the products, the requirements imposed at each stage of 

the process, the actors that have performed each of the activities, and the underlying 

rationale behind each decision that was made. To overcome these weaknesses, this work 

proposes a comprehensive framework to represent, capture and trace the ontology 

development process, along with its associated products and their evolution.  

 Fig. 1 shows the main components of the proposed framework, that includes: (i) 

a Conceptual Model, which is able to represent generic design processes; (ii) an 

Ontological Engineering Domain Model (OEDM) that specifies the concepts that are 
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required to describe ontology development processes, and (iii) a support computational 

environment, named TracOED (Tracking Ontology Engineering Designs), that 

implements both the conceptual model and the OEDM to enable the capture of specific 

ontology design processes, along with their associated products. 

 

Figure 1. Components of the proposed framework. 

 The supporting Conceptual Model is based on an operational-oriented approach 

that envisions the ontology development project as a sequence of activities that operates 

on the products of the development process. The proposal defines two representation 

spaces to model generic design process concepts: the Process and Product spaces. In 

addition, a third component (the Specification Space in Fig. 1) is included to fully specify 

a flexible model that is able to represent and capture design processes pertaining to 

specific engineering fields.  

 The Ontological Engineering Domain Model component can represent and 

capture particular ontology development projects, based on building-blocks that define 

the products obtained, as well as the activities carried out during this type of processes. 

This representation includes those modeling elements that are most commonly used in 

the methodologies that nowadays guide ontology development processes. Among these 

modeling elements are: the competency question, concept, and relation concepts, etc. In 

order to show how this proposal may be applied when ontologists want to stick to 

specific methodologies and/or approaches, the ontological categories proposed by the 

Unified Foundational Ontology (UFO) [Guizzardi 2005] have been added to the 

Ontological Engineering Domain Model. UFO is a language to build domain ontologies 

that preserves the ontological commitment of the domain being modeled. It distinguishes 

between conceptual entities called universals and individuals. In particular, due to space 

limitations, this work focuses on the subsumption hierarchy of sortal universals.  

 TracOED is the computational environment that implements the conceptual 

model and incorporates the OEDM. It is based on TracED [Roldán et al. 2010], which 

was conceived for capturing and tracing engineering designs. The major components of 

TracOED are the Domain Editor and Versions Manager. By using the Domain Editor, 

the OEDM has been specified in TracOED. Furthermore, the editor allows this model to 

be further specialized, if required. On the other hand, the Versions Manager keeps track 

of the execution of a design project, as will be shown in the following sections. 

3.1  Conceptual Model 

The Conceptual Model component provides the framework foundations. This 

component is organized in Process Representation, Product Representation and 

Specification spaces,  which  are  explained in this section.  The Process representation 
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space models the activities being performed during an ontology development process and 

it is specified by the Activity package (Fig. 2). In particular, when tackling the 

development of an ontology, typical tasks are: adding concepts and relations into the 

ontology, defining constraints on a specific concept, analyzing whether a group of 

concepts, relationships and constraints satisfies a formal competency question, evaluating 

the ontology, deciding on alternative concepts and relations, etc. As Fig. 2 shows, such 

activities are represented in the model with the BasicActivity or CompositeActivity 

classes, depending on whether the task is atomic or it can be decomposed into a set of 

subactivities. 

 

Figure 2. Conceptual Model. 

 In the proposed model, the execution of an activity is guided by one or more 

requirements, which specify the functional and non-functional characteristics that a 

development product must satisfy (e.g., in the ontology development domain, the 

concepts have to preserve the ontological commitment of the domain being modeled). 

Therefore, the ontology development process is interpreted as a series of activities led by 

requirements that are performed by Actors. An Actor may be either an Individual (a 

human being or a computational program) or a Team. Teams allow representing 

composite skills that are needed for carrying out activities. Each basic activity performed 

by an actor during an ontology development process is represented by the execution of a 

sequence of operations, which transforms the design objects. The operations that can be 

applied are domain dependent. So, it is necessary to define the allowed types of 

operations, as well as the modeling elements, for each specific domain.  

 As it was previously introduced, activities operate on the outcomes or products 

of the ontology design process, called design objects (Fig. 2). Design objects represent 

the various products of the development activities. Typical design objects are models of 

the artifact being conceived (e.g., in the ontology development domain: class diagrams, 

implementations in specific ontology languages, etc.), specifications to be met (i.e. 

competency questions, quality attributes, etc.). Design Objects may relate among 

themselves by domain specific relationships (DomainRelationship association class in 

Fig. 2), and can be organized in generalization-specialization hierarchies. Design objects 

types are described by a set of properties. Moreover, each design object type is related to 

a set of operation types that may be used to transform such design object.  
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 In this proposal, the execution of an activity (materialized through a sequence of 

operations) transforms a design object, which thus may evolve into multiple versions. In 

order to represent this evolution, each design object is specified at two levels: the 

Repository and the Version packages (Fig. 2), which constitute the Product 

Representation Space. The Repository keeps a unique entity for each design object that 

has been created and/or modified due to the natural progress that takes place during a 

development project. Any entity kept in the repository is regarded as a versionable 

object. Furthermore, relationships among the different versionable objects are also 

maintained in the repository (Association class in Fig. 2). On the other hand, the Version 

level keeps the different versions resulting from the evolution of each design object, 

which are called object versions. The relationship between a versionable object and any 

of its object versions is captured by the Version association. Therefore, for a given 

design object, a unique instance is kept in the repository, and all the versions it assumes 

along the design process belong to the versions level. Fig. 2 also includes the Design 

object type class, which allows representing the various kinds of modeling elements 

pertaining to particular domains.  

 The versions package also includes the ModelVersion concept, which represents 

a set of design objects within the context in which a given design activity is carried out. 

Its aim is to provide a snapshot description of the state of a certain design process at a 

given moment. According to the proposed representation, a new model version mn is 

generated when a basic activity is executed. Since each basic activity is materialized by 

a sequence of operations, named φ, the new model version mn is the result of applying 

such sequence to the components of the previous model version mp. This predecessor 

model version mp corresponds to the context where the activity was performed and the 

successor one (mn) represents the resulting context.  

 The Specification Space is defined by the Domain and Operation packages (see 

Fig. 2), which allow specifying the building blocks and operations of particular 

engineering design domains. In the context of the OntoTracED framework, this space 

has allowed specifying the ontological engineering domain model. The Operation 

package enables the specification of operation types and their implementations in a 

computational environment (TracOED in this case). This package defines the primitive 

operations add, delete and modify and also enables the specification of other operations 

that are applicable into the specific design domains (the ontology development domain in 

this work). When an operation is specified, it is necessary to define both its arguments 

and body. The body is comprised by some already defined commands that are available 

for being used in other operation specifications. They can be primitive (such as add, 

delete, or modify), auxiliary function commands, or previously defined operations. 

3.2 Ontological Engineering Domain Model 

As it was mentioned in section 3.1, the Domain and Operation packages (Specification 

space) of the underlying conceptual model let specify modeling elements and operations 

that are suitable for particular domains. This section presents the use of these packages in 

the specification of the Ontological Engineering Domain Model. Figure 3 (part a) 

presents a partial view of the resulting model. 
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Figure 3. a) A Domain Model specification for ontology development 
processes. b) Design objects proposed for the development of ontologies 
using UFO. 

 There are several methodologies for building ontologies and no one is yet 

emerging as a clear reference. In spite of their diversity, most methodologies share 

structural similarities and have comparable modeling elements. In this proposal, the 

following components are considered to be part of the proposed domain model:  

• Competency questions play the role of a type of requirement specification against 

which a given ontology can be evaluated [Gómez-Pérez et al. 2004]. They can be split 

off into more specific ones (AtomicCQ in Fig. 3), and complex competency questions 

(ComplexCQ in Fig. 3), which can be expressed in terms of simpler ones. Competency 

questions participate in most methodologies and they are the starting point in the 

identification of the ontology terminology. 

• Concepts represent a collection of entities that share a common set of characteristics. 

Certain languages call them classes or frames. Concepts can be hierarchically 

organized by means of subsumption relationships. 

• Relations symbolize interrelations between classes. Different languages call them 

properties, slots, roles, or associations. 

• Individuals are entities that belong to a particular class. They are also called instances 

or members of such class. 

• Assumption and Constraints represent natural language expressions that restrict the 

interpretation of concepts and relationships. 

 It is possible to distinguish between ontologies that are mainly taxonomies from 

the ones that model the domain in a deeper and formal way and provide more restrictions 

on the domain semantics. In order to represent this type of formalization it is necessary 

to incorporate additional design objects and operations. Therefore, the following 

elements have been added into the domain model: 
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• Formal Competency Questions are specification in a formal language of informal 

competency questions that were initially identified.  

• Axioms and rules represent formal expressions that allow ontologists to (i) explicitly 

define the semantics of an ontological concept by imposing constraints on its value 

and/or its interactions with other concepts; (ii) verify the consistency of the knowledge 

represented in the ontology, and/or (iii) infer new knowledge from the explicitly stated 

facts. 

 Fig. 4 presents the functional specifications of some of the operations included in 

the OEDM. They give an outline of how these operations can be stated in the 

computational environment. From an implementation point of view, these specifications 

are instances of the entities defined in Operation Package (Fig. 2).  

 

Figure 4. Specification of some operations belonging to the proposed model. 

 Fig. 4 shows some simple operations (addConcept, addInformalCQ, 

addFormalCQ) that allow adding design objects while developing a given ontology. It 

also shows that more complex ontological operations can as well be implemented. This is 

the case of the operation formalizeCQ, which allows formalizing a competency question, 

and the deriveConcept one. In particular, the deriveConcept operation allows adding into 

an ontology a list of new concepts that are identified from an informal competency 

question. The competency question object version (cqversion) and the list of concepts to 

be added (lcon), are the input parameters of this operation. As seen, all the proposed 

operations are defined in terms of primitive ones (add, modify, delete), auxiliary 

functions (getDescription, getOntology, attachAffectedTerm, among others), and/or 

operations (addFormalCQ, addRelationship). 

 As it was previously mentioned, the proposed OEDM defines design objects and 

operations to be able to handle the UFO ontological categories during the development 

of an ontology. Fig. 3 (part b) introduces a partial view of the resulting domain model 

 

toKind(o,cversion) 

 n:= getname(cversion) 

 kversion:=addKind(n) 

 addRelationship(o,kversion,BelongsTo) 

 delete(cversion) 

end 

 

addRole(o,rname,relDep,aSortal) 

 rversion:= add(rname,Role) 

 addRelationship(o, rversion,BelongsTo) 

 rdvers:= add(relDep,RelationalDependecy) 

 addRelationship(o,rdvers,BelongsTo) 

 addRelationship(rversion,rdvers,Mediates) 

 addRelationship(rdvers,aSortal,Mediates) 

end 

 

addSubKind(o,skname) 

  skversion:=add(skname,SubKind) 

  addRelationship(o,skversion,BelongsTo) 

end 

 

applyRolePattern(o,pname,c,rname,rel,sv) 

 rpversion:= add(pname,RolePatern) 

 addRelationship(o,rpversion,BelongsTo) 

 tversion:= type?(c) 

 addRelationship(rpversion,tversion,Type) 

 rversion:= addRole(o, rname,rel,sv) 

 addRelationship(rpversion,rversion,Subtype) 

end 

 

applyPhasePartition(o,pname, kversion, lcon) 

 ppversion:= add(pName,PhasePartition) 

 addRelationship(o,ppversion,BelongsTo) 

 addRelationship(ppversion,kversion,Type) 

 for each cname in lcon 

 phversion:= addPhase(cname) 

addRelationship(phversion,ppversion,Subtype) 

end for 

end 

 
 

addConcept(o,cname) 

cversion:= add(cname,Concept) 

addRelationship(o,cversion, BelongsTo) 

end 

 

addInformalCQ(o,ICQname,exp) 

  icqversion:= add(ICQname,AtomicCQ) 

  modify(icqversion,exp) 

  addRelationship(o,icqversion,BelongsTo) 

end 

 

addFormalCQ(o,exp) 

  CQversion:= add(exp, FormalCQ) 

  addRelationship(o,CQversion,BelongsTo) 

end 

 

deriveConcept(o, cqversion,lcon) 

  for each cname in lcon 

 cversion:= addConcept(o,cname) 

 addRelationship(cqversion,cversion, 

                 ExtractedFrom) 

  end for 

end 

 

formalizeCQ(ICQversion, fexp) 

  o:= get(ICQversion,Ontology) 

  f:= addFormalCQ(o, fexp) 

  addRelationship(ICQversion,f, Formalizes)

end 
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showing these new design objects. Table 1 presents the meanings of the concrete object 

types Kind, SubKind, Phase and Role and the list of applicable operations.  

 UFO is considered as a Pattern Language; i.e., in this language the choice of a 

particular design object type causes a whole pattern to be manifested [Guizzardi et al. 

2011]. For example, a phase is always defined as part of a partition; a role is always 

played in relation to another sortal. Therefore, the adopted domain model also includes 

the following design patterns proposed by UFO: SubKindPartition, PhasePartition and 

RolePattern [Guizzardi et al. 2011]. 

Table 1. UFO Sortal Universals. Adapted from Guizzardi (2005) 

UFO Ontological Categories 

Kind 

A Kind represents rigid, relationally independent object universals that supply a 

principle of identity for their instances. Examples include instances of Natural Kinds 

(such as Person, Dog, Tree) and of artifacts (Chair, Car, Television). 

SubKind 

A SubKind is a rigid, relationally independent restriction of a substance sortal that 

carries the principle of identity supplied by it. An example could be the SubKind 

MalePerson of the Kind Person.  

Phase 

A Phase represents anti-rigid and relationally independent universals defined as part 

of a partition of a sortal. For instance, [Child, Teenager, Adult] is a partition of the 

kind Person. A Phase is always defined as part of a partition. 

Role 
A Role represents an anti-rigid and relationally dependent universal. For instance, the 

role student is played by an instance of the kind Person. 

Proposed Operations 

Basic Pattern related 

addKind 

addSubKind 

addPhase 

addRole 

toKind 

toSubKind 

toRole 

toPhase 

remKind 

remSubKind 

remPhase 

remRole 

addPhasePartition 

addRolePattern 

addSubkindPartition 

remPhasePartition 

remRolePattern 

remSubkindPartition 

addPhase2Partition 

addSubkind2Partition 

remPhaseFromPartition 

remRoleFromPartition 

remSubkindFromPartition 

 

  Table 1 also presents the operations required to capture and manage the UFO-

related design objects (Fig. 3 part b). It includes two groups of operations: basic ones, 

which comprise operations to add, delete or modify simple design objects, and pattern-

related ones. These last operations are associated with the addition of the new set of 

design objects that follows the application of a given UFO pattern. Fig. 4 also presents 

the functional specification of some of these operations. As seen, the toKind(o, cversion) 

operation adds into a given ontology (o) a Kind design object (kversion), which is a 

refinement of a previously included concept (cversion). This operation also deletes the 

cversion concept from the current model version. Similarly, the addRole and 

addSubKind operations allow adding the Role and SubKind design objects to a given 

ontology o. Fig. 4 also presents the applyRolePattern and apply PhasePartition 

operations, which add a Role pattern and a Phase partition into a certain ontology, 

respectively. The rest of the operations are defined in a similar way by means of primitive 

operations (Primitive in Fig. 2), such as add(skname,SubKind), and non-primitive ones, 

like addPhase(cname). 

3.3. TracOED 

TracOED is the computational environment that implements the conceptual model and 

incorporates the OEDM, thus materializing the ONTOTracED framework. In order to 
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illustrate its features a case study is presented in this section. It is based on the 

development of the well known travel ontology.  

 As already mentioned, the Versions Manager enables the execution of each 

ontology development project, and captures its evolution based on operations that are 

accomplished and the instantiation of those design object types that have been specified 

in the Ontological Engineering Domain Model by means of the Domain Editor tool. 

 The development of the ontology starts with the definition of competency 

questions from which the requirements of the ontology and some initial concepts are 

identified. For instance, from the CQ1 competency question, which is shown below, one 

of the ontologists recognized the concepts Person, Traveler and Destination, among 

others. 

CQ1: Given the preferences of a traveler, the age and some constraints (economical or 

about the travel itself), which destinations are the most suitable? 

 The identification of all the concepts from suitable competency questions marks 

the end of the first stage of the ontology development process. In the following stage the 

ontologist has to assign UFO ontological categories to the identified concepts, as well as 

he/she has to define new concepts falling into these categories. In this case study, the 

ontologist working on this part of the project considered that each of the Person and 

Destination concepts should be represented as a Kind. This decision caused the creation 

of a new ontology version where the Person and Destination concepts were replaced by 

their corresponding kinds. In addition, during this stage the ontologist gathered more 

domain knowledge, which allowed him/her to specify the ontology in more detail. In 

particular, he/she identified that a person plays the role of Traveler related to a Travel 

Agency. Moreover, considering the age of travelers, the involved ontologist distinguished 

among young, adults and old travelers. Therefore, he/she applied a phase pattern to 

represent this situation. 

 Fig. 5 presents a schema that exemplifies how the development process is 

captured by the Version Manager. The upper part of Fig. 5 shows the two ontology 

versions that were described above and that are inferred from the captured knowledge. 

In fact, the project evolves from a Root Model Version, which is empty, to Model 

Version1 by applying the φ1 sequence of operations, which in turn is captured by the tool 

from the operations that were performed by the ontologist during the first stage of the 

process (definition of competency questions and derivation of concepts from them). 

Then, the evolution from ModelVersion1 to ModelVersion2 is caused by the operations 

included in φ2. These operations capture the activities carried out by the ontology 

developer when he/she applied the role and phase partition UFO patterns. 

 The first operations sequence, φ1, includes the addOntoloy, addInformalCQ and 

deriveConcept operations that are responsible for creating the CQ1, cPerson and 

cDestination versionable objects at the repository level, and their first corresponding 

object versions (CQ1v1, cPersonv1 and cDestinationv1) at the version level. In turn, φ2 

comprises the tokind, addSubKind, applyRolePattern and applyPhase Partition 

operations. The execution of these operations has the following impact in 

ModelVersion2: (i) the addition of kPerson (Kind), (ii) the incorporation of a 

RolePattern, which comprises kPerson, TravelAgency (SubKind), rTraveler (Role) and 
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the clientOf (RelationalDependency), (iii) the inclusion of the byAgePh phase partition 

having the YoungTraveler, AdultTraveler and OldTraveler phases, and (iv) the removal 

of the cPerson and cTraveler concepts from the current model version. 

 

Figure 5. Specification of some operations belonging to the proposed model. 

   For each executed operation a version history link is created. For clarity reasons 

Fig. 5 only shows the version history links that relate cTraveler (ObjectVersion) in 

ModelVersion1 with kTraveler, OldTraveler, AdultTraveler, YoungTraveler and 

byAgesPhPart (ObjectVersion) in ModelVersion2. By means of the history links it is 

possible to reconstruct the history of a given model version starting from the root one. 

The Version Manager presents such information in the so called History Window, which 

is illustrated in Fig. 6. In this pane it can be seen that TracOED allows keeping 

information about the development evolution of the ontoTravel ontology. From this 

knowledge it is possible to identify which are: (i) the predecessor and successors of 

ModelVersion1; (ii) the history links saving traces of the applied operation sequences, φ1 

and φ2, which originated ModelVersion1 and ModelVersion2, respectively; (iii) the set of 

object versions (byAgePh, YoungTraveler, AdultTraveler and OldTraveler) that 

appeared as a result of a given operation execution (applyPhasePartition). 

 Moreover, on the Version Manager History Window (Fig. 6) it is possible to see 

detailed data about each applied operation. For instance, this pane presents information 

about the time point at which a given operation was applied, who the involved actor was, 

and the identification of the successor object versions. In this example, the history 

window shows that an applyRolePattern operation was executed at ModelVersion2 by 

mvegetti at time 11:40 -14/03/2012. It is possible to see that the execution of this 

operation also implied the addition of both, the Traveler role and the clientOf relational 

dependency. 
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   It is important to remark that TracOED was developed with the aim of proving 

the proposed ideas and materializing the ONTOTracED framework. Therefore, this tool 

is not meant to replace traditional support environments. On the contrary, in the future 

TracOED should be integrated with existing ontology development tools, such as the 

OntoUML editor. In this way, TracOED would perform the capture of all the applied 

operations by working in a background mode, without being noticed by ontologists. 

    
Figure 6. TracOED history window. 

4. Conclusions  

This contribution presents ONTOTracED, which is a framework aimed at capturing and 

tracing ontology development processes. The framework is based on a conceptual model 

of generic engineering design projects, an Ontological Engineering Domain Model, 

which specifies design objects and operations that are specific to ontology development 

processes, and a computational environment, named TracOED, which implements these 

models.  The capabilities of TracOED have been presented and afterwards illustrated by 

means of a case study. The example shows that it is possible to keep track of the 

ontology development process along with its associated products, to store its history, 

allowing for the future retrieval of knowledge and experience. The proposal is flexible 

enough to be used in the development of ontologies that rely on particular methodologies 

and/or approaches, or that address particular fields. If needed, the TracOED domain 

editor can be used to extend the proposed Ontological Engineering Domain Model or to 

create a new one.  To further validate the proposal, future work will be oriented to 

integrate TracOED with existing ontology development tools, like Protégé, the Neon 

Toolkit or the ontoUML editor, in such a way that its execution would take place in a 

background mode. 
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