

12 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

being able to use the LUBM data generator, we extended the DL-Liteg-version
of LUBM in two directions:

(1) We added 26 concept inclusions, many of which have existential restrictions
on the right-hand side, to generate a more interesting anonymous part of canon-
ical models. A complete list of these Cls can be found in Appendix B of the full
version of this paper.

(2) With reasonable effort, it does not seem possible to significantly increase the
size of LUBM (to hundreds or thousands of concepts) while retaining a careful
modeling. One particularly unrealistic aspect of LUBM and a striking differ-
ence to more comprehensive ontologies is its limited concept hierarchy, where
each concept has only very few subconcepts. To alleviate this shortcoming, we
added subconcepts to each of the LUBM concepts Course, Department, Professor,
and Student by introducing subject areas, such as MathCourse, BioCourse, and
CSCourse for courses, MathProfessor, BioProfessor for professors, etc.

We call the resulting TBox LUBM: with n indicating the number of sub-
concepts introduced in Point 2 above (20 by default). For example, LUBM3,
contains 106 concept names and 27 role names.

To generate ABoxes, we use the LUBM Data Generator (UBA) version 1.7,
modified so as to complement our modifications to the TBox. Specifically, the
original UBA generates data that is complete w.r.t. existential restrictions in the
LUBM ontology: it produces ABoxes A such that for every assertion A(a) € A
and CI A C 3R (and A C 3R.B) in LUBM,HL, there is already an r-successor of
a in A. Our modifications introduce a controlled amount of incompleteness: the
modified data generator takes a probability p as a parameter and, in selected
parts of the data, drops generated role assertions with probability p. More infor-
mation can be found in Appendix C of the full version. The second modification
of the data generator is linked to the subconcepts introduced in Point 2 above.
Whenever the original generator produces an instance a of Student, the new
generator randomly chooses a value between 1 and n and generates an asser-
tion for the i-th subject, SubjiStudent(a); similarly for Course, Department, and
Professor.

The main aim of our experiments is to show that our approach is feasible on
realistic ontologies, data, and queries. Additionally, we also provide a prelimi-
nary comparison with the query rewriting approach, using the Requiem tool for
producing those rewritings [10]. We use 11 queries, six of which we have hand-
crafted specifically for our experiments and five originating from the evaluation
of Requiem presented in [10]. The latter queries are extremely simple and do
in most cases neither pose a serious challenge for the filtering approach nor for
pure rewriting. The former are shown in Figure 4. Note that qs is very similar
to the query discussed in Examples 3, 4, and 7; and is designed in such a way
that spurious cycles in the anonymous part of canonical models produce spurious
matches that have to be filtered out. Query qs is essentially the query discussed
in Example 6 and is designed to stress-test the filtering approach: based on the
data generation scheme, it is expected to produce a very large number of spurious
answers.

27

Carsten Lutz, Inang Seylan, David Toman, and Frank Wolter 13

A

- Student(x), takesCourse(x,z), Course(z), teacher0f(y,z),
Faculty(y), worksFor(y,u), Department(u), memberOf (x,u)
92(x,y) <- Subj3Student(x), Subj4Student(y),
takesCourse(x,z), takesCourse(y,z)
q3(x) <~ Faculty(x), degreeFrom(x,y), University(y),
subOrganization0f(z,y), Department(z), memberOf (x,z)
g4(x,y) <- Subj3Department(x), Subj4Department(y),
Professor(z), member0f(z,x), publicationAuthor(u,z),
Professor(v), memberOf(v,y), publicationAuthor(u,v)
g5(x) <- Publication(x), publicationAuthor(x,y), Professor(y),
publicationAuthor(x,z), Student(z)
University(x), University(y), memberOf(z,x), Student(z),
member0f (u,y), Professor(u), advisor(z,u)

ql(x,y)

A
|

96 (x,y)

Fig. 4. Queries q1 to ge.

Universities] CA CA (compl) RA RA (compl) Inds Inds (compl)
10 373K 636K 593K 1.3M 201K 201K
25 984K 1.6M 1.5M 3.6M 528K 528K
50 1.9M 3.3M 3.1M 7.2M 1M 1M
75 3M 5.1M 4.7M 10.9M 1.6M 1.6M
100 4M 6.8M 6.3M 14.6M 2.1M 2.1M
125 5M 8.5M 7.9M 18M 2.7M 2.7TM
150 6M 10.1M 9.5M 21.8M 3.2M 3.2M
200 8M 13.5M 12.6M 29M 4.3M 4.3M

Fig. 5. Number of concepts, roles, and individuals in original and completed ABoxes.

5.2 Results

We report on three experiments, in each experiment varying a different param-
eter: in experiment one, we vary the size of the ABox via the number of univer-
sities generated by the data generator; in experiment two, we vary the degree
of incompleteness of the data; and in experiment three, we vary the number of
subclasses, i.e., the parameter n of the ontology LUBM:. All experiments were
carried out on a Linux (3.2.0) machine with a 3.5Ghz quad-core processor and
8GB of RAM, using IBM DB2 version 9.7.5.

The size of the test data is detailed in Figure 5 and query execution times
for the first experiment are reported in Figure 7. Here we use 5% incompleteness
of the data and n = 20 subclasses in LUBM:. The orange curves are for the
combined approach with filtering while the blue ones indicate the pure rewriting
approach for those cases in which Requiem succeeded generating a rewriting.
Using the combined approach with filtering, all queries were answered within
very reasonable time. To better understand the results, it is interesting to con-
sider the number of spurious and valid answers for each query shown in Figure 6
for the 200 universities experiment. Query g2, designed specifically to stress-test
the filter, as expected produces a huge number of spurious answers. Indeed, the

28

14 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

91 92 93 94 95 Qe req; reqy, reqs req, reqs
spurious answers| 2 28M 2 24K 0 0 0 22K 0 163K O
valid answers (4.6M 0 0 O 83M 0 0 410K 48K 137K 0

Fig. 6. Number of answers for 200 universities, 5% incompleteness, 20 subclasses.

comparably long execution time of this query appears to be mainly due to the
fact that DB2 has to handle a large number of spurious answers before the filter-
ing takes place, and not to a poor performance of the filter itself. The execution
times of q; and g5 can also be explained by a large number of answers. Note
that the number of filter calls is actually the sum of the numbers of answers,
both spurious and valid. Also note that, in principle, it is possible to avoid an
extremely large number of spurious answers in q2 (and any other query) at the
cost of slightly increasing the size of the canonical model: duplicate the anony-
mous part of the canonical model so that no two individuals in the original
ABox ‘share’ an anonymous part of the canonical model. Analyzing this further
in experiments is left for future work.

Experiments two and three are reported about in Figures 8 and 9. Here,
we only tested the filtering approach. In both cases, we use 100 universities.
In experiment two, the number of subclasses is fixed to 20 while in experiment
three, the degree of incompleteness is fixed to 5%. In general, the degree of
incompleteness has virtually no effect on the execution time of queries. Again,
g2 is an exception as the number of spurious answers increases dramatically
from 3M for 1% incompleteness to 125M for 20% incompleteness. The number
of subclasses also has essentially no effect on query execution times (in contrast to
the pure query rewriting approach for which a non-trivial number subclasses can
dramatically increase the size of the rewritten query). Note that the execution
time of g2 becomes shorter with an increasing number of subclasses because the
number of spurious matches decreases from 6.5M for 5 subclasses to 211K for
100 subclasses: this is due to the atoms Subj3Student and Subj4Student in g2 and
the fact that the number of assertions for these two concepts decreases as the
number of subject areas increases.

6 Conclusion

We have modified the combined approach to OBDA by replacing the query
rewriting part with a filtering technique. This step is natural from an implemen-
tation perspective and allows to circumvent an exponential blowup of the query.
Based on experiments with an improved version of the LUBM ontology, we have
demonstrated the scalability of our approach.

As future work, we plan to extend the combined approach with filtering to
other description logics for which, until now, it is unknown how to avoid an
exponential blowup. For example, we believe that polytime filtering is possible
for the extension of ££ with transitive roles, as found in the OWL2 EL pro-
file. It would also be interesting to better understand the impact of modifying
the canonical model on query answering, both from a theoretical and from a

29

15

Carsten Lutz, Inang Seylan, David Toman, and Frank Wolter

-

100
=
g 50 200
= 150 ,\Q%
100 &
7o @ @ 50 &
45 e red; req, reqy req, reqs X
Fig. 7. Query run times for varying numbers of Universities.
-_—
400
=
o 20
200
: &
) @
0° 50 &
q1
92 93 94 g5 g6 req; req, reds req, reqs 02 ,&00@
Fig. 8. Query run times for varying incompleteness (in %).
-_—
= 20 4
g 100
] 80 %%QJ%
vd 60 o
40 &
>

0
41 d2 43 g4 g5 qg red; reqs req reqy reqy 20 X

Fig. 9. Query run times for varying number of subclasses.

30

16 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

practical perspective. For example, we do not know whether the more natural
canonical model obtained by identifying all individuals cg and cgr,; admits
polytime filtering. Moreover, as discussed above it is conceivable that versions
of the canonical model that are less economic regarding individual reuse result
in better runtime in practice.

We also plan to compare the performance of our approach more thoroughly
with the performance of pure query rewriting, using other state-of-the-art query
rewriting tools such as Quest [12], Presto [13], OWLgres [14], CLIPPER [4]. In
this context, it is interesting to note that promising new optimization techniques
have recently been developed in [11] and implemented in the Quest system.
While some of them (such as the exploitation of ABox integrity constraints) aim
specifically at the query rewriting approach, others (such as semantic indexing)
can easily be combined with the filtering approach proposed in this paper.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

2. Cali, A., Gottlob, G., Pieris, A.: New expressive languages for ontological query
answering. In: AAAT (2011)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385-429 (2007)

4. Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-
SHZQ plus rules. In: AAAT (2012)

5. Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Towards practical query
answering for Horn-SHZ Q. In: Description Logics (2012)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3), 158-182 (2005)

7. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: ICALP (2). pp. 263274 (2012)

8. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: KR (2010)

9. Lutz, C., Wolter, F., Toman, D.: Conjunctive query answering in the description
logic £L using a relational database systems. In: IJCAI pp. 2070-2075 (2009)

10. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: International Semantic Web Conference. pp. 489-504 (2009)

11. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: KR (2012)

12. Rodriguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL reasoner for ontology-
based data access. In: OWLED (2012)

13. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
KR (2010)

14. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: OWLED (2008)

15. Thomazo, M., Baget, J.F., Mugnier, M.L., Rudolph, S.: A generic querying algo-
rithm for greedy sets of existential rules. In: KR (2012)

31

