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Abstract. Nowadays, it is difficult to reuse ontologies, especially those that 

cover a large domain. It is in this context that ontology modularization can 

be useful. The goal of this work is to investigate graph partitioning 

techniques and their application on the modularization of large ontologies, 

typically, biomedical ontologies. Such investigation may be divided in two 

steps: (i) how to convert an ontology, represented in OWL or RDF 

languages into a graph; (ii) which partitioning algorithm would be suitable. 

More specifically, this work focus is on how to preserve certain ontology 

properties/relationships in the generated modules. Therefore, a single way 

of graph conversion was adopted and user-defined edge weights were taken 

into account. Five graph partitioning algorithms were used for the present 

investigation, but just three of them were used to verify their behavior in 

face of edge weight variations. A case study was conducted using a toy-

ontology on the pizza domain, and showed preliminary but interesting 

results. 

1. Introduction 

The constant growth of data and publications in the biomedical area has been pushing 

the creation and reuse of domain ontologies in that area, not only for structured data 

annotation, but also for text indexation and annotation. Examples of such reusage are: 

Genbank
1
, Pubmed

2
 and NCBO Portal

3
. Genbank is the most popular comprehensive 

database that contains publicly available nucleotide sequences, for more than 380,000 

organisms. Each sequence feature (genes, repetitive areas, etc.) is usually annotated 

with ontology references. Pubmed is one of the most popular digital biomedical 

citation reference (more than 21 million). Each text citation is associated (indexed) 

using the MeSH
4
 thesaurus. A more detailed indexation, also known as text 

annotation, associates text expressions to ontology terms. The NCBO (The National 

Center for Biomedical Ontology) BioPortal provides the Annotator tool, specially 

created to support biomedical text annotations.  

The Open Biological and Biomedical Ontologies (OBO) Foundry
5
 and the NCBO 

BioPortal provide together more than 300 ontologies. How can a biomedical 

annotator deal with such a variety of ontologies? In addition, it is even more difficult 

                                                        
1
 http://www.ncbi.nlm.nih.gov/genbank/  
2
 http://www.ncbi.nlm.nih.gov/pubmed/  
3
 http://bioportal.bioontology.org/  
4
 http://www.nlm.nih.gov/mesh/  
5
 http://obofoundry.org/  
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to reuse them taking into account that typical biomedical ontologies have more than 

five hundred terms.  

It is in this context that ontology modularization can be useful. However, in order 

to put modularization into practice greatly depend on the goals that are pursued, and 

thus, the splitting of ontologies into smaller modules has to follow some criteria 

[Parent and Spaccapietra, 2009]. It is worth noting that ontologies are semantic-based 

structures, in which each class and each property have different meanings. Such 

differences should be taken into account in the process of modularization, i.e., certain 

classes and/or properties (relationships) may be more relevant than others in the 

generated modules. For instance, for a user of the Gene Ontology (GO) [GO 

Consortium, 2000] it may be more important to generate modules where part-of 

relationships between selected nodes are all included. Therefore, a good criterion for 

generating reusable ontology modules is to rank properties, so that they are not 

discarded during modularization. 

The task of modularizing large ontologies, typically, biomedical ontologies, can be 

divided in two steps: (i) how to convert an ontology, represented in OWL or RDF 

languages into a graph; and (ii) which partitioning algorithm would be suitable. With 

respect to (i), there are different ways of doing such conversion, as stated in [Coskun 

et al., 2011], but either one should represent property ranking values in the graph. 

With respect to (ii), there are many graph partitioning algorithms, such as, Spin Glass, 

Fast Greedy, Walktrap, Leading Eigenvector and Edge Betweenness. However, just 

some of them take into account edge weights: Spin Glass, Walktrap and Fast Greedy. 

In this context, a question still remains: which of these algorithms would be more 

suitable for the ontology property-aware modularization problem?  

There are previous works that evaluate partitioning algorithms applied to 

ontologies [Coskun et al., 2011][Oh and Yeom, 2012], but they did not take into 

account edge weight variations.  

This paper investigates the behavior of graph partitioning algorithms with respect 

to edge weight variations, and describes a case study that shows some initial but 

interesting results. In order to conduct this study it was necessary to adapt and use 

existing tools. For (i), the PATO
6
 tool was used because it includes an ontology-graph 

conversion mechanism that adds weights to two types of properties (is-a and other 

domain properties). It had to be adapted in order to assign a different weight to each 

distinct domain property. Then, for (ii), the iGraph
7
 tool was chosen as it includes 

implementations of three edge weight aware partitioning algorithms.  

The case study was carried out using a toy-ontology on the pizza domain. 

Although the modularization targets are large ontologies, it would be very difficult to 

analyze and evaluate the resulting modules for these ontologies. Therefore, the idea of 

using a small ontology was to facilitate the analysis of the modularization results. 

Moreover, the choice for a common knowledge domain, such as pizza, was to avoid 

the need for biologists or domain specific specialists in the initial tests. The pizza case 

study showed that the variation of properties weights led (according to the user needs) 

to different partitioning results. It was noted that some algorithms kept most of the 

                                                        
6
 http://web.informatik.uni-mannheim.de/anne/Modularization/pato.html  
7
 http://igraph.sourceforge.net/ 
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highest weight properties within the modules and did not use them as cut edges 

(between the modules).   

The rest of this paper is organized as follows. The following section describes the 

biomedical scenario, which motivates this investigation. The third section describes 

briefly some of the main graph partitioning techniques. The fourth section describes 

the experiment and discusses its results. The fifth section concludes the paper, 

pointing to future work. 

2. Biomedical Ontologies  

Nowadays there are many ontologies on the biomedical domain that can be found at 

The Open Biological and Biomedical Ontologies (OBO) Foundry and at the NCBO 

BioPortal. The OBO Foundry is maintained by a group of researchers that establish a 

set of principles for ontology development with the goal of creating a suite of 

orthogonal interoperable reference ontologies in the biomedical domain [Smith et al. 

2007]. Besides being a repository, the OBO plays the role of a reference organism, 

which reviews and certifies a set of ontologies on the biomedical domain. At the time 

of the writing of this paper, there were around 113 ontologies, from which only 8 

were considered OBO ontologies, while the other 105 were still candidate ontologies. 

The GO (Gene Ontology) is one of the most popular among OBO ontologies. 

The NCBO BioPortal [Noy et al. 2009] is an ontology repository that feeds a text 

annotation service. At the time of this writing there were 306 ontologies. After a 

quick analysis about their size, it was possible to conclude that approximately 3% 

have more then 100,000 classes; 8% have more than 10,000 classes; and more then 

50% have more then 500 classes. Then, it is fair to say that in the biomedical domain, 

ontologies are typically of medium and large size. How can a biomedical (ontology-

driven) annotator deal with such a variety of large ontologies?  

This scenario motivates us on the investigation of alternative solutions for reducing 

the complexity of ontology reuse. The next section summarizes some of the graph 

partitioning techniques that could be useful to facilitate their reuse.  

3. Graph Partitioning Techniques  

The graph partitioning problem has been used to model problems of different areas. 

The growth and rapid evolution of real networks, created from technological and 

social networks, resulted in an increasing volume of data sets. These data can be used 

to extract information of the network elements. A network consists of a combination 

of elements and relationships between pairs of elements. Given this definition, we can 

construct an associated graph G = (V,E), in which the vertices (v ∈ V) represent the 

network elements and the edges (e ∈ E) represent some kind of relationship between 

the elements. 

The techniques for solving the graph partitioning problem try to divide the set V 

(the vertices of G) in clusters (also communities or partitions) that optimize a certain 

criterion. For instance, each cluster must have edges between internal vertices with 

high weight and edges between different clusters with low weight. Following this 

optimization criterion, the graph partitioning problem is NP hard and can be formally 

defined as: 
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Given a graph G=(V,E), find p subsets V1, V2, ... Vp such that: 

i. ⋃ ��
�
��� = �		
��		�� 	∩ 	�� = 	∅, for	any	� ≠ �. 

ii. W(i) and W represent the sums of the weights of the edges between vertices 

inside the sets Vi and V,  respectively. 

iii. The sum of the weights of the edges that connect the vertices into two subsets 

Vi and Vj, for all pair i,j  must be minimal. 

There are several approximate algorithms to solve the graph partitioning. In this 

paper we consider the partitioning algorithms implemented in the library iGraph. This 

library provides an implementation of 5 (five) different algorithms for graph 

partitioning: Edge Betweenness Community, Walktrap Community, Fast Greedy 

Community, Spin Glass Community and Leading Eigenvector Community algorithms. 

The Edge Betweenness Community is a divisive algorithm. It removes recursively 

edges of the graph until determine communities [Coskun et al., 2011]. From a non-

weighted graph G=(V, E) the betweenness of an edge e ∈ E, is the number of shortest 

paths that connect any two vertices v1 and v2 of V passing through the edge e. Note 

that there may be more than one shortest path between two vertices. In this case, if 

there are k shortest paths between the vertices v1 and v2 ∈ E, then each one will have a 
weight 1/k to calculate the edge's betweenness of these paths [Schaeffer, 2007]. 

This algorithm computes the values of the betweenness of each edge. And is based 

on the following observation: edges with higher value of betweenness must be 

connecting vertices of two different partitions, i.e., they are not inner edges in a 

partition. Then the algorithm divides the graph into clusters, removing one by one the 

edges with the highest value of betweenness. If more than one edge has the highest 

value, one is chosen randomly. After each removal, the betweenness is recalculated 

for each edge. This process is repeated until a stop criterion. 

The Walktrap Community is an algorithm based on the following statement: 

"random walks in a graph tend to get trapped in dense parts of the graph, 

corresponding to the communities" [Coskun et al., 2011]. That is, by drawing a 

random path between two nodes, the nodes that belong to the path are more likely to 

belong to the same community. It is a hierarchical agglomerative algorithm, because 

the communities are built step by step through the union of vertices to form 

communities. Initially the algorithm treats all vertices of the graph as communities of 

a single node. Then, at each step, two communities are joined, until the stopping 

criterion. 

The Fast Greedy Community is an algorithm widely used to determine 

communities for non-directed and sparse graphs G=(V,E) [Eom et al., 2009]. This 

algorithm is based on the concept of modularity of a partition C={C1, …Cp}, 

Q(C)=Σ1≤i≤ p aii – ai
2
 , where aii represents the edges of the graph inside the set Ci and 

ai the number of edges with one endpoint in the set Ci The Fast GreedyCommunity 

algorithm maximizes the value of the modularity in a greedy fashion. 

Initially, the algorithm considers each vertex of the graph as a unitary community. 

Then, the algorithm finds the pair of communities Cp and Cq having the maximum 

value ∆Qij =  eij –eji – 2ai aj = 2(eij – ai aj), where eij is the number of edges between 

Ci and Cj. Next, the algorithm combines these two communities Cp and Cq in only one 

community. The process is repeated while ∆Q is a positive number. During the 

process of union of two communities into one, the algorithm updates the values 
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corresponding to neighboring communities (internal and external edges of the 

communities affected by the union of Cp and Cq). 

The Spin Glass Community is an algorithm based in a thermodynamics technique 

to model the graph-partitioning problem. The meta-heuristic Simulated Annealing is 

used to solve the minimization energy problem considering in this model. In this 

context, the spin states consider the vertices of the graph and the structure of the 

partition in the graph is interpreted as the spin configuration that minimizes the 

energy of the Spin Glass. 

The Leading Eigenvector Community algorithm uses the concept of modularity in 

a different way to perform the partitioning. In this case, the algorithm finds the 

eigenvector corresponding to the most positive eigenvalue of a modularity matrix, 

defined from values ∆Qij and divide the network into two groups, according to the 

signs of this vector elements [Newman, 2006].  

Table 1 surveys 3 characteristics of the five algorithms mentioned before: type, 

worst-case complexity, possibility of use of weighted edges. Note that just three of 

them take into account edge weights. The complexities of these algorithms were 

obtained from the iGraph API documentation. We note the graph G=(V,E), where |V| 

is the number of vertices and |E| is the number of edges.  

Table 1 - Comparison between the five algorithms. 
Algorithm Weighted Edges Type Complexity 

Edge Betweenness No Divisive O(|�|�)) 

Walktrap Yes Agglomerative O(|�|��� (|�|)) 

Fast Greedy Yes Greedy O(|#| 	+	 |�| ∗ �� �(|�|)) 

Spin Glass Yes Aproximate Not Found 

Leading Eigenvector No Spectral O(|#| 	+ |�|�) 

4. Case Study 

As stated in [Parent and Spaccapietra, 2009], each module is expected to show a 

similar unit of purpose, gluing together those elements that participate on a given 

goal. A module should make sense to ontology engineers seeking to (re)use them 

[Grau et al., 2006]. For instance, a module should represent an agreed 

conceptualization of a sub-domain of the domain of the ontology.  

Evaluating ontology modules is not an easy task. A recent related work [Oh and 

Yeom, 2012] proposes a new evaluation framework for selecting an appropriate 

ontology modularization tool. In their work, modularization tools were evaluated as 

use cases according to the proposed framework, which takes into account three 

aspects: tool performance, data performance, and usability. Data performance 

includes verifying the cohesion of a module, which means asking if a module contains 

plenty of concepts, relationships, and axioms. However, although different 

partitioning methods were compared, the property ranking was not used as a criterion 

for modularization evaluation.  

Another related work [Stuckenschmidt and Klein, 2004] identifies ontology 
partitions depending on property weights. These weights are calculated based on 

graph dependencies (e.g. subclass, domain and range restrictions). However, a method 

purely based on the structure of the ontology may not be able to capture semantics of 

such properties.  
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The present work adopts a user-based, but probably not scalable approach. 

According to the user preference (weights assigned to object properties), a set of 

modules is generated. A module makes sense if it is cohesive, meaning if it includes 

the user-preferred properties, and the related concepts. Based on this criterion it was 

possible to evaluate the generated modules.  

In order to verify the behavior of the selected five algorithms taking into account 

weighted ontology properties, a case study scenario was prepared: support tools were 

configured and/or adapted to execute such algorithms, having as input a chosen 

ontology. The following subsections detail the case study scenario and the subsequent 

executions of the algorithms, discussing the cohesion of the resulting modules. 

4.1 Scenario Preparation  

The modularization of a given ontology was divided into two tasks: the first one 

consists in representing a given ontology as a graph, and the second consists in 

partitioning this graph.  

With respect to the first task, although it is a non-trivial task, it was not in the 

scope of this work to focus on this problem. There are different and richer ways of 

converting an OWL/RDF ontology into a graph representation [Coskun et al., 2011], 

but in the context of this work it was performed as follows: given an OWL file, 

converts it into a graph G=(V,E), where each OWL class or RDF resource 

corresponds to a vertex of V, and each OWL/RDF object property corresponds to an 

edge of E. In this type of conversion, usually there is no distinction between the 

edges, and therefore the different relationship types are lost. As we stated before, 

since ontologies are semantic-based structures and have different domain properties 

(object properties), the edge-weight variation is meaningful to their modularization.  

The literature pointed to some tools to perform the first task. The Jena
8
 java library 

and the PATO tool were alternatives. Their outputs are graphs in graphML and Pajek 

formats, respectively. Although Jena allows three distinct representations for the 

graph, PATO was more suitable as it allows assigning weight values to graph edges.   

The PATO tool could be useful for the second task as well, since it performs the 

complete modularization of an ontology. However, this tool is poorly documented and 

it was not possible to identify the algorithm behind its partitioning algorithm. On the 

other hand, there were two known partitioning C++ libraries available: SNAP
9
 and 

iGraph. SNAP provides the implementation of two different partition algorithms, 

edge betweenness and fast greedy, while iGraph provides three others besides those 

two: spin glass, walktrap and Leading Eigenvector. Furthermore, iGraph admits Pajek 

input format, allowing its use in conjunction with the PATO tool. Therefore, iGraph 

was chosen for its coverage and compatibility. 

The PATO tool had to be adapted in two ways. First, it was removed all its 

unnecessary functionalities for our goal. Second, since PATO’s original code only 

differentiates the subclass relationship and the domain properties, assigning the same 

weight to all the domain properties, it was necessary to adapt the code in order to 

allow assigning distinct weights to different domain properties.  

                                                        
8
 http://jena.sourceforge.net  
9
 http://snap.stanford.edu/snap/ 
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In addition to iGraph and PATO, the graphic interface of the R-tool
10
 from iGraph 

was used in order to visualize the results. Also, it was developed a Java procedure 

whose input is the output of the iGraph library, in text format (.txt). For a partitioning 

that generates k communities, this routine returns k files (communities) in Pajek 

format. 

To facilitate the analysis of the edge weight variation it was necessary to choose a 

domain, small but sufficient, ontology example. As most of the biomedical ontologies 

are large, they were initially discarded. Furthermore, it would be difficult to extract a 

reduced size module of it to work with. Therefore, work with a toy-ontology on a 

common knowledge domain would be a wise choice. A well-known example of toy 

ontology on the pizza domain (used in knowledge representation tutorials and 

courses) was chosen. However due to limitations of the PATO tool on dealing with 

OWL format, an RDF smaller version of the pizza ontology
11
 was adapted and used.  

4.2 Partitioning Results  

The output graph obtained with PATO from the Pizza ontology is shown in Figure 1. 

This figure was generated with the aid of R-tool and Power Point. The Pizza ontology 

used has three types of properties: "isa", "consists_of" and "consumes" and for this 

study it was planned 5 (five) combinations of weight distribution for the edges, as 

described in the Table 2. From each choice of the edge weights combinations, 5 

weighted graphs corresponding to the Pizza ontology were created. 

Table 2 - Weight combinations of the edges assigned to the Pizza graph   
Graph consists_of Consumes Isa 

0 1 1 1 

1 1 1 2 

2 1 2 1 

3 2 1 1 

4 2 2 1 

 
Vertex Graph 

0 Non_Vegetarian_Ingredient  

 

 

1 Raw_Ingradient 

2 Vegetarian_Ingredient 

3 Vegan_Customer 

4 Vegetarian_Customer 

5 Pizza 

6 Edible_Thing 

7 Customer 

8 Vegan_Ingredient 

9 Small_Pizza 

10 Medium_Pizza 

11 Large_Pizza 

12 Non_Vegetarian_Pizza 

13 Vegetarian_Pizza 

14 Vegan_Pizza 

15 Non_Vegetarian_Customer 

Figure 1 - Vertices of the graph corresponding to the Pizza ontology 

                                                        
10
 http://www.R-project.org/  

11 http://www.heiko-stoermer.net/teaching/2006-models-and-techniques-of-knowledge-representation 
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Each of the five resulting graphs was partitioned by Fast Greed, Spin Glass and 

Walktrap algorithms, which allows weighted graphs as input. The other two 

algorithms, Leading Eigenvector and Edge Betweeness, were executed only to the 

graph with constant weights (graph 0). 

For graph 0, the Spin Glass and Fast Greedy algorithms obtained the same result 

(the same 3 communities). The Walktrap and Edge Betweenness algorithms obtained 

the same result (the same 3 communities). But the difference between the partitions 

obtained in these two cases is the allocation of vertices 0 and 12 (Non-Vegetarian 

Pizza and Non-Vegetarian Ingredient). Figure 2 shows the output by the 5 algorithms 

for graph 0. In this case, constant weights for the edges, the algorithms seem to have 

similar or slightly different behavior. However, the communities obtained with Fast 

Greedy and Spin Glass algorithms seem to be better. 

 

Figure 2 - Partitioning for the first graph (graph 0). 

In what follows, we will discuss the content of each community generated with   

the algorithms. Table 3 shows the vertices allocated in each of the 3 communities by 

Fast Greedy and Spin Glass algorithms for graph 0. Both algorithms included 

vegan/vegetarians on one community and non-vegetarians in another. Furthermore, a 

third community of generic nodes, which did not fit in either first two communities, 

was generated. Note that vertex 7 is not allocated in the generic nodes community. 

However, vertex 7 is not adjacent to any other vertex in the third community, and 

therefore the obtained result makes sense.  

For the graph 0, Edge betweenness and Walktrap algorithm obtain 3 communities. 

In this case, vertices 0 and 12 (Non-Vegetarian Ingredient and Non-Vegetarian Pizza) 

belong to the partition correspondent to general classes (Non-Vegetarian Customer). 

Both algorithms focus on paths (one is deterministic and the other is probabilistic), 

and this approach is different from the first two algorithms analyzed. However, more 

tests should be performed in order to obtain general conclusions.  
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Table 3 - Communities generated with Fast Greedy and Spin Glass algorithms for 

graph 0. 
Community Vertices Description 

Vegan/Vegetarian 2, 3, 4, 8, 13, 14 Vertices that represent Vegans and Vegetarians Pizzas, 

Ingredients and Customers 

Non-Vegetarian 0, 7, 15, 12 Vertices that represent Non-Vegetarian Ingredient, Non-

vegetarian Pizza and Non-Vegetarian Customer, and yet 

Customer (vertex 7) 

Pizza 5, 11, 9, 10, 1, 6 Vertices that represent General classes (Pizza, Raw Ingredient, 

Edible Thing) and pizza sizes. 

It is also worth noting that, different from the other algorithms, the Leading 

Eigenvector algorithm generated an extra partition with different types of customer 

(Vegan and Vegetarian Customer and Customer itself). Vertex 15 (Non-Vegetarian 

Customer), which seemed to be semantically closer to this community, was allocated 

in another related community, which includes Non-Vegetarian Pizza and Non-

Vegetarian Ingredient.  

With respect to the other graphs (graphs 1-4), Fast Greedy algorithm showed the 

best performance in terms of vertex clustering (communities). Fast Greedy’s 

partitioning results are shown in Figure 3, while Figures 4 and 5 show the partitioning 

results for the Spin Glass and Walktrap algorithms, respectively.  

 

Figure 3 – Fast Greedy communities for different weight configurations (the numbers 

at the center correspond to graph numbers of Table 2). 

Graph 3, which assigns the highest weight for the "consists_of" property, is the one 

for which Fast Greedy showed the best partitioning. This partitioning seems to make 

more sense than the one generated by graph 0 (analyzed previously). The four 

generated communities may be easily described, as follows: (i) Consumers (3,4,7,15); 

(ii) Non-vegetarians (12,0); (iii) Generic classes (1,5,6,9,10,11); (iv) Vegan and 

vegetarians (2,8,13,l4). Note that vertex 7 (Customer) now belongs to a community 

that includes the other customers. The partitioning for graph 4 is equal to graph 0. In 

2

7 

15

4

3

12

14

13

8

50

1
6

9

11

10
ISA

ISA

ISA

ISAISA

ISA

ISA

CONSISTS_OF

CONSISTS_OF

CONSISTS_OF

CONSUMES

CONSUMES

CONSUMES

CONSISTS_OF
ISA

ISA

ISA

ISA

ISA

ISA

ISA

2

7 

15

4

3

12

14

13

8

50

1
6

9

11

10
ISA

ISA

ISA

ISAISA

ISA

ISA

CONSISTS_OF

CONSISTS_OF

CONSISTS_OF

CONSUMES

CONSUMES

CONSUMES

CONSISTS_OF
ISA

ISA

ISA

ISA

ISA

ISA

ISA

2

7 

15

4

3

12

14

13

8

50

1
6

9

11

10
ISA

ISA

ISA

ISAISA

ISA

ISA

CONSISTS_OF

CONSISTS_OF

CONSISTS_OF

CONSUMES

CONSUMES

CONSUMES

CONSISTS_OF
ISA

ISA

ISA

ISA

ISA

ISA

ISA

2

7 

15

4

3

12

14

13

8

50

1
6

9

11

10
ISA

ISA

ISA

ISAISA

ISA

ISA

CONSISTS_OF

CONSISTS_OF

CONSISTS_OF

CONSUMES

CONSUMES

CONSUMES

CONSISTS_OF
ISA

ISA

ISA

ISA

ISA

ISA

ISA

PROPERTY    WEIGHT
----------------------------
CONSISTS OF     1
CONSUMES         2
ISA                       1

2    3
1    4

PROPERTY    WEIGHT
----------------------------
CONSISTS OF     1
CONSUMES         1
ISA                       2

PROPERTY    WEIGHT
----------------------------
CONSISTS OF     2
CONSUMES         2
ISA                       1

PROPERTY    WEIGHT
----------------------------
CONSISTS OF     2
CONSUMES         1
ISA                       1

80



  

the other graphs (1 and 2) there are some out of place vertices. For instance, vertex 0 

(non-vegetarian ingredient) is separated from vertex 12 (non-vegetarian pizza).  

The partitioning results for Spin Glass algorithm do not show much variation. 

Graphs 2-4 partitioning results are equal to graph 0 results. Graph 1, which assigns 

the highest weight for the "isa" property, is the only one whose results are different, 

but interesting. Note that they are similar to graph 3 results of the Fast Greedy 

algorithm, with the difference that communities (ii) and (iii) are merged.  

Similarly, partitioning results for Walktrap algorithm show variation only for 

graph 1, and one of its communities (0,1 and 6) do not make much sense, joining 

together vertices with not much in common.  

Another important analysis is if the generated modules attend the property ranking 

criterion, i.e., if the module includes the properties and concepts according to the user 

priority assignment. As stated before, the idea is to prioritize one type of property, in 

order to maintain them in the resulting partition. Figure 3 shows that the partitioning 

results for graph 1, which assigns highest weight value to the "isa" property, shows 

that most of the edges that represent this property are “inside” the community, i.e., 

they are not between two different communities (cut edges). Similarly, partitioning 

results for graph 2, which assigns highest weight value to the “consumes” property, 

shows that all the edges that represent the “consumes” property are inside the 

communities. In other words, the vertices joined by edges of greater weight tended to 

remain in the same community, and these edges were then maintained in some 

partition. Fast Greedy algorithm also showed the best results, varying according to 

the different configurations of edge values. Table 4 summarizes its results. Note that 

when the “consumes” property is prioritized, it does not appear as a cut edge (0) in 

the graph. The same occurs with the “consists_of” property. 

Table 4 – Property Priority (highest weight) versus the number of cut edge 

and inside properties for the Fast Greedy algorithm (analysis from Figure 3 graphs) 
Priority (> weight) cut edge properties  inside properties 

 isa consists_of consumes isa consists_of consumes 

Isa (graph 1) 3 2 3 11 2 0 

Consists of (graph 3) 4 0 3 10 4 0 

Consumes (graph 2) 4 1 0 10 3 3 

5. Conclusion  

This paper described an experiment that showed some initial but interesting results on 

how partitioning algorithms behave for ontology modularization, with focus on edge 

weight variations. In the context of ontologies, it makes sense to identify priorities for 

ontology object properties before partitioning. This can lead to more useful ontology 

modules from the user point of view.  

The focus of this work was on the data performance evaluation, one of the aspects 

of the evaluation framework proposed in [Oh and Yeom, 2012]. More specifically, the 

focus was on the cohesion of the resulting modules. Five graph partitioning 

algorithms were executed for the graph representation of a toy-ontology on Pizza 

domain, but only three of them allowed the generation of weighted graphs. Among 

these three, Fast Greedy algorithm had the best preliminary results, showing 

“sensibility” with respect to the domain property ranking. However, further tests 

should be executed with larger and different ontologies. The suggested assumptions 

stated in this work can be refuted or confirmed by future work.  
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Figure 4 – Spin Glass communities for different weight configurations. 

 

 

Figure 5 – Walktrap communities for different weight configurations. 
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