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Abstract. One of the major challenges in large-scale data processing
with MapReduce is the smart computation of joins. Since Semantic Web
datasets published in RDF have increased rapidly over the last few years,
scalable join techniques become an important issue for SPARQL query
processing as well. In this paper, we introduce the Map-Side Index Nested
Loop Join (MAPSIN join) which combines scalable indexing capabilities
of NoSQL data stores like HBase, that suffer from an insufficient dis-
tributed processing layer, with MapReduce, which in turn does not pro-
vide appropriate storage structures for efficient large-scale join process-
ing. While retaining the flexibility of commonly used reduce-side joins,
we leverage the effectiveness of map-side joins without any changes to
the underlying framework. We demonstrate the significant benefits of
MAPSIN joins for the processing of SPARQL basic graph patterns on
large RDF datasets by an evaluation with the LUBM and SP?Bench
benchmarks. For selective queries, MAPSIN join based query execution
outperforms reduce-side join based execution by an order of magnitude.

1 Introduction

Most of the information in the classical ”"Web of Documents” is designed for
human readers, whereas the idea behind the Semantic Web is to build a ”Web
of Data” that enables computers to understand and use the information in the
web. The advent of this Web of Data gives rise to new challenges with regard to
query evaluation on the Semantic Web. The core technologies of the Semantic
Web are RDF (Resource Description Framework) [I] for representing data in
a machine-readable format and SPARQL [2] for querying RDF data. However,
querying RDF datasets at web-scale is challenging, especially because the com-
putation of SPARQL queries usually requires several joins between subsets of the
data. On the other side, classical single-place machine approaches have reached
a point where they cannot scale with respect to the ever increasing amount
of available RDF data (cf. [16]). Renowned for its excellent scaling properties,
the MapReduce paradigm [§] is an attractive candidate for distributed SPARQL
processing. The Apache Hadoop platform is the most prominent and widely used
open-source MapReduce implementation. In the last few years many companies
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have built-up their own Hadoop infrastructure but there are also ready-to-use
cloud services like Amazon’s Elastic Compute Cloud (EC2) offering the Hadoop
platform as a service (PaaS). Thus, in contrast to specialized distributed RDF
systems like YARS2 [15] or 4store [14], the use of existing Hadoop MapReduce
infrastructures enables scalable, distributed and fault-tolerant SPARQL process-
ing out-of-the-box without any additional installation or management overhead.
Following this avenue, we introduced the PigSPARQL project in [26] that offers
full support for SPARQL 1.0 and is implemented on top of Hadoop. However,
while the performance and scaling properties of PigSPARQL for complex analyt-
ical queries are competitive, the performance for selective queries is not satisfying
due to the lack of built-in index structures and unnecessary data shuffling as join
computation is done in the reduce phase.

In this paper we present a new MapReduce join technique, the Map-Side
Index Nested Loop Join (MAPSIN join), that uses the indexing capabilities of a
distributed NoSQL data store to improve query performance of selective queries.
MAPSIN joins are completely processed in the map phase to avoid costly data
shuffling by using HBase as underlying storage layer. Our evaluation shows an
improvement of up to one order of magnitude over the common reduce-side join
for selective queries. Overall, the major contributions of this paper are as follows:

— We describe a space-efficient storage schema for large RDF graphs in HBase
while retaining favourable access characteristics. By using HBase instead of
HDFS, we can avoid shuflling join partitions across the network and instead
only access the relevant join partners in each iteration.

— We present the MAPSIN join algorithm, which can be evaluated cascadingly
in subsequent MapReduce iterations. In contrast to other approaches, we do
not require an additional shuffle and reduce phase in order to preprocess the
data for consecutive joins. Moreover, we do not require any changes to the
underlying frameworks.

— We demonstrate an optimization of the basic MAPSIN join algorithm for the
efficient processing of multiway joins. This way, we can save n MapReduce
iterations for star join queries with n + 2 triple patterns.

The paper is structured as follows: Section [2] provides a brief introduction to the
technical foundations for this paper. Section[3|describes our RDF storage schema
for HBase, while Section {4| presents the MAPSIN join algorithm. We continue
with a presentation of the evaluation of our approach in Section [5| followed by
a discussion of related work in Section [f] We conclude in Section [7] and give an
outlook on future work.

2 Background

2.1 RDF & SPARQL

RDF [1] is the W3C recommended standard model for representing knowledge
about arbitrary resources, e.g. articles and authors. An RDF dataset consists of a

60



set of RDF triples in the form (subject, predicate, object) that can be interpreted
as " subject has property predicate with value object”. For clarity of presentation,
we use a simplified RDF notation in the following. It is possible to visualize an
RDF dataset as directed, labeled graph where every triple corresponds to an
edge (predicate) from subject to object. Figure [1| shows an RDF graph with
information about articles and corresponding authors.

"PigiPARQL" SPARQL BGP query

title,

@ author @ SELECT *

‘year R R WHERE {

w011 author cite, author RDEFPath ?article title ?title .

title’ ?article author ?2author .
@ author. @ ?article year ?year
year
"o011" }

Fig. 1. RDF graph and SPARQL query

SPARQL is the W3C recommended declarative query language for RDF. A
SPARQL query defines a graph pattern P that is matched against an RDF graph
G. This is done by replacing the variables in P with elements of G such that the
resulting graph is contained in G (pattern matching). The most basic constructs
in a SPARQL query are triple patterns, i.e. RDF triples where subject, predicate
and object can be variables, e.g. (7s, p, 70). A set of triple patterns concatenated
by AND (.) is called a basic graph pattern (BGP) as illustrated in Figure[i} The
query asks for all articles with known title, author and year of publication. The
result of a BGP is computed by joining the variable mappings of all triple pat-
terns on their shared variables, in this case ?article. For a detailed definition of
the SPARQL syntax we refer the interested reader to the official W3C Recom-
mendation [2]. A formal definition of the SPARQL semantics can also be found
in [23]. In this paper we focus on efficient join processing with MapReduce and
NoSQL (i.e. HBase) and therefore only consider SPARQL BGPs.

2.2 MapReduce

The MapReduce programming model [§] enables scalable, fault tolerant and mas-
sively parallel computations using a cluster of machines. The basis of Google’s
MapReduce is the distributed file system GFS [12] where large files are split into
equal sized blocks, spread across the cluster and fault tolerance is achieved by
replication. The workflow of a MapReduce program is a sequence of MapReduce
iterations each consisting of a Map and a Reduce phase separated by a so-called
Shuffle & Sort phase. A user has to implement map and reduce functions which
are automatically executed in parallel on a portion of the data. The map function
gets invoked for every input record represented as a key-value pair. It outputs a
list of new intermediate key-value pairs which are then sorted and grouped by
their key. The reduce function gets invoked for every distinct intermediate key
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together with the list of all according values and outputs a list of values which
can be used as input for the next MapReduce iteration.

We use Apache Hadoop as it is the most popular open-source implementation
of Google’s GFS and MapReduce framework that is used by many companies
like Yahoo!, IBM or Facebook.

Map-Side vs. Reduce-Side Join. Processing joins with MapReduce is a chal-
lenging task as datasets are typically very large [5lI20]. If we want to join two
datasets with MapReduce, L X R, we have to ensure that the subsets of L and R
with the same join key values can be processed on the same machine. For joining
arbitrary datasets on arbitrary keys we generally have to shuffle data over the
network or choose appropriate pre-partitioning and replication strategies.

The most prominent and flexible join technique in MapReduce is called
Reduce-Side Join [5l20]. Some literature also refer to it as Repartition Join [5]
as the idea is based on reading both datasets (map phase) and repartition them
according to the join key (shuffle phase). The actual join computation is done
in the reduce phase. The main drawback of this approach is that both datasets
are completely transferred over the network regardless of the join output. This
is especially inefficient for selective joins and consumes a lot of network band-
width. Another group of joins is based on getting rid of the shuffle and reduce
phase to avoid transferring both datasets over the network. This kind of join
technique is called Map-Side Join since the actual join processing is done in
the map phase. The most common one is the Map-Side Merge Join [20]. How-
ever, this join cannot be applied on arbitrary datasets. A preprocessing step is
necessary to fulfill several requirements: datasets have to be sorted and equally
partitioned according to the join key. If the preconditions are fulfilled, the map
phase can process an efficient parallel merge join between pre-sorted partitions
and data shuffling is not necessary. However, if we want to compute a sequence
of such joins, the shuffle and reduce phases are needed to guarantee that the
preconditions for the next join iteration are fulfilled. Therefore, map-side joins
are generally hard to cascade and the advantage of avoiding a shuffle and reduce
phase is lost. Our MAPSIN join approach is designed to overcome this drawback
by using the distributed index of a NoSQL system like HBase.

2.3 HBase

HBase is a distributed, scalable and strictly consistent column-oriented NoSQL
data store, inspired by Google’s Bigtable [7] and well integrated into Hadoop.
Hadoop’s distributed file system, HDFS, is designed for sequential reads and
writes of very large files in a batch processing manner but lacks the ability to
access data randomly in close to real-time. HBase can be seen as an additional
storage layer on top of HDFS that supports efficient random access. The data
model of HBase corresponds to a sparse multi-dimensional sorted map with the
following access pattern:

(Table, RowK ey, Family, Column, Timestamp) — Value
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The rows of a table are sorted and indexed according to their row key and every
row can have an arbitrary number of columns. Columns are grouped into column
families and column values (denoted as cell) are timestamped and thus support
multiple versions. HBase tables are dynamically split into regions of contiguous
row ranges with a configured maximum size. When a region becomes too large,
it is automatically split into two regions at the middle key (auto-sharding).

However, HBase has neither a declarative query language nor built-in sup-
port for native join processing, leaving higher-level data transformations to the
overlying application layer. In our approach we propose a map-side join strategy
that leverages the implicit index capabilities of HBase to overcome the usual
restrictions of map-side joins as outlined in Section [2:2}

3 RDF Storage Schema for HBase

In contrast to relational databases, NoSQL data stores do neither have a common
data model nor a common query language like SQL. Hence, the implementation
of our join approach strongly relies on the actual NoSQL store used as backend.
In our initial experiments we considered HBase and Cassandra, two popular
NoSQL stores with support for MapReduce. We decided to use HBase for our
implementation as it proved to be more stable and also easier to handle in our
cluster since HBase was developed to work with Hadoop from the beginning.

In [28] the authors adopted the idea of Hexastore [30] to index all possible
orderings of an RDF triple for storing RDF data in HBase. This results in six
tables in HBase allowing to retrieve results for any possible SPARQL triple pat-
tern with a single lookup on one of the tables (except for a triple pattern with
three variables). However, as HDFS has a default replication factor of three and
data in HBase is stored in files on HDFS, an RDF dataset is actually stored
18 times using this schema. But it’s not only about storage space, also loading
a web-scale RDF dataset into HBase becomes very costly and consumes many
resources. Our storage schema for RDF data in HBase is inspired by [10] and
uses only two tables, Ts ,, and T, _,;. We extend the schema with a triple pat-
tern mapping that leverages the power of predicate push-down filters in HBase
to overcome possible performance shortcomings of a two table schema. Further-
more, we improve the scalibility of the schema by introducing a modified row key
design for class assignments in RDF which would otherwise lead to overloaded
regions constraining both scalability and performance.

In T, table an RDF triple is stored using the subject as row key, the
predicate as column name and the object as column value. If a subject has
more than one object for a given predicate (e.g. an article having more than
one author), these objects are stored as different versions in the same column.
The notation T;_p, indicates that the table is indexed by subject. Table Ty,
follows the same design. In both tables there is only one single column family
that contains all columns. Table [1] illustrates the corresponding T ,, table for
the RDF graph in Section 23]
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Table 1. T;_p, table for RDF graph in Section |2.1

rowkey family:column—value

Articlel p:title—{"PigSPARQL” }, p:year—{"2011" },
p:author—{Alex, Martin}

Article2 p:title—{"RDFPath” }, p:year—{"2011"},
p:author—{Martin, Alex}, p:cite—{Articlel}

At first glance, this storage schema seems to have performance drawbacks
when compared to the six table schema in [28] since there are only indexes for
subjects and objects. However, we can use the HBase Filter API to specify addi-
tional column filters for table index lookups. These filters are applied directly on
server side such that no unnecessary data must be transferred over the network
(predicate push-down). As already mentioned in [I0], a table with predicates as
row keys causes scalability problems since the number of predicates in an ontol-
ogy is usually fixed and relatively small which results in a table with just a few
very fat rows. Considering that all data in a row is stored on the same machine,
the resources of a single machine in the cluster become a bottleneck. Indeed, if
only the predicate in a triple pattern is given, we can use the HBase Filter API
to answer this request with a table scan on Ts_,, or T, s using the predicate as
column filter. Table [2| shows the mapping of every possible triple pattern to the
corresponding HBase table. Overall, experiments on our cluster showed that the
two table schema with server side filters has similar performance characteristics
compared to the six table schema but uses only one third of storage space.

Table 2. SPARQL triple pattern mapping using HBase predicate push-down filters

pattern table filter

(s, p, 0) Ts_po or To_ps column & value
(?s, p, 0) To_ps column

(s, ?p, 0) Ts_po or To_ps value

(s, p, 70) Ts_po column

(?s, 7p, o) To_ps

(?s, p, ?0) Ts_po or Ty_ps (table scan) [column

(37 ’p, ?O) Ts_po

(7s, 7p, 70) Ts_po or To_ps (table scan)

Our experiments also revealed some fundamental scaling limitations of the
storage schema caused by the T, ,, table. In general, an RDF dataset uses a
relatively small number of classes but contains many triples that link resources
to classes, e.g. (Alex, rdf:type, foaf:Person). Thus, using the object of a triple
as row key means that all resources of the same class will be stored in the
same row. With increasing dataset size these rows become very large and exceed
the configured maximum region size resulting in overloaded regions that contain
only a single row. Since HBase cannot split these regions the resources of a single
machine become a bottleneck for scalability. To circumvent this problem we use
a modified T, _,s; row key design for triples with predicate rdf:type. Instead of
using the object as row key we use a compound row key of object and subject,
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e.g. (foaf:Person|Alex). As a result, we can not access all resources of a class
with a single table lookup but as the corresponding rows will be consecutive in
T,_ps we can use an efficient range scan starting at the first entry of the class.

4 MAPSIN Join

The major task in SPARQL query evaluation is the computation of joins be-
tween triple patterns, i.e. basic graph patterns. However, join processing on large
RDF datasets, especially if it involves more than two triple patterns, is challeng-
ing [20]. Our approach combines the scalable storage capabilities of NoSQL data
stores (i.e. HBase), that suffer from a suitable distributed processing layer, with
MapReduce, a highly scalable and distributed computation framework, which
in turn does not support appropriate storage structures for large scale join pro-
cessing. This allows us to catch up with the flexibility of reduce-side joins while
utilizing the effectiveness of a map-side join without any changes to the under-
lying frameworks.

First, we introduce the needed SPARQL terminology analogous to [23]: Let
V' be the infinite set of query variables and T" be the set of valid RDF terms.

Definition 1. A (solution) mapping p is a partial function p @V — T. We
call p(?v) the variable binding of  for Tv. Abusing notation, for a triple pattern
p we call p(p) the triple pattern that is obtained by substituting the variables
in p according to p. The domain of p, dom(u), is the subset of V' where p is
defined and the domain of p, dom(p), is the subset of V used in p. The result of
a SPARQL query is a multiset of solution mappings (2.

Definition 2. Two mappings p1, po are compatible if, for every variable 7v €
dom(p1) Ndom(us2), it holds that i (?v) = us(?v). It follows that mappings with
disjoint domains are always compatible and the set-union (merge) of p1 and ps,
w1 U s, is also a mapping.

4.1 Base Case

To compute the join between two triple patterns, p; X ps, we have to merge
the compatible mappings for p; and ps. Therefore, it is necessary that subsets
of both multisets of mappings are brought together such that all compatible
mappings can be processed on the same machine.

Our MAPSIN join technique computes the join between p; and p, in a sin-
gle map phase. At the beginning, the map phase is initialized with a parallel
distributed HBase table scan for the first triple pattern p; where each machine
retrieves only those mappings that are locally available. This is achieved by
utilizing a mechanism for allocating local records to map functions, which is
supported by the MapReduce input format for HBase. The map function is in-
voked for each retrieved mapping 1 for p;. To compute the partial join between
p1 and po for the given mapping p1, the map function needs to retrieve those
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mappings for p, that are compatible to pu; based on the shared variables be-
tween p; and ps. At this point, the map function utilizes the input mapping p
to substitute the shared variables in po, i.e. the join variables. The substituted
triple pattern p3“? is then used to retrieve the compatible mappings with a table
lookup in HBase following the triple pattern mapping outlined in Table [2} Since
there is no guarantee that the corresponding HBase entries reside on the same
machine, the results of the request have to be transferred over the network in
general. However, in contrast to a reduce-side join approach where a lot of data
is transferred over the network, we only transfer the data that is really needed.

Finally, the computed multiset of mappings is stored in HDFS.

1
SCAN for local mappings: ?article title ?title k/—
‘/‘2

: 2
u map inputs )

?article=articlel ?title="PigSPARQL"
3\
B GET bindings: articlel author ?author “/

NoSQL
Storage System

?article=article2 ?title="RDFPath"

H GET bindings: article2 author ?2author “;/3

“ map outputs -
?article=articlel ?2title="PigSPARQL" ?author=Alex /4
?article=articlel ?title="PigSPARQL" 2author=Martin I

4

?article=article2 2title="RDFPath" ?author=Martin
?article=article2 ?title="RDFPath" ?author=Alex

Fig. 2. MAPSIN join base case for the first two triple patterns of query in Figure

Figure[2|is an example for the base case of our MAPSIN join that illustrates
the join between the first two triple patterns of the SPARQL query in Figure
While the mappings for the first triple pattern (?article, title, ?title) are retrieved
locally using a distributed table scan (step 1+42), the compatible mappings for
(?article, author, ?author) are requested within the map function (step 3) and
the resulting set of mappings is stored in HDFS (step 4).

4.2 Cascading Joins

Chains of concatenated triple patterns require some slight modifications to the
previously described base case. To compute a query of at least three triple pat-
terns we have to process several joins successively, e.g. p1 X ps X p3. The pro-
cessing of the first two patterns p; X py correspond to the base case and the
results are stored in HDFS. The additional triple pattern ps is then joined with
the mappings for p; X po. To this end, an additional map-phase (without any
intermediate shuffle or reduce phase) is initialized with the previously computed
mappings as input. Since these mappings reside in HDFS, they are retrieved
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locally in parallel such that the map function gets invoked for each mapping
weo for p1 X ps. The compatible mappings for ps are retrieved using the same
strategy as for the base case, i.e. ug is used to substitute the shared variables in
p3 and compatible mappings are retrieved following the triple pattern mapping
outlined in Table[2] Algorithm [I]outlines one iteration of the MAPSIN join. The
input for the map function contains either a mapping for the first triple pattern
(via distributed table scan) or a mapping for previously joined triple patterns
(loaded from HDFS).

Algorithm 1: MAPSIN join: map(inKey, inValue)

input : inKey, inValue: value contains input mapping, key can be ignored
output: multiset of mappings
Pn+1 < Config.getNextPattern()
fn + inValue.getInputMapping()
Qpy1 <0
if dom(uyn) N dom(pp4+1) # 0 then
// substitute shared vars in p,41

pfifl — pn(Pni1)

results HBase.GET(pfffl) // table index lookup using substituted pattern
else
| results +— HBase.GET(pn+1) // table index lookup using unsubstituted pattern
end
if results # () then
// merge ., with compatible mappings for p,41
foreach mapping p in results do
Hnt1 4 fin U pt
21— 231 U pingr
end
emit(null, £2,,41) // key is not used since there is no reduce phase

N 0 b WwN

BB R HEER R
N A WNR OO

end

[
]

4.3 Multiway Join Optimization

Instead of processing concatenated triple patterns successively as a sequence
of two-way joins, some basic graph patterns allow to apply a multiway join
approach to process joins between several concatenated triple patterns at once
in a single map phase. This is typically the case for star pattern queries where
triple patterns share the same join variable. The SPARQL query introduced in
Section [2.1]is an example for such a query as all triple patterns share the same
join variable Tarticle. This query can be processed by a three-way join in a single
map-phase instead of two consecutive two-way joins.

We extended our approach to support this multiway join optimization. Again,
the first triple pattern p; is processed using a distributed table scan as input for
the map phase. But instead of using a sequence of n map phases to compute p; X
p2 X ... X p,11 we use a single map phase thus saving n—1 MapReduce iterations.
Hence, the map function needs to retrieve all mappings for ps, ps, ..., ppy1 that
are compatible to the input mapping p; for p;. Therefore, the join variable 7w,
in po,p3,...,Pnt1 (e.g. article) is substituted with the corresponding variable
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sub . sub sub

binding ju1(?vs). The substituted triple patterns p5**, p3"°, ..., p5’ are then used
to retrieve the compatible mappings using HBase table lookups. This general case
of the MAPSIN multiway join is outlined in Algorithm

Algorithm 2: MAPSIN multiway join: map(inKey, inValue)

input : inKey, inValue: value contains input mapping, key can be ignored
output: multiset of mappings

#p + Config.getNumberOfMultiwayPatterns()

pn  inValue.getInputMapping()

2 {pn}

// iterate over all subsequent multiway patterns

for i <+ 1 to #p do

Qpyi 0

Pn+i < Config.getNextPattern()

// substitute shared vars in p,4;

sub

Prti & Nn(p7L+i)
results HBase.GET(pfff,L-) // table index lookup using substituted pattern
if results # () then
// merge previous mappings with compatible mappings for p, +;
foreach mapping p in results do
foreach mapping p’ in 2,1;-1 do
‘ (2,,,_'.1» — f2n+iU(HU}L/)
end

© 0N oA W N R

B R HER R R
oN W N R O

[
o

end
else
‘ // no compatible mappings for p,; hence join result for u, is empty
return
end

N R R R
o © ® N

N
=

end
emit(null, £2,44p,) // key is not used since there is no reduce phase

NN
[-B V'

The performance of MAPSIN joins strongly correlates with the number of
index lookups in HBase. Hence, minimizing the number of lookups is a crucial
point for optimization. In many situations, it is possible to reduce the number of
requests by leveraging the RDF schema design for HBase outlined in Section
If the join variable for all triple patterns is always on subject or always on object
position, then all mappings for ps, ps, ..., pn+1 that are compatible to the input
mapping p1 for p; are stored in the same HBase table row of T ,, or T; s,
respectively, making it possible to use a single instead of n subsequent table
lookups. Hence, all compatible mappings can be retrieved at once thus saving
n — 1 lookups for each invocation of the map function. Due to space limitations
the corresponding algorithm for this optimized case can be found in the technical
report version of this paper [24].

5 Evaluation

The evaluation was performed on a cluster of 10 Dell PowerEdge R200 servers
equipped with a Dual Core 3.16 GHz CPU, 8 GB RAM, 3 TB disk space and
connected via gigabit network. The software installation includes Hadoop 0.20.2,
HBase 0.90.4 and Java 1.6.0 update 26.
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Table 3. SP2Bench & LUBM loading times for tables Ts_po and To_ps (hh:mm:ss)

SP?Bench 200M 400M 600M 800M 1000M

# RDF triples [~ 200 million|~ 400 million|~ 600 million|~ 800 million|~ 1000 million
Ts_po 00:28:39 00:45:33 01:01:19 01:16:09 01:33:47
To_ps 00:27:24 01:04:30 01:28:23 01:43:36 02:19:05
total 00:56:03 01:50:03 02:29:42 02:59:45 03:52:52
LUBM 1000 1500 2000 2500 3000

# RDF triples [~ 210 million|~ 315 million|~ 420 million |~ 525 million| ~ 630 million
Ts _po 00:28:50 00:42:10 00:52:03 00:56:00 01:05:25
To_ps 00:48:57 01:14:59 01:21:53 01:38:52 01:34:22
total 01:17:47 01:57:09 02:13:56 02:34:52 02:39:47

We used the well-known Lehigh University Benchmark (LUBM) [I3] as the
queries can easily be formulated as SPARQL basic graph patterns. Furthermore,
we also considered the SPARQL-specific SP?Bench Performance Benchmark [27].
However, because most of the SP?Bench queries are rather complex queries that
use all different kinds of SPARQL 1.0 operators, we only evaluated some of the
queries as the focus of our work is the efficient computation of joins, i.e. basic
graph patterns. Both benchmarks offer synthetic data generators that can be
used to generate arbitrary large datasets. For SP?2Bench we generated datasets
from 200 million up to 1000 million triples. For LUBM we generated datasets
from 1000 up to 3000 universities and used the WebPIE inference engine for
Hadoop [29] to pre-compute the transitive closure. The loading times for both
tables Ts_p, and T,_ps as well as all datasets are listed in Table

The goal of our approach was to optimize MapReduce based join computa-
tion for selective queries. Therefore, we compared our MAPSIN join approach
with the reduce-side join based query execution in PigSPARQL [26], a SPARQL
1.0 engine built on top of Pig. Pig is an Apache top-level project developed
by Yahoo! Research that offers a high-level language for the analysis of very
large datasets with Hadoop MapReduce. The crucial point for this choice was
the sophisticated and efficient reduce-side join implementation of Pig [I1] that
incorporates sampling and hash join techniques which makes it a challenging can-
didate for comparison. We illustrate the performance comparison of PigSPARQL
and MAPSIN for some selected LUBM queries that represent the different query
types in Figure [3] Our proof-of-concept implementation is currently limited to
a maximum number of two join variables as the goal was to demonstrate the
feasibility of the approach for selective queries rather than supporting all pos-
sible BGP constellations. For detailed comparison, the runtimes of all executed
queries are listed in Table [4]

LUBM queries Q1, Q3, Q5, Q11, Q13 as well as SP?Bench query Q3a demon-
strate the base case with a single join between two triple patterns (cf. Figure )
For the LUBM queries, MAPSIN joins performed 8 to 13 times faster compared
to the reduce-side joins of PigSPARQL. Even for the less selective SP2Bench
query, our MAPSIN join required only one third of the PigSPARQL execution
time. Furthermore, the performance gain increases with the size of the dataset
for both LUBM and SP2Bench.
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Fig. 3. Performance comparison for LUBM Q1 (a), Q8 (b), Q4 (c)

LUBM queries Q4 (5 triple patterns), Q7 (4 triple patterns), Q8 (5 triple
patterns) and SP?Bench queries Q1 (3 triple patterns), Q2 (9 triple patterns)
demonstrate the more general case with a sequence of cascaded joins (cf. Fig-
ure ) In these cases, MAPSIN joins perform even up to 28 times faster than
PigSPARQL for LUBM queries and up to 12 times faster for SP?Bench queries.

Of particular interest are queries Q4 of LUBM and Q1, Q2 of SP?Bench
since these queries support the multiway join optimization outlined in Section
as all triple patterns share the same join variable. This kind of optimization
is also supported by PigSPARQL such that both approaches can compute the
query results with a single multiway join (cf. Figure [3f). The MAPSIN multiway
join optimization improves the basic MAPSIN join execution time by a factor of
1.4 (SP2Bench Q1) to 3.3 (LUBM Q4), independently of the data size. For the
LUBM queries, the MAPSIN multiway join optimization performs 19 to 28 times
faster than the reduce-side based multiway join implementation of PigSPARQL.
For the more complex SP2Bench queries, the performance improvements degrade
to a factor of approximately 8.5.

The remaining queries (LUBM Q6, Q14 and SP?Bench Q10) consist of only
one single triple pattern. Consequently they do not contain a join processing
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Table 4. Query execution times for PigSPARQL (P) and MAPSIN (M) in seconds

LUBM 1000 1500 2000 2500 3000

P M P M P M P M P M
Q1 324 34 475 51 634 53 790 70 944 84
Q3 324 33 480 42 642 49 805 59 961 72
Q4 1202 121 1758 167 2368 182 2919 235 3496 279
Q4 MJ 861 37 1297 53 1728 62 2173 81 2613 92
Q5 329 33 484 44 640 53 800 66 955 80
Q6 149 48 214 60 284 69 355 84 424 104
Q7 1013 62 1480 68 1985 93 2472 114 2928 123
Q8 1172 64 1731 77 2318 33 2870 108 3431 121
Q11 319 33 469 46 620 53 780 69 931 79
Q13 325 44 482 72 645 84 800 108 957 128
Q14 149 43 214 70 288 79 364 89 434 107
SP?Bench 200M 400M 600M 800M 1000M

P M P M P M P M P M
Q1 545 58 1026 118 1527 153 2018 177 2519 214
Q1 MJ 310 42 600 87 896 118 1187 154 1476 174
Q2 MJ 1168 241 2341 444 3514 671 4745 834 6005 999
Q3a 227 70 435 139 641 178 845 235 1050 274
Q10 99 40 174 84 254 111 340 151 414 167

step and illustrate primarily the advantages of the distributed HBase table scan
compared to the HDFS storage access of PigSPARQL. Improvements are still
present but less significant, resulting in an up to 5 times faster query execution.

An open issue of the evaluation remains the actual data flow between HBase
and MapReduce as HBase is like a black box where data distribution and parti-
tioning is handled by the system automatically. Since data locality is an impor-
tant aspect of distributed systems, it is crucial to examine additional measures
for future optimizations.

Overall, the MAPSIN join approach clearly outperforms the reduce-side join
based query execution for selective queries. Both approaches reveal a linear scal-
ing behavior with the input size but the slope of the MAPSIN join is much
smaller. Especially for LUBM queries, MAPSIN joins outperform reduce-side
joins by an order of magnitude as these queries are generally rather selective.
Moreover, the application of the multiway join optimization results in a further
significant improvement of the total query execution times.

6 Related Work

Single machine RDF systems like Sesame [6] and Jena [3I] are widely-used
since they are user-friendly and perform well for small and medium sized RDF
datasets. RDF-3X [21] is considered one of the fastest single machine RDF
systems in terms of query performance that vastly outperforms previous single
machine systems but performance degrades for queries with unbound objects and
low selectivity factor [I7]. Furthermore, as the amount of RDF data continues to
grow, it will become more and more difficult to store entire datasets on a single
machine due to the limited scaling capabilities [16]. One possible approach are
specialized clustered RDF systems like OWLIM [19], YARS2 [15] or 4store [14].
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However, these systems require a dedicated infrastructure and pose additional
installation and management overhead. In contrast, our approach builds upon
the idea to use existing infrastructures that are well-known and widely used. As
we do not require any changes to Hadoop and HBase at all, it is possible to use
any existing Hadoop cluster or cloud service (e.g. Amazon EC2) out of the box.

There is a large body of work dealing with join processing in MapReduce
considering various aspects and application fields [4BIT820022125132]. In Sec-
tion[2.2) we briefly outlined the advantages and drawbacks of the general-purpose
reduce-side and map-side (merge) join approaches in MapReduce. In addition to
these general-purpose approaches there are several proposals focusing on certain
join types or optimizations of existing join techniques for particular application
fields. In [22] the authors discussed how to process arbitrary joins (theta joins)
using MapReduce, whereas [4] focuses on optimizing multiway joins. However,
in contrast to our MAPSIN join, both approaches process the join in the reduce
phase including a costly data shuffle phase. Map-Reduce-Merge [32] describes a
modified MapReduce workflow by adding a merge phase after the reduce phase,
whereas Map-Join-Reduce [18] proposes a join phase in between the map and re-
duce phase. Both techniques attempt to improve the support for joins in MapRe-
duce but require profound modifications to the MapReduce framework. In [9]
the authors present non-invasive index and join techniques for SQL processing
in MapReduce that also reduce the amount of shuffled data at the cost of an
additional co-partitioning and indexing phase at load time. However, the schema
and workload is assumed to be known in advance which is typically feasible for
relational data but does not hold for RDF in general.

HadoopDB [3] is a hybrid of MapReduce and DBMS where MapReduce is
the communication layer above multiple single node DBMS. The authors in [16]
adopt this hybrid approach for the semantic web using RDF-3X. However, the
initial graph partitioning is done on a single machine and has to be repeated if
the dataset is updated or the number of machines in the cluster change. As we
use HBase as underlying storage layer, additional machines can be plugged in
seamlessly and updates are possible without having to reload the entire dataset.

HadoopRDF [I7] is a MapReduce based RDF system that stores data directly
in HDFS and does also not require any changes to the Hadoop framework. It
is able to rebalance automatically when cluster size changes but join processing
is also done in the reduce phase. Our MAPSIN join does not use any shuffle or
reduce phase at all even in consecutive iterations.

7 Conclusion

In this paper we introduced the Map-Side Index Nested Loop join (MAPSIN
join) which combines the advantages of NoSQL data stores like HBase with the
well-known and approved distributed processing facilities of MapReduce. In gen-
eral, map-side joins are more efficient than reduce-side joins in MapReduce as
there is no expensive data shuffle phase involved. However, current map-side
join approaches suffer from strict preconditions what makes them hard to ap-
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ply in general, especially in a sequence of joins. The combination of HBase and
MapReduce allows us to cascade a sequence of MAPSIN joins without having to
sort and repartition the intermediate output for the next iteration. Furthermore,
with the multiway join optimization we can reduce the number of MapReduce
iterations and HBase requests. Using an index to selectively request only those
data that is really needed also saves network bandwidth, making parallel query
execution more efficient. The evaluation with the LUBM and SP?Bench bench-
marks demonstrate the advantages of our approach compared to the commonly
used reduce-side join approach in MapReduce. For selective queries, MAPSIN
join based SPARQL query execution outperforms reduce-side join based execu-
tion by an order of magnitude while scaling very smoothly with the input size.
Lastly, our approach does not require any changes to Hadoop and HBase at all.
Consequently, MAPSIN joins can be run on any existing Hadoop infrastructure
and also on an instance of Amazon’s Elastic Compute Cloud (EC2) without
additional installation or management overhead.

In our future work, we will investigate alternatives and improvements of the
RDF storage schema for HBase and incorporate MAPSIN joins into PigSPARQL
in a hybrid fashion such that the actual join method is dynamically selected based
on pattern selectivity and statistics gathered at data loading time.
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