
Joint Workshop on Scalable and

High-Performance Semantic Web

Systems (SSWS + HPCSW 2012)

At the 11th International Semantic Web Conference
(ISWC2012), Boston, USA, November, 2012

SSWS + HPCSW 2012 PC Co-chairs’ Message

For 2012, the 8th International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS2012) and the 2nd Workshop on High-Performance Com-
puting for the Semantic Web (HPCSW2012) were merged together. This joint
workshop focused on addressing broader scalability issues with respect to the
development and deployment of knowledge base systems on the Semantic Web.
Typically, such systems deal with information described in Semantic Web lan-
guages like OWL and RDF(S), and provide services such as storing, reasoning,
querying and debugging. There are two basic requirements for these systems.
First, they have to satisfy the application’s semantic requirements by provid-
ing sufficient reasoning support. Second, they must scale well in order to be
of practical use. Given the sheer size and distributed nature of the Semantic
Web, these requirements impose additional challenges beyond those addressed
by earlier knowledge base systems. This workshop brought together researchers
and practitioners to share their ideas regarding building and evaluating scalable
knowledge base systems for the Semantic Web.

This year we received 11 submissions. Each paper was carefully evaluated
by three workshop Program Committee members. Based on these reviews, we
accepted seven papers for presentation. We sincerely thank the authors for all the
submissions and are grateful for the excellent work by the Program Committee
members.

November 2012 Achille Fokoue
Thorsten Liebig
Eric Goodman

Jesse Weaver
Jacopo Urbani

David Mizell

Program Committee

Jans Aasman
Franz, Inc.

Robert Adolf
Pacific Northwest Nat. Lab., USA

Sinan Al-Saffar
Pacific Northwest Nat. Lab., USA

Alexey Cheptsov
High Performance Computing Center
Stgt, Germany

Oscar Corcho
Univ. Politecnica de Madrid, Spain

Mike Dean
BBN Technologies, USA

Achille Fokoue
IBM Watson Research Center, USA

Raúl Garćıa-Castro
Univ. Politecnica de Madrid, Spain

Eric Goodman
Sandia National Laboratories, USA

Yuanbo Guo
Microsoft, USA

Volker Haarslev
Condordia University, Canada

David Haglin
Pacific Northwest Nat. Lab., USA

Pascal Hitzler
Wright State University, Ohio, USA

Aidan Hogan
DERI Galway, Ireland

Bill Howe
University of Washington, USA

Cliff Joslyn
Pacific Northwest Nat. Lab., USA

Anastasios Kementsietsidis
IBM Watson Research Center, USA

Pavel Klinov
Ulm University, Germany

Spyros Kotoulas
IBM Watson Research Center, USA

Thorsten Liebig
derivo GmbH, Germany

David Mizell
YarcData, Inc, USA

Ralf Möller
Hamburg Univ. of Techn., Germany

Jeff Z. Pan
University of Aberdeen, UK

Axel Polleres
Siemens AG, Österreich

Mariano Rodriguez
Free University of Bolzano, Italy

Sebastian Rudolph
Karlsruhe Inst. of Techn., Germany

Andy Seaborne
Epimorphics, UK

Kavitha Srinivas
IBM Watson Research Center, USA

Jacopo Urbani
Vrije Universiteit Amsterdam, Nether-
lands

Jesse Weaver
Rensselaer Polytechnic Institute, USA

Gregory Todd Williams
Rensselaer Polytechnic Institute, USA

Takahira Yamaguchi
Keio University, Japan

Additional Reviewers

Cong Wang
Wright State University, Ohio, USA

Kevin Lee
University of Aberdeen, UK

Table of Contents

FishMark: A Linked Data Application Benchmark . 1
Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman,
Mark van Harmelen, Rafael S. Gonçalves and Cristina Garilao

The Combined Approach to OBDA: Taming Role Hierarchies using Filters 16
Carsten Lutz, Inanç Seylan, David Toman and Frank Wolter

Evaluation of Query Rewriting Approaches for OWL 2 32
Héctor Pérez-Urbina, Edgar Rodŕıguez-Dı́az, Michael Grove, George
Konstantinidis and Evren Sirin

Triangle Finding: How Graph Theory can Help the Semantic Web 45
Eric Goodman and Edward Jimenez

Cascading Map-Side Joins over HBase for Scalable Join Processing 59
Alexander Schätzle, Martin Przyjaciel-Zablocki, Christopher
Dorner, Thomas Hornung and Georg Lausen

Scalable Nonmonotonic Reasoning over RDF data using MapReduce 75
Ilias Tachmazidis, Grigoris Antoniou, Giorgos Flouris and Spyros
Kotoulas

A Scalability Metric for Parallel Computations on Large, Growing
Datasets (like the Web) . 91

Jesse Weaver

FishMark: A Linked Data Application
Benchmark

Samantha Bail1, Sandra Alkiviadous1, Bijan Parsia1, David Workman2, Mark
Van Harmelen2, Rafael S. Goncalves2, and Cristina Garilao3

1 The University of Manchester, Manchester M13 9PL, United Kingdom
2 HedTek, Manchester M4 1LZ, United Kingdom

3 GEOMAR Helmholtz-Zentrum fr Ozeanforschung, 24148 Kiel, Germany

Abstract. FishBase is an important species data collection produced
by the FishBase Information and Research Group Inc (FIN), a not-for-
profit NGO with the aim of collecting comprehensive information (from
the taxonomic to the ecological) about all the world’s finned fish species.
FishBase is exposed as a MySQL backed website (supporting a range
of canned, although complex queries) and serves over 33 million hits
per month. FishDelish is a transformation of FishBase into LinkedData
weighing in at 1.38 billion triples. We have ported a substantial number
of FishBase SQL queries to FishDelish SPARQL query which form the
basis of a new linked data application benchmark (using our derivative
of the Berlin SPARQL Benchmark harness). We use this benchmarking
framework to compare the performance of the native MySQL applica-
tion, the Virtuoso RDF triple store, and the Quest OBDA system on a
fishbase.org like application.

1 Introduction

The Linked Open Data (LOD) movement promises much, indeed, nothing less
than a new World Wide Web with comparable success to the Web as it is. The
amount of LOD is growing at an interesting pace and the underlying technologies
are constantly improving. Off the shelf, untuned RDF triple stores handle data
sets on normal hardware that would have been unthinkable 5 years ago. However,
there is scant evidence about the benefits and drawbacks of converting applica-
tions to use linked data. Given that the conversion from “native” data models
(such as XML or relational databases) typically involves a large blow up in size
and loss of tuned structures, e.g. indexes or (de)normalization, achieving compa-
rable performance post-triplification is a common concern. While there may be
other benefits to triplification, such as easier integration with other LOD, this
needs to be weighed against the costs imposed.

To help assess the costs of triplification, we have developed FishMark, an
application benchmark for linked data systems. FishMark consists of two com-
ponents: The Manchester University Multi-Benchmarking (MUM-benchmark)
framework, and a set of data, queries, and query frequences derived from Fish-
Base, a comprehensive database about the world’s finned fish species, and fish-

1

base.org, a popular web front end to FishBase.4 FishBase is a LAMP application
with a large number of SQL queries being invoked against a MySQL backend
to generate various web pages. We have triplified FishBase and ported its most
popular queries to SPARQL. FishMark thus allows a precise comparison between
the RDBMS infrastructure and various linked data competitors.

Further, we have created an OWL ontology and respective mappings for the
FishBase data, which allows us to measure the performance of an ontology-
based data access (OBDA) system [6,4] compared to the RDMBS and RDF
triple store versions. OBDA systems offer a different approach to the problem
of describing domain knowledge at an abstract level while granting efficient and
scalable access to large amounts of data. In the OBDA approach the data are
held in external data sources, such as a standard relational database, which are
connected to information in an OWL ontology using mappings. Ontologies used
for this purpose are in the OWL 2 QL profile5 which is based on the DL-Lite [1]
family of description logics.

In this paper, we present a first approach to comparing the query performance
of native RDBMS, RDF triple stores, and OBDA systems using a single set of—
real—data and queries. In particular, we compare an Extract Transform Load
(ETL) approach using D2R and the Virtuoso RDF store, and Quest, an OBDA
system which executes the SPARQL queries via mappings against the original
MySQL database.

2 Related Work

There have been a number of benchmarks for measuring the performance of
SPARQL query answering, and countless approaches to SQL benchmarking; we
therefore focus on a selection of the most prevalent RDF benchmarking frame-
works.

One of the most well-known performance benchmarks for RDF stores is the
Lehigh University Benchmark (LUBM) [5]. LUBM consists of a small, hand-
built ontology containing information about university departments, students,
etc., with a large number of instances for each class. The dataset is scaled by
increasing the number of universities, which creates a randomised number of
instances for the new university. This method generates entirely disjoint sets of
data, a problem which the University Ontology Benchmark (UOBM) [7] seeks
to rectify by generating interrelations between the instances across different
universities.

The LUBM Benchmark is used in [11] as a benchmark for SparqlEngineDB, a
SPARQL-to-SQL system which translates SPARQL queries to SQL queries and
executes them against a relational database. This translation approach is thought
to have an advantage over querying native RDF stores with SPARQL, as it does
not require to hold the entire data in memory (as is the case with SPARQL),
while also making use of the query optimisation techniques used in RDBMS.

4 In general, we will use “FishBase” to refer to both parts.
5 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/

2

The authors perform an evaluation of SparqlEngineDB against Virtuoso and
Jena-SDB with the data scaling up to 200,000 triples. They find that Virtuoso
exceeds the performance of both SparqlEngineDB and Jena-SDB.

The Berlin SPARQL Benchmark (BSBM) [2] uses a hand-built e-commerce
dataset and a fixed set of queries to measure the performance of RDF triple
stores. It provides a data generation tool which generates a data set of custom
size, as well as a test driver framework for performing query mixes for several
use cases, such as “explore”, “update and explore”, and “Business Intelligence”,
which emulate the “search and navigation pattern of a consumer looking for

a product” [2]. The authors present the results of applying BSBM to measure
the SPARQL query performance of several RDF triple stores, as well as the
SQL translations of the SPARQL queries using Virtuoso RDF View and D2R
Server.6 While Sesame performs best for the smallest instance of the dataset (1
million items), Virtuoso’s RDF View outperforms the triple stores on large-scale
datasets. Even though no direct comparisons between the RDB and RDF stores’
performance are made, it can be seen that the native SQL queries outperform
the SPARQL queries by an order of magnitude on the smallest dataset.

One of the RDF benchmarks that use real test data and queries is the DB-
pedia SPARQL Benchmark (DBPSB) [8]. DBPSB uses data from the DBpedia7

knowledge base and queries extracted from DBpedia’s query logs. While im-
plementing standard benchmarking techniques such as clearing the cache and
performing warm-up runs, DBPSB also provides a method for scaling the size of
the benchmarking dataset. In [8] the authors use DBPSB to test the performance
of four triple stores: Virtuoso,8 Sesame,9 BigOWLIM,10 and Jena-TDB.11 They
find that Virtuoso is the fastest of the four triple stores, handling large amounts
of data significantly better than the other systems.

A similar approach to BSBM is the Social Network Intelligence Benchmark
(SIB) [3], which uses a schema of a social network similar to Facebook, and
data dictionaries in order to generate artificial RDF data. The benchmark also
includes several query mixes, such as the “Interactive query mix” of 20 queries
that simulate typical user interaction in a social network. The SP 2Bench bench-
mark [10] is set in a scenario similar to DBLP, a large computer science bibliog-
raphy database which indexes over 200,000 citations. SP 2Bench includes a data
generator to generate “large DBLP-like models” in RDF, which is based on a
study of the features of DBLP and 12 hand-built SPARQL queries which vary
in their characteristics.

6 http://d2rq.org/d2r-server
7 http://dbpedia.org/
8 http://virtuoso.openlinksw.com/
9 http://www.openrdf.org/index.jsp

10 http://www.ontotext.com/owlim/editions
11 http://jena.apache.org/documentation/tdb/index.html

3

3 Materials and Methods

3.1 Data

There are currently two FishMark data sets: A MySQL database representing a
snapshot of FishBase from 2011, and an RDF graph that is the result of applying
a D2R conversion to that database.

The conversion of the complete FishBase dump via D2R consumed several
hours and resulted in an RDF graph with 1.38 billion triples (which was stored as
a 250GB file). Initial tests with various triple stores, however, were unsuccessful
when attempting to load the data. In order to deal with this issue, we generated
another MySQL dump of FishBase which only included the tables needed for the
given queries. This reduced the data resulting from the D2R conversion to ap-
proximately 20 million (20,186,776) triples. According to the Virtuoso statistics
generator, this data set contains 31,927 fish species.

The FishBase OWL ontology which was manually created using the Protégé 4
ontology editor contains 10 classes, 10 object properties, 84 data properties, and
206 logical axioms. The manually created OBDA model contains 20 mappings,
which map data from the RDB to the OWL ontology.

3.2 Queries and Query Mix

While, eventually, the FishMark query set should include at least all queries
which drive FishBase.org, currently we have a select set of 22 SQL queries with a
range of complexity and corresponding SPARQL translations. Short descriptions
of all 22 queries are listed in Table 2 alongside the number of joins for each
query; sample instances of a selected set of queries can be found in Appendix B.
The queries are of restricted complexity due to the limited number of SPARQL
features supported by the Quest OBDA system at the time of performing the
benchmark.

We obtained a server log from the fishbase.org server in Kiel, Germany, for
June 2012. The logs indicated that, on average, only a small number of distinct
queries were performed on FishBase, the most frequent being the generation of
a species page for a fish (2440 queries per day), followed by the search for a fish
species by common name (1034 queries per day). The total numbers in June
2012, as well as the average daily and hourly frequency of the most frequently
used queries (according to the FishBase server logs) are given in Table 3.

We use the following notation to describe aspects of the benchmarking frame-
work:

– Query type: A parameterised named query, e.g. “Query 1: CommonName”,
“Query 2: SpeciesPage”, etc.

– Query instance: An instance of a query type with randomly selected values
for the parameters.

– Query set: A set of query instances of all query types in the query mix.

We have defined three distinct benchmarks which are intended to test various
aspects of the systems:

4

ID Query name Description Joins

1 CommonName Find species for a given common name. 2
2 SpeciesPage Find information about a specific species. 5
3 Genus Find species matching a given genus. 1
4 Species Find species matching a given species. 1
5 FamilyInformation Find information about a family of species. 1
6 FamilyAllFish Find all fish for a given family. 1
7 FamilyNominalSpecies Find all nominal species for a given family. 1
8 FamilyListOfPictures Find all pictures for a given family. 2
9 CollaboratorPage Retrieve information about a collaborator. 0

10 PicturePage Retrieve information about a picture. 1
11 CAllFish Find all fish for a given country. 3
12 CSpeciesInformation Find information about a species of a country. 2
13 CFreshwater Find all freshwater species for a country. 3
14 CIntroduced Find all introduced species for a country. 3
15 CEndemic Find all endemic species for a country. 3
16 CReefAssociated Find all reef-associated species for a country. 3
17 CPelagic Find all pelagic species for a country. 3
18 CGameFish Find all game fish for a country. 2
19 CCommercial Find all commercial fish for a country. 4
20 CUsedAquaculture Find all species used for a. c. for a country. 3
21 CPotAquaculture Find species w/ potential use for a.c. for a country. 2
22 CAquariumTrade Find all species used for a. t. for a country. 3

Table 2. FishBase Queries with short descriptions and number of joins.

Benchmark 1: Individual Queries The first query mix for the benchmark consists
of a simple performance test for each individual query, i.e. the query mix is
used as a simple means to run each query exactly once. We generated multiple
query sets for this test, each with a new, randomly selected set of parameters.
Generating multiple query sets seemed necessary, as the data in FishBase are
fairly heterogeneous: For example, a common name search for “Shark” returns 24
different species, while the same search for “Borna Snakehead” returns exactly 1
result. Therefore, running the query mix with the same query set may skew the
results towards “good” or “bad” parameters for the queries. The Berlin SPARQL
Benchmark employs the same principle to generate different parameter values
for queries.

Benchmark 2: Randomised Weighted Query Mix A second variant of the query
mix is the randomised weighted query mix based on the FishBase server access
logs. The query mix contains the 5 most frequent query types, each of the queries
being instantiated n times, where n is the frequency of the query according to the
server access logs. The final query mix contains 175 query instances of 5 query
types. Note that the queries are instantiated with random parameter values,
therefore it is possible that some of the query instances are identical. This seems
realistic, as FishBase users might perform the same query several times in a row.

5

Query name Month Day Hour

Species Page 73213 2440.43 101.68
Common Name 31008 1033.60 43.07
Genus 13331 444.37 18.52
Country Species Information 4429 147.63 6.15
Collaborator Page 4138 137.93 5.75

Table 3. Frequency of the most common FishBase queries per month (total), day
(mean), and hour (mean), June 2012.

Benchmark 3: Typical User Scenario The log files also allow us to draw conclu-
sions as to how users commonly navigate on the fishbase.org site. As the species
page for a fish species is the central point of information, the log files show
a usage pattern which focuses heavily on accessing species pages from various
other points on the site, most frequently the common name search (which is a
prominent feature on the fishbase.org start page). From this usage pattern, we
can construct a query mix which emulates the route a typical user takes during
one visit to fishbase.org, similar to BSBM’s explore use case.

3.3 Datastores- and Access

Virtuoso Open Source 6.1.5 Virtuoso is a “multi-model data server” which sup-
ports data storage and management of relational data, XML data, and RDF
data, amongst others. Through several prior benchmarks, Virtuoso emerged as
one of the best performing RDF triple stores. We installed Virtuoso (Open Source
edition) following the instructions on the Virtuoso wiki12 for a default install.
As recommended by Virtuoso, the following parameters were modified in the
virtuoso.ini file to match our hardware setup:

– NumberOfBuffers: 1360000
– MaxDirtyBuffers: 1000000
– MaxCheckpointRemap: 60GB (= 1/4 of the DB size)

These were the only measures taken to tune the datastore. The FishBase RDF
triples were then loaded into the database from the n-triples file using the SQL
command DB.DBA.TTLP MT.

MySQL 5.5 Relational DBMS The current live version of FishBase uses a MySQL
RDBMS as data store. As described above, we generated a smaller snapshot of
the FishBase database dump which contained all the information required by the
queries in the query mix. The data was loaded into an “out-of-the-box” install
of the MySQL 5.5 RDBMS running on our test machine.

12 http://www.openlinksw.com/dataspace/dav/wiki/Main

6

Quest 1.7 OBDA System (using a MySQL database) The Quest OBDA system
[9] defines “virtual ABoxes” over data which is stored in a relational DBMS.
It provides access to the data via SPARQL queries which the system rewrites
into SQL, thereby delegating the query execution entirely to the RDBMS. Quest
currently supports several RDBMS, including PostgreSQL, MySQL, DB2 and
Oracle. For our benchmark, we used the existing MySQL database with the
manually created OWL ontology and mappings described above.

3.4 Benchmarking Framework

We developed a multi-query language benchmarking framework which is a deriva-
tive of the Berlin SPARQL Benchmark (BSBM) code, extending its functional-
ity by a query generation module and additional connectors for SQL queries
and OBDA access. The Manchester University Multi-Benchmarking (MUM-
benchmark) framework is released as an open source project under the Apache
License 2.0.13

The query generator accepts an XML file containing parameterised queries
(in SPARQL or SQL) and the respective queries to select a random parameter
value from the data store for each parameter. This allows us to generate queries
based on data from existing data stores, rather than relying on artificially gen-
erated data and queries. Examples of such a parameterised query can be found
in Appendix A.

The BSBM TestDriver has been extended to measure the performance of
relational databases queries via SQL queries and OBDA. The benchmark Test-
Driver measures the query performance of a query mix, which is created manually
by specifying a series of queries in a plain text file. The benchmarking process
includes a warm-up phase of several runs (default: 50 runs) of the query mix,
which is followed by multiple runs (default: 500 runs) whose performance is
measured. The results of the benchmark are then output as an XML result file,
including aggregated metrics for the query mix, as well as individual metrics for
each query in the query mix.

3.5 What We Measure

Due to time constraints, we focused on obtaining results for Benchmark 1 de-
scribed in section 3.2, which measures the performance of each individual query.
We generated 20 distinct query sets in order to ensure that the query perfor-
mance was not affected by the choice of parameters. Each of the query mixes
in the benchmark was run 50 times as a warm-up phase, followed by 100 timed
runs;14 this results in a total of 2,000 measured runs per query.

13 http://code.google.com/p/mum-benchmark/
14 Note that the default number of timed runs in the BSBM framework is 500; due to

the large number of query sets and the relatively stable times after the warm-up, we
reduced the number of timed runs to 100.

7

In preliminary tests we found that the Quest system performed reasonably
well on the query mix, with one significant drawback: The query rewriting con-
sumed a large amount of time for some of the queries, in particular for query 2
(SpeciesPage). This is due to the large number of SQL queries being generated
in the SPARQL-to-SQL rewriting process, which then have to be pruned in a
time-consuming process. In the case of query 2, the rewriting algorithm gener-
ated 7,200 queries, of which 7,198 were pruned, whereas most other queries in
the mix generated not more than 120 queries. The time required to rewrite query
2 was nearly 10 seconds on average, which caused extreme delays in the bench-
mark. Due to a simple caching mechanism, however, the system did not have to
perform any rewriting after the first execution of the query, which lead to a sig-
nificant improvement in the query execution time. We therefore performed the
rewriting and caching in the warm-up phase of the benchmark, only measuring
the execution time of the SQL query generated by Quest. While this may seem
to paint an unrealistic picture of the total execution time of the queries, it does
provide us with a measure of the quality of the SPARQL-to-SQL rewriting.

The results are returned using an extended version of the BSBM result XML
file, which includes metrics for the query mix (fastest, slowest, and average query
mix run time, query mixes per hour), and metrics for the individual queries:
Average / min / max query execution time, queries per second, average / min /
max number of results per query execution, and number of query timeouts.

3.6 Hardware

The data stores were installed on an “out-of-the-box” Mac Mini with a 2.7 GHz
Intel Core i7 dual-core processor, 16 GB (1333 MHz DDR3) memory, and a
750 GB HDD, running Mac OS X 10.7.4 (Lion). The benchmark queries were
performed remotely, using an identical machine.

4 Results

The results of the individual query benchmark are shown in Table 4, the unit
being queries per second (qps).15 The SQL query results are given only as a
baseline to compare the other datastores against. As stated previously, the re-
sults for Quest do not exclude the query re-writing times, but only compare the
performance of the SQL queries the OBDA system generates from the SPARQL
queries. The SPARQL queries against Virtuoso perform consistently worse than
against Quest, with Quest outperforming Virtuoso by roughly an order of mag-
nitude on most queries.

Across all 22 queries, there are large differences in performance for each data
store: For 7 of the 22 queries, Virtuoso’s performance lies in the single-digit range,
a further 10 only range between 12 and 68, and only 5 queries (CommonName,

15 Please note that query 9 was wrongly generated for Quest, therefore we did not
obtain any meaningful results for this query.

8

FamilyAllfish, FamilyNominalSpecies, Genus, Species) perform better than 100
qps, with the best query execution time for query 4 (Species). The performance
even drops to only 1 query per second on average for query 2 (SpeciesPage).

ID Query name Virtuoso Quest MySQL

1 CommonName 132 850 1262
2 SpeciesPage 1 552 840
3 Genus 167 753 1025
4 Species 192 870 1249
5 FamilyInformation 17 572 840
6 FamilyAllfish 141 704 1113
7 FamilyNominalSpecies 161 773 1060
8 FamilyListOfPictures 50 578 742
9 CollaboratorPage 27 824

10 PicturePage 68 711 1166
11 CAllFish 24 316 629
12 CSpeciesInformation 7 598 1009
13 CFreshwater 6 201 212
14 CIntroduced 9 303 479
15 CEndemic 13 656 985
16 CReefAssociated 4 266 378
17 CPelagic 7 337 532
18 CGameFish 9 580 845
19 CCommercial 12 556 748
20 CUsedForAquaculture 12 779 1229
21 CPotentialAquaculture 34 694 957
22 CAquariumTrade 66 815 1251

Table 4. Query results of the 22 queries in qps (queries per second)

The behaviour of Quest seems more stable compared to Virtuoso: 16 of the
22 queries perform at between 550 and 870 qps, with only query 13 (Country
Freshwater, i.e. retrieve all freshwater species of a given country, an instantiation
of which is shown in Appendix B) and 16 (Country Reef Associated) causing a
significant drop in performance across all three systems. This is surprising, as
the Country queries (query 11 to 22) are all similar, but rank among the best
and worst performing queries for the Quest system. The search for a Species
(query 4) as well as the Common Name query (query 1) are executed at the
highest speed, with 870 and 850 qps, respectively.

In summary, it can be said that the SQL queries generated by Quest perform
surprisingly well compared to the Virtuoso RDF store. As Virtuoso has consis-
tently performed well in existing benchmarks (see Section 2), we have reason to
assume that the comparatively weak performance is not restricted to Virtuoso,
but rather a general issue of triple stores. While the results of the native SQL
queries against the MySQL database are only given as a baseline, it is clear to

9

see that the results of the queries against Quest come fairly close to those of the
native SQL queries.

5 Conclusions and Future Work

In this paper, we have presented a multi-purpose benchmarking framework,
which allows benchmark users to generate randomised queries from existing data.
We have used this framework to generate a benchmark using data from FishBase,
a large collection of information about the world’s fish. The FishMark has been
employed to measure the performance of several data stores. While the work
on this benchmark is in its early stages, we have found that the combination of
real data, query mixes inferred from server logs, automated query instantiation
and query benchmarking over several different systems (RDF triple store, SQL
RDBMS, OBDA using an RDBMS), makes for a promising approach to per-
formance measurement. The OBDA system we tested outperformed the RDF
store by approximately an order of magnitude, while being surprisingly close in
performance to FishBase’s native relational database.

For future work, there are a number of possible ways to extend and improve
the MUM-benchmarking framework. The current version only generates inde-
pendent parameter values for the queries in a query mix rather than a sequence

of queries in which each parameter value depends on the parameter values in
previous queries. Sequencing would generate a more natural set of queries for a
query mix.

We are planning to develop strategies for scaling the FishBase data based
on a single fish species. This will allow us to test the performance of various
data engines using self-contained subsets of the FishBase data. Another next
step is the generation of more realistic query mixes based on the information
extracted from the FishBase server logs. Additionally, we are aiming to make
another attempt at using the complete FishBase data set (1.38 billion triples)
for the benchmark.

The main purpose of the benchmarking results in this report is to demon-
strate the FishMark benchmark; therefore we only tested a very restricted num-
ber of systems on a single query mix. We aim to perform more extensive tests
with FishMark using a larger set of RDF stores, SPARQL-to-SQL rewriters, and
OBDA systems. Finally, we did not attempt to measure the query performance
under the load of multiple clients, which is a natural next step in the development
of the FishMark benchmark.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. of Artificial Intelligence Research 36, 1–69 (2009)

2. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semantic Web Inf.
Syst. 5(2), 1–24 (2009)

10

3. Boncz, P., Pham, M.D., Erling, O., Mikhailov, I., Rankka,
Y.: Social network intelligence benchmark (SIB) - version 0.8.
http://www.w3.org/wiki/Social Network Intelligence BenchMark (2011)

4. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web J. 2(1), 43–53 (2011)

5. Guo, Y., Pan, J.Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. J. of Web Semantics 3(2-3), 158–182 (2005)

6. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proc. of IJCAI-11. pp. 2656–2661
(2011)

7. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: Proc. of ESWC-06. pp. 125–139 (2006)

8. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.C.N.: DBpedia SPARQL benchmark
- performance assessment with real queries on real data. In: Proc. of ISWC-11. pp.
454–469 (2011)

9. Rodriguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL reasoner for ontology-
based data access. In: Proc. of OWLED-12 (2012)

10. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL perfor-
mance benchmark. In: Proc. of ICDE-09. pp. 222–233 (2009)

11. Weiske, C., Auer, S.: Implementing SPARQL support for relational databases and
possible enhancements. In: Proc. of CSSW-07. pp. 69–80 (2007)

11

Appendix A: Sample Query Template

Query Template for Query 2: SpeciesPage (SPARQL)

<bmquery name="SpeciesPage">
<query>

<![CDATA[
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX fish: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?common ?code ?refno
?author ?demerspelag ?anacat
?family ?order ?class ?entered
?pic ?picid ?description ?refauthor ?refyear
?collaborator ?comments
WHERE {
?x fish:species_Genus "%genus%" .
?x fish:species_SpecCode ?code.
?x fish:species_Species "%species%" .
?x fish:species_Comments ?comments .
OPTIONAL {?x fish:species_Author ?author}.
OPTIONAL {?x fish:species_FBname ?common}.
OPTIONAL {?x fish:species_SpeciesRefNo ?refno}.
OPTIONAL {?ref fish:refrens_RefNo ?refno}.
OPTIONAL {?ref fish:refrens_Author ?refauthor}.
OPTIONAL {?ref fish:refrens_Year ?refyear}.
OPTIONAL {?x fish:species_Comments ?biology.}
OPTIONAL {
?x fish:species_FamCode ?famcode.
?famcode fish:families_Family ?family.
?famcode fish:families_Order ?order.
?famcode fish:families_Class ?class.
}
OPTIONAL {?morph fish:morphdat_Speccode ?x.
?morph fish:morphdat_AddChars ?description.}
OPTIONAL {?x fish:species_DemersPelag ?demerspelag.}
OPTIONAL {?x fish:species_AnaCat ?anacat.}
OPTIONAL {?x fish:species_PicPreferredName ?pic.
?pic_node fish:picturesmain_SpecCode ?x.
?pic_node fish:picturesmain_PicName ?pic.
?pic_node fish:picturesmain_autoctr ?picid.
?pic_node fish:picturesmain_Entered ?entered.
?pic_node fish:picturesmain_AuthName ?collaborator.
}
}

]]>
</query>
<parameterquery>

<paramname>genus</paramname>
<paramname>species</paramname>

<paramvalues>
<query>

<![CDATA[
PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?species
WHERE {
?code fd:species_Genus ?genus .
?code fd:species_Species ?species .
}

]]>
</query>

</paramvalues>
</parameterquery>

</bmquery>

12

Appendix B: Sample Benchmark Queries

Instance of Query 1: Common Name (SPARQL)

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?type ?species ?genus ?country ?language
WHERE {
?nameID fd:comnames_ComName "Banded wormfish" .
?nameID fd:comnames_NameType ?type .
?nameID fd:comnames_SpecCode ?code .
?nameID fd:comnames_C_Code ?ccode .
?code fd:species_Species ?species .
?code fd:species_Genus ?genus .
?ccode fd:countref_PAESE ?country .
}

Instance of Query 2: SpeciesPage (SPARQL)

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX fish: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?common ?code ?refno
?author ?demerspelag ?anacat
?family ?order ?class ?entered
?pic ?picid ?description ?refauthor ?refyear
?collaborator ?comments
WHERE {
?x fish:species_Genus "Sebastes" .
?x fish:species_SpecCode ?code.
?x fish:species_Species "nigrocinctus" .
?x fish:species_Comments ?comments .
OPTIONAL {?x fish:species_Author ?author}.
OPTIONAL {?x fish:species_FBname ?common}.
OPTIONAL {?x fish:species_SpeciesRefNo ?refno}.
OPTIONAL {?ref fish:refrens_RefNo ?refno}.
OPTIONAL {?ref fish:refrens_Author ?refauthor}.
OPTIONAL {?ref fish:refrens_Year ?refyear}.
OPTIONAL {?x fish:species_Comments ?biology.}
OPTIONAL {
?x fish:species_FamCode ?famcode.
?famcode fish:families_Family ?family.
?famcode fish:families_Order ?order.
?famcode fish:families_Class ?class.
}
OPTIONAL {?morph fish:morphdat_Speccode ?x.
?morph fish:morphdat_AddChars ?description.}
OPTIONAL {?x fish:species_DemersPelag ?demerspelag.}
OPTIONAL {?x fish:species_AnaCat ?anacat.}
OPTIONAL {?x fish:species_PicPreferredName ?pic.
?pic_node fish:picturesmain_SpecCode ?x.
?pic_node fish:picturesmain_PicName ?pic.
?pic_node fish:picturesmain_autoctr ?picid.
?pic_node fish:picturesmain_Entered ?entered.
?pic_node fish:picturesmain_AuthName ?collaborator.
}
}

Instance of Query 3: Genus

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?author ?family ?ename
WHERE {
?code fd:species_Species ?species .
?code fd:species_Genus "Parachondrostoma" .
OPTIONAL {?code fd:species_FBname ?ename .}
?code fd:species_Author ?author .
?code fd:species_FamCode ?fcode .
?fcode fd:families_Family ?family .
}

Instance of Query 4: Species

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?author ?family ?ename
WHERE {
?code fd:species_Species "ocellatum" .
?code fd:species_Genus ?genus .
OPTIONAL {?code fd:species_FBname ?ename .}
?code fd:species_Author ?author .
?code fd:species_FamCode ?fcode .
?fcode fd:families_Family ?family .
}

13

Instance of Query 5: Family Information

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?order ?class ?noOfGenera ?noOfSpecies ?marine ?brackish ?freshwater ?fossil
?aquarium ?remark ?division ?activityLevel ?author ?year ?repguild ?SpeciesCount
WHERE {
?familiesID fd:families_Family "Ipnopidae" .
?familiesID fd:families_Order ?order .
?familiesID fd:families_Class ?class .
?familiesID fd:families_SpeciesCount ?SpeciesCount .
?familiesID fd:families_Genera ?noOfGenera .
?familiesID fd:families_Species ?noOfSpecies .
OPTIONAL {?familiesID fd:fossilReference ?fossil }.
?familiesID fd:families_Marine ?marine .
?familiesID fd:families_Brackish ?brackish .
?familiesID fd:families_Freshwater ?freshwater .
?familiesID fd:families_Aquarium ?aquarium .
?familiesID fd:families_Remark ?remark .
?familiesID fd:families_Remark ?remark .
?familiesID fd:families_Division ?division .
?familiesID fd:families_Activity ?activityLevel .
?familiesID fd:families_ReprGuild ?repguild .
?familiesID fd:families_FamiliesRefNo ?code .
?x fd:refrens_RefNo ?code .
?x fd:refrens_Author ?author .
?x fd:refrens_Year ?year .
}

Instance of Query 6: Family All Fish

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?genus ?author ?englishName
WHERE { ?SpeciesID fd:species_Author ?author ;
fd:species_Species ?species;
fd:species_Genus ?genus ;
fd:species_FamCode ?code .
?code fd:families_Family "Stromateidae" .
OPTIONAL {?SpeciesID fd:species_FBname ?englishName } .
}

Instance of Query 7: Family Nominal Species

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?author ?genus ?ref
WHERE { ?SpeciesID fd:species_Author ?author ;
fd:species_Species ?species;
fd:species_Genus ?genus ;
fd:species_FamCode ?code .
OPTIONAL {?SpeciesID fd:species_ImportanceRef ?ref }.
?code fd:families_Family "Gobiesocidae" .
}

Instance of Query 8: Family List of Pictures

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?species ?englishname ?picture ?photographer ?location
WHERE {?picID fd:picturesmain_SpecCode ?code ;
fd:picturesmain_PicName ?picture ;
fd:picturesmain_AuthName ?photographer .
OPTIONAL { ?picID fd:picturesmain_Locality ?location }.
OPTIONAL { ?code fd:species_FBname ?englishname } .
?code fd:species_Species ?specie;
fd:species_Genus ?genus ;
fd:species_FamCode ?fcode .
?fcode fd:families_Family "Moronidae" .
}

Instance of Query 9: Collaborator Page

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?prename ?surname ?email ?photo ?webpage ?fax ?institute ?street ?city ?country ?comments ?keywords ?year
WHERE {
?x fd:collaborators_Personnel "1952" .
OPTIONAL {?x fd:collaborators_Prename ?prename }.
OPTIONAL {?x fd:collaborators_Surname ?surname }.
OPTIONAL {?x fd:collaborators_E-mail ?email }.
OPTIONAL {?x fd:collaborators_StaffPhoto ?photo }.
OPTIONAL {?x fd:collaborators_WebPage ?webpage }.
OPTIONAL {?x fd:collaborators_FAX ?fax }.
OPTIONAL {?x fd:collaborators_Institute ?institute }.

14

OPTIONAL {?x fd:collaborators_Street ?street }.
OPTIONAL {?x fd:collaborators_City ?city }.
OPTIONAL {?x fd:collaborators_Country ?country }.
OPTIONAL {?x fd:collaborators_Comments ?comments }.
OPTIONAL {?x fd:collaborators_Keywords ?keywords }.
OPTIONAL {?x fd:collaborators_Year ?year }.
}

Instance of Query 10: Picture Page

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?species ?photographer ?size ?location ?stage ?reference ?remark
WHERE {
?pcode fd:picturesmain_PicName "Danav_u0.jpg" .
?pcode fd:picturesmain_AuthName ?photographer .
OPTIONAL {?pcode fd:picturesmain_Size ?size }.
OPTIONAL {?pcode fd:picturesmain_Locality ?location }.
?pcode fd:picturesmain_LifeStage ?stage .
OPTIONAL {?pcode fd:picturesmain_Reference ?reference }.
OPTIONAL {?pcode fd:picturesmain_Remark ?remark }.
?pcode fd:picturesmain_SpecCode ?scode .
?scode fd:species_Genus ?genus .
?scode fd:species_Species ?species .
}

Instance of Query 10: Family All Fish

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?genus ?author ?englishName
WHERE { ?SpeciesID fd:species_Author ?author ;
fd:species_Species ?species;
fd:species_Genus ?genus ;
fd:species_FamCode ?code .
?code fd:families_Family "Stromateidae" .
OPTIONAL {?SpeciesID fd:species_FBname ?englishName } .
}

Instance of Query 13: Country Freshwater

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?order ?family ?genus ?species ?occurrence ?fbname ?name
WHERE {
?nameID fd:comnames_ComName ?name .
?nameID fd:comnames_C_Code ?ccode .
?nameID fd:comnames_SpecCode ?x.
?x fd:species_Genus ?genus .
?x fd:species_Species ?species .
OPTIONAL {?x fd:species_FBname ?fbname }.
?x fd:species_FamCode ?f .
?f fd:families_Family ?family .
?f fd:families_Order ?order .
?c fd:country_SpecCode ?x.
?c fd:country_Status ?occurrence .
?c fd:country_Freshwater 1 .
?c fd:country_C_Code ?cf .
?cf fd:countref_PAESE "Ghana".
}

Instance of Query 16: Country Reef Associated

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?order ?family ?genus ?species ?occurrence ?fbname ?name ?dangerous
WHERE {
?nameID fd:comnames_ComName ?name .
?nameID fd:comnames_C_Code ?ccode .
?nameID fd:comnames_SpecCode ?x.
?x fd:species_Genus ?genus .
?x fd:species_Species ?species .
?x fd:species_Dangerous ?dangerous .
?x fd:species_DemersPelag "reef-associated" .
OPTIONAL {?x fd:species_FBname ?fbname }.
?x fd:species_FamCode ?f .
?f fd:families_Family ?family .
?f fd:families_Order ?order .
?c fd:country_SpecCode ?x.
?c fd:country_Status ?occurrence .
?c fd:country_C_Code ?cf .
?cf fd:countref_PAESE "Trinidad Tob" .
}

15

The Combined Approach to OBDA: Taming
Role Hierarchies using Filters

Carsten Lutz1, İnanç Seylan1, David Toman2, and Frank Wolter3

1Universität Bremen, Germany
{clu,seylan}@informatik.uni-bremen.de

2Cheriton School of CS, University of Waterloo, Canada
david@cs.uwaterloo.ca

3University of Liverpool, United Kingdom
wolter@liverpool.ac.uk

Abstract. There are several approaches to implementing query answer-
ing over instance data in the presence of an ontology that target conven-
tional relational database systems (SQL databases) as their back-end.
They all share the limitation that, for ontologies formulated in OWL2
QL or versions of the description logic DL-Lite that admit both role hi-
erarchies and inverse roles, it seems impossible to avoid an exponential
blowup of the query (and sometimes this is even provable). We consider
the combined approach and propose to replace its query rewriting part
with a filtering technique. This is natural from an implementation per-
spective and allows us to handle both inverse roles and role hierarchies
without an exponential blowup. We also carry out an experimental eval-
uation that demonstrates the scalability of this approach.

1 Introduction

In recent years, ontology-based data access (OBDA) has emerged as a promising
and challenging application of ontologies. The idea is to enrich instance data with
a ‘semantic layer’ in the form of an ontology, used as an interface for querying
and to derive additional answers. A central research problem in this area is to
design query answering engines that can deal with sufficiently expressive ontology
languages yet scale to large data sets. The most popular ontology languages that
have been considered for OBDA include the three profiles OWL2 RL, OWL2 QL,
and OWL2 EL, as well as various description logics and datalog variants related
to these profiles [2, 3, 5, 11, 15].

Currently, there are two major methodologies for answering queries in an
OBDA setting: rewriting-based approaches (also called backward chaining) and
materialization-based approaches (also called forward chaining). In the former,
one compiles the ontology T and the query q into a new query qT that contains
the relevant knowledge from the ontology, i.e., the answers to q over A and T
coincide with the answers to qT over A. One can thus store A in a relational
database management system RDBMS and execute qT overA. In materialization

16

2 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

approaches, the instance data A is completed with the relevant knowledge from
the ontology T , i.e. for any query q, the answers given to q over A and T coincide
with the answers given to q over the completed instance data AT ⊇ A without
any ontology. Thus, one can store AT in a relational database management
system (RDBMS) and execute q over AT .

A technical problem that arises in materialization approaches is that the
completed data AT easily becomes infinite; in particular, this may happen when
the ontology expresses cyclic dependencies and has existential quantifiers in the
heads of its concept inclusions, which is allowed in most ontology languages in-
cluding the ones mentioned above. To overcome this problem, an economic way
of reusing individuals introduced for existential quantifiers has been proposed
in [8, 9] for the case where ontologies are formulated in description logics from
the EL and DL-Lite families, which are the logical cores of the OWL2 EL and
OWL2 QL ontology languages. While the resulting completed data sets are finite
and give correct answers to instance queries, they can give spurious answers to
conjunctive queries (CQs). To recover soundness for CQs, it is thus necessary to
include an additional step, resulting in the combined approach to query answer-
ing: the original query is rewritten in a way that eliminates spurious answers.
In sharp contrast to pure rewriting, the auxiliary query rewriting required in
the combined approach turns out to be rather simple—an additional selection
condition applied to the results of the original CQ over the completed data—
and often of polynomial size. Indeed, experiments indicate that the combined
approach admits very efficient query execution for expressive variants of EL and
DL-Lite [8, 9].

Unfortunately, there are certain combinations of logical operators that are
important from an application perspective, but for which an exponential blowup
of the query seems to be unavoidable both in the query rewriting approach and
in the combined approach. In particular, this is the case for the combination
of inverse roles and role hierarchies as found in DL-LiteR [3], the extension of
basic DL-Lite with role hierarchies that underpins OWL2 QL. It has been shown
that, in the query rewriting approach, an exponential blowup of the query size is
unavoidable when the ontology is formulated in DL-LiteR [7]. For the combined
approach, an auxiliary query rewriting strategy for DL-LiteR ontologies and CQs
is presented in [8], but it incurs an exponential blowup and it seems unlikely that
the rewriting can be improved to a poly-sized one (although this question is yet
to be resolved).

In this paper, we present a new variation on the combined approach that can
handle CQs and DL-LiteR ontologies and eliminates the need for auxiliary query
rewriting altogether, thus also eliminating the need to deal with exponentially
sized queries. Specifically, we replace auxiliary query rewriting with a filtering
component : spurious answers are eliminated by a polynomial-time filtering pro-
cedure (called a filter in the rest of the paper) that is installed as a user-defined
function in the underlying RDBMS. Our main contributions are as follows.

(1) We develop a polynomial time procedure for filtering out spurious answers to
CQs for ontologies formulated in DL-LiteR. Interestingly, the existence of such

17

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 3

a filtering procedure appears to be quite sensitive to how exactly the instance
data is completed. Compared to the data completion for the original combined
approach [8], the filtering technique requires subtle modifications to the data
completion in order to obtain a polytime filter.

(2) To analyze the performance of our approach and to compare it with the query
rewriting approach, we modify the Lehigh University Benchmark (LUBM) [6] by
introducing additional existential restrictions and subconcepts into the LUBM
ontology and incompleteness into the LUBM Data Generator. Additional queries
that are designed to stress-test the performance of the filtering procedure are
introduced as well.

(3) Finally, the resulting ontologies, data, and queries are used to demonstrate
the feasibility of our approach, and to show that it scales to large amounts of
instance data.

Some technical proofs and details of our experimental evaluation are presented in
the appendix of the full version of this paper, available at http://informatik.
uni-bremen.de/~clu/combined/

2 Preliminaries

We introduce DL-LiteR-TBoxes, ABoxes, and conjunctive queries. Let NI, NC,
and NR be countably infinite sets of individual names, concept names and role
names. Roles R, simple concepts C, and concepts D are built according to the
following syntax rules, where P ranges over NR and A over NC:

R ::= P | P−, C ::= A | ∃R, D ::= C | ¬C | ∃R.A.

As usual, we use N
−
R

to denote the set of all roles and identify (P−)− with P .
In DL-LiteR, a TBox is a finite set T of concept inclusions (CIs) C � D with
C a simple concept and D a concept, and role inclusions (RIs) R1 � R2 with
R1, R2 roles.1

An ABox is a finite set of concept assertions A(a) and role assertions P (a, b),
where A ∈ NC, P ∈ NR and a, b ∈ NI. We denote by Ind(A) the set of individual
names that occur in A, and write P−(a, b) ∈ A instead of P (b, a) ∈ A whenever
convenient. A knowledge base (KB) is a pair (T ,A) with T a TBox and A an
ABox.

The semantics of TBoxes and ABoxes is defined in the standard way based
on interpretations I = (∆I , ·I), where ∆I is a non-empty domain and ·I an
interpretation function that maps each A ∈ NC to a subset AI ⊆ ∆I , each
P ∈ NR to a relation P I ⊆ ∆I×∆I , and each a ∈ NI to an element aI ∈ ∆I ; for
details consult [1, 3]. An interpretation is a model of a TBox T if it satisfies all
inclusions in T ; models of ABoxes and knowledge bases are defined analogously.
A knowledge base is consistent if it has a model. For a CI or RI α, we write
T |= α when α is a consequence of T (satisfied in all models of T). Instead of

1 A set of role inclusions is also called a role hierarchy.

18

4 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

T |= R � S, we will usually write R �∗
T S to clearly distinguish consequences of

this form (which are RIs) from consequences of the form T |= ∃R � ∃S (which
are CIs). Note that, in DL-LiteR, deciding consistency and logical consequence
amounts to computing a form of transitive closure [3].

Let NV be a countably infinite set of variables. Taken together, the sets NV

and NI form the set NT of terms. A first-order (FO) query is a first-order formula
q = ϕ(x) in the signature NC ∪ NR and with terms from NT, where the concept
and role names are treated as unary and binary predicates, respectively, and x
are the free variables of ϕ called the answer variables; we say that q is k-ary if
x comprises k variables. If k = 0, then q is a Boolean query. A conjunctive query
(CQ) is an FO query of the form q = ∃y ψ(y,x), where ψ is a conjunction of
concept atoms A(t) and role atoms P (t, t�) where t, t� ∈ NT. As in the case of
ABox assertions, we do not distinguish between P−(t, t�) and P (t�, t). We denote
by term(q) the set of terms in q.

Let q = ϕ(x) be a k-ary FO query with x = x1, . . . , xk, and I an interpre-
tation. A mapping π : term(q) → ∆I with π(a) = aI for all a ∈ term(q) ∩ NI is
a match for q in I if I satisfies q under the variable assignment that maps each
t ∈ term(q) to π(t); in this case, we write I |=π q. For a k-tuple of individual
names a = a1, . . . , ak, a match π for q in I is an a-match if π(xi) = aIi for
i ≤ k. We say that a is an answer to q in an interpretation I if there is an
a-match for q in I and use ans(q, I) to denote the set of all answers to q in I.
Finally, a is a certain answer to q over a KB K = (T ,A) if a ⊆ Ind(A) and
I |= q[a] for all models I of K. The set of all certain answers to q over K is
denoted by cert(q,K). The query answering problem considered in this paper is:
given a DL-LiteR knowledge base K and a CQ q, compute cert(q,K).

To simplify notation, throughout the paper we adopt the unique name as-
sumption (UNA), i.e., require that aI �= bI for distinct a, b ∈ NI. This assumption
has no impact on the query answering problem.

3 ABox Completion

As explained in the introduction, the central idea of the combined approach is to
materialize consequences of the TBox in the ABox as a preprocessing step, and
then to execute queries over the completed data stored in an RDBMS as a plain
table. We illustrate this using two examples from the university domain, similar
in spirit to the LUBM ontology from [6] used in the experimental evaluation.

Example 1. For any ABox A, the concept inclusions

Student � Person (1)

Student � ∃takesCourse (2)

lead to the following additions: (1) for every assertion Student(a) ∈ A, add
(1) Person(a) and (2) takesCourse(a, b) for some fresh individual b (unless such
assertions are already present). After this completion, a CQ such as

q1(x) = ∃y Person(x) ∧ takesCourse(x, y)

19

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 5

Faculty

deptOf

c

degreeFrom

degreeFrom

b Univ

a

Dept

d
teachesAtFaculty

Fig. 1. Completed ABox for Example 3.

correctly returns each a with Student(a) ∈ A as a certain answer.

The following example shows that naive completion can result in infinite ABoxes.

Example 2. Completed naively, the ABox {Faculty(a)} and LUBM inclusions

Faculty � ∃degreeFrom ∃degreeFrom− � Univ (3)

Univ � ∃deptOf− ∃deptOf � Dept (4)

Dept � ∃teachesAt− ∃teachesAt � Faculty (5)

result in an infinite role chain that indefinitely repeats the roles degreeFrom,
deptOf

−, and teachesAt
−.

The problem can be overcome by reusing fresh individuals in an economic way.

Example 3. Consider again the TBox (3)-(5). By reusing individuals, the ABox
{Faculty(a)} can be completed as shown in Figure 1, replacing the infinite role
chain with a cycle. Individual reuse compromises soundness of query answering
as some queries now have spurious answers; for example, the CQ

q2(x) = ∃y, z Faculty(x) ∧ degreeFrom(x, y) ∧ Univ(y) ∧
deptOf(z, y) ∧ Dept(z) ∧ teachesAt(x, z)

returns c as an answer when executed over the completed ABox shown in Fig-
ure 1. This answer is spurious for two reasons: first, the cycle in Figure 1 is
present only due to individual reuse and thus should be disregarded for query
matches; and second, the freshly introduced individuals b, c, d are ‘labeled nulls’
and thus can never be returned as answers.

To recover soundness, it is necessary to eliminate the spurious answers. In the
original combined approach, this was achieved by query rewriting [8, 9]. In this
paper, the spurious answers are eliminated by a filtering procedure that is in-
stalled as a user-defined function in the RDBMS. In the remainder of this sec-
tion, we introduce ABox completion in full detail. In the subsequent section, we
describe the filtering procedure.

From a conceptual perspective, the ABox completion step can be viewed
as replacing the original ABox with the canonical model IK of the knowledge

20

6 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

base K [8]. To define IK, we need a few preliminaries. From now on, we will
generally disallow concepts of the form ∃R.C. This can be done without loss of
generality since each CI D � ∃R.C can be replaced with D � ∃RC , RC � R,
and ∃R−

C � C, where RC is a fresh role name.
Let K = (T ,A) be a DL-LiteR KB. We use rol(T) to denote the set of all

role names in T plus their inverses. The canonical model comprises at most two
fresh individuals for every role in rol(T). However, we only want to introduce
the fresh individuals for a given role when necessary. Formally, we call a role
R ∈ rol(T) generating in T if there exist an a ∈ Ind(A) and R0, . . . , Rn ∈ rol(T)
such that Rn = R and the following conditions hold:

(agen) K |= ∃R0(a) and R0(a, b) /∈ A for all b ∈ Ind(A) (written a � ∃R0),

(rgen) for i < n, T |= ∃R−
i � ∃Ri+1 and R−

i �= Ri+1 (written ∃R−
i � ∃Ri+1).

To facilitate the implementation of efficient filters, we refine the definition of
canonical models as given in [8]: in some cases, we introduce two fresh individ-
uals for a given role instead of only a single one. The need for the additional
individual is related to particular role configurations in the TBox called a loop:
a set {R,S} ⊆ rol(T) (where potentially R = S) is a loop in T if R �= S−,
T |= ∃R− � ∃S, T |= ∃S− � ∃R, and there is some T ∈ rol(T) such that
S− �∗

T T and R �∗
T T . Let LT denote the set of all roles that occur in a loop

in T . The canonical model IK is then based on the domain

∆IK = Ind(A) ∪ {cR,0 | R ∈ rol(T) \ LT is generating in K}
∪ {cR,0, cR,1 | R ∈ LT is generating in K}.

To define the extension of roles in IK, we need some additional preparation. Let
“≺” be an arbitrary, but fixed total ordering on rol(T). For all d, d� ∈ ∆IK and
each role R, we write d �R d� whenever there is an S such that S �∗

T R and
one of the following cases applies:

– d = a ∈ Ind(A), a � ∃S, and d� = cS,0;
– d = cT,i, ∃T− � ∃S, d� = cS,j , and one of the following holds

• i = j and {S, T} is not a loop in T ;
• i = j, {S, T} is a loop in T , and S ≺ T ;
• i = j, {S, T} is a loop in T , and T = S or T ≺ S (for 0 = 1 and 1 = 0).

The canonical model IK for K is now defined as follows, based on the domain
∆IK introduced above:

AIK = {a ∈ Ind(A) | K |= A(a)} ∪ {cR,i ∈ ∆IK | T |= ∃R− � A},
RIK = {(a, b) ∈ Ind(A)× Ind(A) | ∃S : S(a, b) ∈ A and S �∗

T R} ∪
{(d, d�) ∈ ∆IK | d �R d� or d� �R− d},

aIK = a.

The ABox completion consists of replacing the ABox A originally stored in the
RDBMS with its canonical model IK. This can be achieved by executing a set
of FO/SQL-queries whose size is polynomial in the size of T [8].

21

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 7

i

a

cp,0cw,0

cw,1
p

i

i

p

cp,1

i

w

w

i

i

w

a

...

acw,0

acw,0cp,0cw,1

acw,0cp,0

w

p

w

i

i

Fig. 2. Canonical model IK and unraveled canonical model UK for Example 5.

It can be shown that IK is a model of K whenever K is consistent. Note that
one can find a Boolean CQ qT of size polynomial in the size of T such that for
any ABox A stored in the RDBMS, qT gives a positive answer iff K = (T ,A)
is consistent [8]. We can thus safely assume that the knowledge base has been
tested for consistency before query answering.

Example 4. Reconsider Examples 2 and 3. The canonical model IK for the ABox
{Faculty(a)} and TBox (3)-(5) is the structure displayed in Figure 1. Follow-
ing our construction above, the fresh individuals b, c, d are named cdegreeFrom,0,
cteachesAt−,0, and cdeptOf−,0. Note that the TBox (3)-(5) does not give rise to any
loops, and thus all cR,i have index i = 0.

Example 5. The following TBox gives rise to the loop {worksFor, paysSalaryOf}:

Employee � ∃worksFor ∃worksFor− � Employer (6)

Employer � ∃paysSalaryOf ∃paysSalaryOf− � Employee (7)

worksFor
− � isAffiliatedWith paysSalaryOf � isAffiliatedWith. (8)

The canonical model IK for the ABox {Employee(a)} and the TBox (6)-(8) with
paysSalaryOf ≺ worksFor is shown on the left-hand side of Figure 2, where concept
names are omitted and role names are abbreviated by their first letter.

Note that a more straightforward version of the canonical model could be ob-
tained by identifying all elements cR,0 and cR,1. Section 4 explains why this leads
to problems for efficient filtering. Also note that real world ontologies seem to
contain only very few loops, if any, and thus having two domain elements per role
that participates in a loop should not significantly increase the size of canonical
models in practical cases.

To characterize the spurious answers that have to be filtered out, it is useful
to introduce an unraveled (infinite) version of canonical models. Let K be a
knowledge base. A path is a finite sequence ad1 · · · dn, n ≥ 0, such that a ∈
Ind(A), d1, . . . , dn ∈ ∆IK \ Ind(A), a �R d1 for some R ∈ N

−
R
, and di �R di+1

for some R ∈ N
−
R
, 1 ≤ i < n. We denote by tail(σ) the last element of the path σ.

22

8 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

The unraveled canonical model UK is then defined by taking:

∆UK is the set of all paths in IK,
aUK = a, for all a ∈ Ind(A),
AUK = {σ ∈ ∆UK | tail(σ) ∈ AIK},

RUK = {(a, b) ∈ Ind(A)× Ind(A) | ∃S : S(a, b) ∈ A and S �∗
T R} ∪

{(σ,σd) | σd ∈ ∆UK and tail(σ) �R d} ∪
{(σd,σ) | σd ∈ ∆UK and tail(σ) �R− d}.

As an example, the canonical model UK for the KB from Example 4 is shown on
the right-hand side of Figure 2. The following result shows that, as one would
expect, UK does not suffer from spurious answers.

Theorem 1. For every consistent DL-LiteR-KB K and every CQ q, we have
cert(q,K) = ans(q,UK).

The proof of Theorem 1 is standard and omitted, see [8] for a similar proof.

4 Filtering

To remove spurious answers, we install a filtering procedure as a user-defined
function in the RDBMS. The procedure takes as input a match of the query in
the canonical model IK stored in the RDBMS and returns “false” if this match
is spurious and “true” otherwise. We assume that the filtering procedure has
access to the query and the TBox, but not to the data. To define its behavior
more precisely, we formally define spurious matches based on unraveled canonical
models UK and Theorem 1.

Let K be a KB and q(x) a CQ. A match π of q in IK is reproduced by a
match τ of q in UK if for all t ∈ term(q), we have π(t) = tail(τ(t)). We say that
π is spurious if it is not reproduced by any match τ of q in UK. The following
lemma, which is an immediate consequence of Theorem 1, shows that IK can be
used for query answering when spurious matches are filtered out.

Lemma 1. a ∈ cert(q,K) iff there is an a-match π of q in IK that is not
spurious.

We want to show that it can be decided in time polynomial in the size of q and
T whether a given match in IK is spurious. Clearly, it is enough to test for each
maximally connected component of q whether the given match is spurious on
that component. We can thus w.l.o.g. assume that q is connected.

We need a few preliminaries. An anonymous path is a path without the
leading individual name, i.e., it is a finite sequence d1 · · · dn, n ≥ 1, such that
d1, . . . , dn ∈ ∆IK \ Ind(A) and di �R di+1 for some R ∈ N

−
R
, 1 ≤ i < n. We use

Paths to denote the set of all paths, both anonymous and non-anonymous. A root
configuration for q given π is a set ρ ⊆ term(q) such that one of the following
conditions is true:

– ρ is the set of those t ∈ term(q) such that π(t) ∈ NI and this set is non-empty;

23

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 9

Student Student
a1 an

ctakesCourse,0

takesCourse takesCourse

a2 · · ·
Student

Fig. 3. Canonical model IK for Example 6.

– the above set is empty and ρ contains exactly one term (actually a variable).

The filtering procedure first checks whether all answer variables are mapped to
elements of Ind(A), i.e., individuals of the original ABox A. If this is not the
case, it immediately returns “false”. Then the procedure iterates through all
root configurations ρ. For each ρ, it constructs a sequence S0

ρ , S
1
ρ , . . . of relations

Si
ρ ⊆ term(q)× Paths as follows:

– S0
ρ contains all pairs (t,π(t)) with t ∈ ρ;

– Si+1
ρ is Si

ρ extended with the following pairs:
(a) (t,σπ(t)) for all R(s, t) ∈ q with (s,σ) ∈ Si

ρ and π(s) �R π(t);
(b) (t,σπ(t)) for all R(s, t) ∈ q with (s,σπ(t)π(s)) ∈ Si

ρ and π(t) �R− π(s).

The computation stops as soon as the sequence stabilizes or Si
ρ becomes non-

functional which happens after at most |term(q)| iterations. The procedure re-
turns “true” if the final Si

ρ is a function with domain term(q) for some root
configuration ρ, and “false” otherwise.

Example 6. Consider the TBox (1)-(2) from Example 1, the query

q3(x, y) = ∃z Student(x)∧Student(y)∧takesCourse(x, z)∧takesCourse(y, z), (9)

and the ABox
{Student(a1), . . . , Student(an)}. (10)

The canonical model IK is shown in Figure 3. Suppose the filter gets as input
the match π = {x �→ a1, y �→ a2, z �→ ctakesCourse,0}. There is only one possible
root configuration for π, which is ρ = {x, y}. The procedure computes

Sρ = {(x, a1), (y, a2), (z, a1ctakesCourse,0), (z, a2ctakesCourse,0)}
which is not a function; thus, the match is identified as spurious and “false” is
returned.

Example 7. Consider the ABox {Faculty(a)}, TBox (3)-(5), and query q2 from
Example 3. To make things a bit more interesting, assume that x is a quantified
variable in q2 rather than an answer variable. Recall that the canonical model IK
is shown in Figure 1, modulo the names of fresh individuals. Given the match
π = {x �→ c, y �→ b, z �→ d} and considering the root configuration ρ = {x}, the
procedure computes

Sρ = {(x, c), (y, cb), (z, cbd), (x, cbdc)}
and stops because of non-functionality. For the other root configurations ρ = {y}
and ρ = {z}, the procedure fails in a similar way and thus returns “false”.

24

10 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

Similar to the “tree witnesses” from [8], the filtering procedure follows a simple
idea for reproducing the input match π in IK as a match τ in UK: when we have
already decided that τ(x) = σ /∈ Ind(A) and R(x, y) ∈ q, then there is a uniquely
determined individual σ� to which y can be matched. This follows from requiring
π(y) = tail(τ(y)) and the following property of UK:

if (σ,σ�) ∈ RUK and (σ,σ��) ∈ RUK with σ� �= σ��, then tail(σ�) �= tail(σ��).

In fact, it is this determinism of matches that is made explicit by Conditions (a)
and (b) of the filtering procedure. Note that, without introducing two individual
names cR,0 and cR,1 whenever R is involved in a loop, the above crucial property
of UK fails. In fact, we do not know whether polytime filtering is possible based
on the variation of the canonical model where all individuals cR,0 and cR,1 are
identified. The problem is illustrated by the following example.

Example 8. Consider the ABox {Employee(a)} and TBox (6)-(8) from Exam-
ple 5 and the CQ

q4(x) = ∃y, z, u w(x, y) ∧ p(y, z) ∧ i(u, z).

Let π = {x �→ a, y �→ cw,0, z �→ cp,0, u �→ cw,1}. The only root configuration is
ρ = {x}. During the first two iterations, the filtering procedure produces

S2
ρ = {(x, a), (y, acw,0), (z, acw,0cp,0)}.

S2
ρ says that z has to be mapped to acw,0cp,0. Due to the atom i(z, u) ∈ q4 and

the two i-edges outgoing from z in UK, the possible targets for u are acw,0 and
acw,1. However, to produce a match in UK that is compatible with π, we can only
choose a target that ends with π(u) = cw,1 and obtain

S3
ρ = {(x, a), (y, acw,0), (z, acw,0cp,0), (z, acw,0cp,0cw,1)}

which is functional, showing that the match π is not spurious. In a canonical
model IK where cw,0 and acw,1 are identified, there are indeed two choices for
mapping of u. This makes it non-obvious how to find a polytime filtering proce-
dure in this case, if one exists at all.

We now analyze the runtime and correctness of the filtering procedure. First
note that, in Conditions (a) and (b), the filtering procedure has to check whether
π(s) �R π(t) and π(t) �R− π(s), respectively. As required, both conditions can
be tested without access to the ABox A. For example, in Condition (a) we have:

– if π(t) ∈ Ind(A), then π(s) �R π(t) does not hold and checking whether
π(t) ∈ Ind(A) requires only to check whether or not π(t) is of the form cR,i;

– if π(s) ∈ Ind(A) and π(t) /∈ Ind(A), then π(s) �R π(t) holds by the con-
struction of IK since π is a match of q in IK, and;

– if π(s) /∈ Ind(A) and π(t) /∈ Ind(A), then π(s) �R π(t) can be checked by
using only π and T based on the definition of “�R”.

It is not hard to see that the algorithm runs in polynomial time. The runtime
is quadratic in the size of q because we first have to iterate over all root con-
figurations ρ and then need to compute Sρ, essentially a breadth-first search

25

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 11

of (the graph of) q. We conjecture that iterating over all root configurations
is avoidable at the cost of a less transparent filtering procedure, improving the
runtime to linear in the size of q. The runtime also depends on T as checking
the applicability of Conditions (a) and (b) involves testing consequences of the
forms T |= ∃R � ∃S and S �∗

T R. Since it is efficient to pre-compute all these
consequences in practical cases, this amounts to a simple lookup.

The following lemma asserts correctness of the filtering procedure. It is proved
in Appendix A of the full version.

Lemma 2. Given a match π of q in IK, the filtering procedure returns “true”
iff π is not spurious.

5 Experiments

We carry out an experimental evaluation to analyze the performance of the com-
bined approach with filtering, based on the IBM DB2 relational database system.
We use a modified version of the ontology from the Lehigh University Benchmark
(LUBM) [6] and produce test ABoxes using a modified version of the LUBM data
generator. We execute five queries from the LUBM suite as well as six hand-
crafted ones that were designed to test the proposed approach more fully. Note
that LUBM was not specifically designed for evaluating OBDA with DL-LiteR
and in its original form is not too useful for this purpose, for reasons explained in
more detail below. Our modifications of the LUBM ontology, data generator, and
query set all aim at making the LUBM suite more realistic for OBDA evaluation.
We believe that this material might be interesting also for future experiments
and provide it online at http://informatik.uni-bremen.de/~clu/combined/.

5.1 Ontology, Data, and Queries

The LUBM ontology comprises 42 concept names and 25 role names and is
formulated in the description logic ELI extended with transitive roles, role hier-
archies, and datatypes. The TBox contains concept inclusions of the form A � C,
concept definitions A ≡ C as abbreviations for A � C, C � A, and domain and
range restrictions of the form ∃R � A and ∃R− � A. We converted this on-
tology to DL-LiteR by dropping all datatypes, treating the only transitive role
subOrganizationOf as a standard role, replacing concept equations A ≡ C with
A � C, and breaking up conjunctions A � C1 � C2 into A � C1, A � C2.

While the resulting TBox is formulated in DL-LiteR as required, it is only
moderately interesting for evaluating query answering techniques: first, there is
a lack of existential restrictions ∃R and ∃R.C on the right-hand side of con-
cept inclusions, which leads to extremely few fresh anonymous individuals being
generated during the ABox completion, and consequently to very few role edges
between those individuals (from now on, we call this part of the canonical model
IK the anonymous part); second, the overall size of the TBox is too small to be
representative for real-world ontologies. To attenuate these deficiencies while still

26

12 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

being able to use the LUBM data generator, we extended the DL-LiteR-version
of LUBM in two directions:

(1) We added 26 concept inclusions, many of which have existential restrictions
on the right-hand side, to generate a more interesting anonymous part of canon-
ical models. A complete list of these CIs can be found in Appendix B of the full
version of this paper.

(2) With reasonable effort, it does not seem possible to significantly increase the
size of LUBM (to hundreds or thousands of concepts) while retaining a careful
modeling. One particularly unrealistic aspect of LUBM and a striking differ-
ence to more comprehensive ontologies is its limited concept hierarchy, where
each concept has only very few subconcepts. To alleviate this shortcoming, we
added subconcepts to each of the LUBM concepts Course, Department, Professor,
and Student by introducing subject areas, such as MathCourse, BioCourse, and
CSCourse for courses, MathProfessor, BioProfessor for professors, etc.

We call the resulting TBox LUBM∃
n with n indicating the number of sub-

concepts introduced in Point 2 above (20 by default). For example, LUBM∃
20

contains 106 concept names and 27 role names.

To generate ABoxes, we use the LUBM Data Generator (UBA) version 1.7,
modified so as to complement our modifications to the TBox. Specifically, the
original UBA generates data that is complete w.r.t. existential restrictions in the
LUBM ontology: it produces ABoxes A such that for every assertion A(a) ∈ A
and CI A � ∃R (and A � ∃R.B) in LUBM∃

n, there is already an r-successor of
a in A. Our modifications introduce a controlled amount of incompleteness: the
modified data generator takes a probability p as a parameter and, in selected
parts of the data, drops generated role assertions with probability p. More infor-
mation can be found in Appendix C of the full version. The second modification
of the data generator is linked to the subconcepts introduced in Point 2 above.
Whenever the original generator produces an instance a of Student, the new
generator randomly chooses a value between 1 and n and generates an asser-
tion for the i-th subject, SubjiStudent(a); similarly for Course, Department, and
Professor.

The main aim of our experiments is to show that our approach is feasible on
realistic ontologies, data, and queries. Additionally, we also provide a prelimi-
nary comparison with the query rewriting approach, using the Requiem tool for
producing those rewritings [10]. We use 11 queries, six of which we have hand-
crafted specifically for our experiments and five originating from the evaluation
of Requiem presented in [10]. The latter queries are extremely simple and do
in most cases neither pose a serious challenge for the filtering approach nor for
pure rewriting. The former are shown in Figure 4. Note that q3 is very similar
to the query discussed in Examples 3, 4, and 7; and is designed in such a way
that spurious cycles in the anonymous part of canonical models produce spurious
matches that have to be filtered out. Query q2 is essentially the query discussed
in Example 6 and is designed to stress-test the filtering approach: based on the
data generation scheme, it is expected to produce a very large number of spurious
answers.

27

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 13

q1(x,y) <- Student(x), takesCourse(x,z), Course(z), teacherOf(y,z),

Faculty(y), worksFor(y,u), Department(u), memberOf(x,u)

q2(x,y) <- Subj3Student(x), Subj4Student(y),

takesCourse(x,z), takesCourse(y,z)

q3(x) <- Faculty(x), degreeFrom(x,y), University(y),

subOrganizationOf(z,y), Department(z), memberOf(x,z)

q4(x,y) <- Subj3Department(x), Subj4Department(y),

Professor(z), memberOf(z,x), publicationAuthor(u,z),

Professor(v), memberOf(v,y), publicationAuthor(u,v)

q5(x) <- Publication(x), publicationAuthor(x,y), Professor(y),

publicationAuthor(x,z), Student(z)

q6(x,y) <- University(x), University(y), memberOf(z,x), Student(z),

memberOf(u,y), Professor(u), advisor(z,u)

Fig. 4. Queries q1 to q6.

Universities CA CA (compl) RA RA (compl) Inds Inds (compl)
10 373K 636K 593K 1.3M 201K 201K
25 984K 1.6M 1.5M 3.6M 528K 528K
50 1.9M 3.3M 3.1M 7.2M 1M 1M
75 3M 5.1M 4.7M 10.9M 1.6M 1.6M
100 4M 6.8M 6.3M 14.6M 2.1M 2.1M
125 5M 8.5M 7.9M 18M 2.7M 2.7M
150 6M 10.1M 9.5M 21.8M 3.2M 3.2M
200 8M 13.5M 12.6M 29M 4.3M 4.3M

Fig. 5. Number of concepts, roles, and individuals in original and completed ABoxes.

5.2 Results

We report on three experiments, in each experiment varying a different param-
eter: in experiment one, we vary the size of the ABox via the number of univer-
sities generated by the data generator; in experiment two, we vary the degree
of incompleteness of the data; and in experiment three, we vary the number of
subclasses, i.e., the parameter n of the ontology LUBM∃

n. All experiments were
carried out on a Linux (3.2.0) machine with a 3.5Ghz quad-core processor and
8GB of RAM, using IBM DB2 version 9.7.5.

The size of the test data is detailed in Figure 5 and query execution times
for the first experiment are reported in Figure 7. Here we use 5% incompleteness
of the data and n = 20 subclasses in LUBM∃

n. The orange curves are for the
combined approach with filtering while the blue ones indicate the pure rewriting
approach for those cases in which Requiem succeeded generating a rewriting.
Using the combined approach with filtering, all queries were answered within
very reasonable time. To better understand the results, it is interesting to con-
sider the number of spurious and valid answers for each query shown in Figure 6
for the 200 universities experiment. Query q2, designed specifically to stress-test
the filter, as expected produces a huge number of spurious answers. Indeed, the

28

14 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

q1 q2 q3 q4 q5 q6 req1 req2 req3 req4 req5
spurious answers 2 28M 2 24K 0 0 0 22K 0 163K 0
valid answers 4.6M 0 0 0 8.3M 0 0 410K 48K 137K 0

Fig. 6. Number of answers for 200 universities, 5% incompleteness, 20 subclasses.

comparably long execution time of this query appears to be mainly due to the
fact that DB2 has to handle a large number of spurious answers before the filter-
ing takes place, and not to a poor performance of the filter itself. The execution
times of q1 and q5 can also be explained by a large number of answers. Note
that the number of filter calls is actually the sum of the numbers of answers,
both spurious and valid. Also note that, in principle, it is possible to avoid an
extremely large number of spurious answers in q2 (and any other query) at the
cost of slightly increasing the size of the canonical model: duplicate the anony-
mous part of the canonical model so that no two individuals in the original
ABox ‘share’ an anonymous part of the canonical model. Analyzing this further
in experiments is left for future work.

Experiments two and three are reported about in Figures 8 and 9. Here,
we only tested the filtering approach. In both cases, we use 100 universities.
In experiment two, the number of subclasses is fixed to 20 while in experiment
three, the degree of incompleteness is fixed to 5%. In general, the degree of
incompleteness has virtually no effect on the execution time of queries. Again,
q2 is an exception as the number of spurious answers increases dramatically
from 3M for 1% incompleteness to 125M for 20% incompleteness. The number
of subclasses also has essentially no effect on query execution times (in contrast to
the pure query rewriting approach for which a non-trivial number subclasses can
dramatically increase the size of the rewritten query). Note that the execution
time of q2 becomes shorter with an increasing number of subclasses because the
number of spurious matches decreases from 6.5M for 5 subclasses to 211K for
100 subclasses: this is due to the atoms Subj3Student and Subj4Student in q2 and
the fact that the number of assertions for these two concepts decreases as the
number of subject areas increases.

6 Conclusion

We have modified the combined approach to OBDA by replacing the query
rewriting part with a filtering technique. This step is natural from an implemen-
tation perspective and allows to circumvent an exponential blowup of the query.
Based on experiments with an improved version of the LUBM ontology, we have
demonstrated the scalability of our approach.

As future work, we plan to extend the combined approach with filtering to
other description logics for which, until now, it is unknown how to avoid an
exponential blowup. For example, we believe that polytime filtering is possible
for the extension of EL with transitive roles, as found in the OWL2 EL pro-
file. It would also be interesting to better understand the impact of modifying
the canonical model on query answering, both from a theoretical and from a

29

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 15

q1 q2 q3 q4 q5 q6 req1 req2 req3 req4 req5
50

100
150

200

0

50

100

#
of
UN

IV
sti

m
e
(s
)

Fig. 7. Query run times for varying numbers of Universities.

q1 q2 q3 q4 q5 q6 req1 req2 req3 req4 req5 02
5

10
15

20

0

200

400

in
co
m
pl
et
e
(%
)

ti
m
e
(s
)

Fig. 8. Query run times for varying incompleteness (in %).

q1 q2 q3 q4 q5 q6 req1 req2 req3 req4 req5 20
40

60
80

100

0

20

#
of
su
bc
la
ss
esti

m
e
(s
)

Fig. 9. Query run times for varying number of subclasses.

30

16 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

practical perspective. For example, we do not know whether the more natural
canonical model obtained by identifying all individuals cR,0 and cR,1 admits
polytime filtering. Moreover, as discussed above it is conceivable that versions
of the canonical model that are less economic regarding individual reuse result
in better runtime in practice.

We also plan to compare the performance of our approach more thoroughly
with the performance of pure query rewriting, using other state-of-the-art query
rewriting tools such as Quest [12], Presto [13], OWLgres [14], CLIPPER [4]. In
this context, it is interesting to note that promising new optimization techniques
have recently been developed in [11] and implemented in the Quest system.
While some of them (such as the exploitation of ABox integrity constraints) aim
specifically at the query rewriting approach, others (such as semantic indexing)
can easily be combined with the filtering approach proposed in this paper.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

2. Cal̀ı, A., Gottlob, G., Pieris, A.: New expressive languages for ontological query
answering. In: AAAI (2011)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385–429 (2007)

4. Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: AAAI (2012)

5. Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Towards practical query
answering for Horn-SHIQ. In: Description Logics (2012)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3), 158–182 (2005)

7. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: ICALP (2). pp. 263–274 (2012)

8. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: KR (2010)

9. Lutz, C., Wolter, F., Toman, D.: Conjunctive query answering in the description
logic EL using a relational database systems. In: IJCAI. pp. 2070–2075 (2009)

10. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: International Semantic Web Conference. pp. 489–504 (2009)

11. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: KR (2012)

12. Rodriguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL reasoner for ontology-
based data access. In: OWLED (2012)

13. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
KR (2010)

14. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: OWLED (2008)
15. Thomazo, M., Baget, J.F., Mugnier, M.L., Rudolph, S.: A generic querying algo-

rithm for greedy sets of existential rules. In: KR (2012)

31

Evaluation of Query Rewriting
Approaches for OWL 2

Héctor Pérez-Urbina, Edgar Rodŕıguez-Dı́az, Michael Grove,
George Konstantinidis, and Evren Sirin

Clark & Parsia, LLC
United States

{hector,edgar,mike,george,evren}@clarkparsia.com

Abstract. Query answering over ontologies is a crucial feature in con-
texts such as ontology-based data access and semantic information inte-
gration. There is considerable research interest in using query rewriting
for efficient and scalable query answering: instead of evaluating a given
query over the ontology with the (potentially very large) data directly,
one rewrites the query with respect to the relevant knowledge in the
ontology, and delegates the evaluation of the computed rewriting to a
(possibly deductive) database system where the data resides. In this pa-
per we examine the performance and scalability of producing unions of
conjunctive queries versus datalog queries as rewritings. We present an
empirical comparison between two representative approaches that con-
sider very expressive ontology languages.

1 Introduction

The use of ontologies for query answering allows for the extraction of both ex-
plicit and implicit knowledge from the underlying data. Query answering over
ontologies is a crucial problem in contexts such as ontology-based data access
[12] and semantic information integration [10].

The main query language considered in the literature is that of conjunctive
queries (which captures the core of SPARQL queries). In contrast, several on-
tology languages of various levels of expressivity have been considered. Query
answering for very expressive languages such as OWL 2 DL is known to be
intractable [7]. Fortunately, three profiles of OWL 2 with good computational
properties have been identified: QL, RL, and EL.1 In fact, query answering over
QL ontologies is known to be only as hard as evaluating SQL queries over a
relational database [3].2

Query answering in QL can be performed via query rewriting in two steps:
first, the query and the terminological part of the ontology (i.e., the schema
or TBox) are transformed into a so-called rewriting ; and then the rewriting is
evaluated over the assertional part of the ontology (i.e., the data or ABox) only.

1 http://www.w3.org/TR/owl2-profiles/
2 With respect to data complexity.

32

2

In this case, the rewriting is an expanded version of the original query in the
form of a union of conjunctive queries (UCQ). Therefore, reasoners implementing
query rewriting not only avoid keeping potentially very large ABoxes in memory,
but may delegate evaluation of the rewriting to off-the-shelf, highly optimized
RDBMSs.

Various UCQ-producing rewriting algorithms have been devised for (variants
of) QL [3, 11, 15, 5, 8]; alas, the size of the rewritings has been shown to be
exponential with respect to the size of the original query and the TBox [3]. In
practice, this means that the computed rewriting might contain hundreds or
thousands of queries, rendering it too big to evaluate efficiently (or at all) over
existing technology. In order to address this problem, alternative approaches have
been devised [16, 6] in which, instead of producing a potentially large UCQ, the
original query and the TBox are rewritten into a more succinct datalog query
(DQ). Datalog queries, however, are harder to evaluate than UCQs [1], which
suggests there is a trade-off between the size of the rewriting and the complexity
of its evaluation.

In this paper, we consider the advantages and disadvantages of producing
DQs over UCQs in terms of scalability of query answering. We begin by present-
ing the query rewriting approach in more detail in Section 2. We then present
a general overview of existing approaches (of the two kinds) in Section 3. The
main contribution of the paper is an empirical evaluation in which we compare
the (DQ-producing) approach of Eiter et al. [6] against Blackout—a highly opti-
mized version of the (UCQ-producing) approach of Pérez-Urbina et al. [11]. We
present Blackout in more detail in Section 4. The results of our evaluation are
presented in Section 5. We present our conclusions in Section 6, and discuss our
plans for future work in Section 7.

2 Query Answering via Rewriting

In this section, we introduce the notion of query rewriting informally by means of
an example; we then discuss the advantages and disadvantages of the approach,
and we finish with relevant formal definitions.

Query rewriting is a technique that can be used to solve the problem of query
answering over ontologies—that is, given a conjunctive query and an ontology,
composed of a TBox and an ABox, compute the set of certain answers of the
query with respect to the ontology. The main idea behind query rewriting is to
transform the given query and TBox into an expanded query that can be later
evaluated over the ABox only. Intuitively, the expanded query contains all the
relevant information captured in the TBox, making the latter unnecessary for
query evaluation.

Example 1. Suppose we have an ontology O = 〈T ,A〉 that talks about universi-
ties, students, professors, and so on. The TBox T contains the following axioms

33

Evaluation of Query Rewriting Approaches for OWL 2 3

(shown in Manchester syntax3):

Class: Teacher SubClassOf: teaches some Thing (1)

Class: Professor SubClassOf: Teacher (2)

ObjectProperty: hasTutor Range: Professor (3)

where axiom (1) states that teachers teach at least someone, axiom (2) states
that professors are teachers, and axiom (3) states that all tutors are professors.

Suppose that we want to retrieve the list of individuals who teach according
to O using the query Q (shown in datalog syntax [1]):

Q(x)← teaches(x, y) (4)

Before considering the data in A, we can rewrite the query with respect to
the TBox—that is, expand Q with the relevant knowledge in T . According to
the meaning of axioms (1)–(3), we conclude that all teachers, professors, and
tutors teach; therefore, we expand Q with:

Q(x)← Teacher(x) (5)

Q(x)← Professor(x) (6)

Q(y)← hasTutor(x, y) (7)

We can now evaluate the resulting union of queries (4)–(7) over A without
further consideration of T .

The query rewriting approach has important advantages over the ‘direct’
query answering approach implemented in reasoners like Pellet,4 HermiT,5 or
FaCT++.6 Since the query and the TBox only are considered, reasoners imple-
menting query rewriting need not maintain potentially large ABoxes in memory,
a crucial feature for some applications in terms of scalability. Once the query
has been rewritten, its evaluation can be delegated to existing highly optimized
(deductive) database systems. Moreover, as the rewriting is independent from
the ABox, one does not need to recompute it every time the data changes, but
only when the TBox does. This is important in many application domains where
data tends to change much more often than the schema.

The specification of OWL 2 includes the definition of various fragments or
profiles that have been tailored with specific use cases in mind. In particular, the
QL profile was designed so as to benefit from the advantages of query rewriting,
both in terms of scalability and performance. It has been shown that queries
posed over OWL 2 QL TBoxes can be rewritten into unions of conjunctive queries
(UCQs) [3]. Producing UCQs is particularly desirable as their evaluation can be
delegated to RDBMSs [12].

3 http://www.w3.org/TR/owl2-manchester-syntax/
4 http://clarkparsia.com/pellet/
5 http://hermit-reasoner.com/
6 http://owl.man.ac.uk/factplusplus/

34

4

Query rewriting is, alas, not a silver bullet. Depending of the nature of the
expanded query, it might turn out to be too big and/or complex to evaluate effi-
ciently (or at all). In particular, for instance, the size of a UCQ computed from
a query and an OWL 2 QL TBox has been shown to be worst-case exponential
(with respect to the size of the inputs) [3]. This means that we might compute
a UCQ containing hundreds or thousands of queries, which would compromise
the feasibility of its evaluation. Regarding complexity, once we consider more
expressive fragments of OWL than QL, the resulting expanded query may not
longer be a UCQ. Depending on how far we go with respect to ontology expres-
sivity, we might need to produce recursive or even disjunctive datalog queries in
order to ensure the soundness and completeness of the results. As one might ex-
pect, these types of query are harder to evaluate than UCQs. In such cases, one
needs a more sophisticated machinery, such as that implemented in a deductive
database system, for query evaluation.

An alternative approach to query rewriting is a technique based on forward
chaining [4], known as materialization. This approach consists of expanding the
ABox, instead of the query, with respect to the TBox, to effectively make all the
implicit knowledge explicit. This approach might be preferable to query rewrit-
ing in cases where there are no changes to the ontology; queries may be executed
as they are, without the need to rewrite them into potentially larger, more dif-
ficult to answer ones. Materialization, however, has significant drawbacks when
changes to the data are frequent. This is due to the fact that materialized in-
ferences need to be maintained in order for query answering to remain sound
and complete. Thus, materialization may not be efficient in domains where data
changes frequently. In contrast, query rewritings are independent of the ABox;
therefore, one does not need to recompute them every time the data changes,
but only when the TBox does. Materialization may also not be feasible as the ex-
panded ABox might be prohibitively large. In contrast, query rewriting requires
no modifications to the ABox.

Other alternatives include hybrid approaches where both the query and the
ABox are expanded with respect to the TBox. The objective of these approaches
is to avoid the potential exponential explosion in the size of the expanded query
by using certain types of axiom to expand the ABox, while still retaining a
manageable size. Unfortunately, similarly to materialization, these approaches
might not be very efficient in scenarios where the data changes frequently.

We finish this section by giving a formal definition of the various notions de-
scribed thus far. We use the well-known notions of constants, variables, function
symbols, terms, and atoms of first-order logic [4].

Definition 1. A Horn clause is an expression of the form H ← B1 ∧ · · · ∧Bm,
where H is a possibly empty atom and {Bi} is a set of atoms. The atom H is
called the head and the set {Bi} is called the body. A Horn clause C is safe if
all variables occurring in the head also occur in the body.

A datalog program P is a set of function-free, safe Horn clauses. The ex-
tensional database (EDB) predicates of P are those that do not occur in the
head atom of any Horn clause in P ; all other predicates are called intensional

35

Evaluation of Query Rewriting Approaches for OWL 2 5

database (IDB) predicates. A datalog query (DQ) Q is a tuple 〈QP , P 〉, where
QP is a query predicate and P is a datalog program. Q = 〈QP , P 〉 is a union of
conjunctive queries (UCQ) if QP is the only IDB predicate in P and the body of
each clause in P does not contain QP , and Q is a conjunctive query (CQ) if it
is a union of conjunctive queries and P contains exactly one Horn clause.

An ontology O is a tuple 〈T ,A〉, where T is the terminological box or TBox,
and A is the assertional box or ABox [2]. A tuple of constants ~a is an answer
of a datalog query Q = 〈QP , P 〉 on an ontology O = 〈T ,A〉 if and only if
O ∪ P |= QP (~a), where P is considered to be a set of universally quantified
implications with the usual first-order semantics; the set of all answers of Q on
O is denoted by ans(Q,O).

Given a conjunctive query Q and a TBox T , a datalog query QT is said to
be a rewriting of Q w.r.t. T if and only if ans(Q, T ∪ A) = ans(QT ,A) for every
A.

3 State of the Art

The success of query rewriting depends on algorithms that produce manage-
able rewritings, both in terms of size and complexity. Since the seminal work
of Calvanese et al. on DL-Lite—the Description Logic that provides the logi-
cal underpinning for OWL 2 QL—many rewriting algorithms aimed at efficient
query answering via query rewriting have been proposed, most of which have
been implemented in prototypes or commercial systems.

We limit ourselves to approaches implementing query rewriting as defined
in Definition 1; that is, approaches where only the query gets expanded and
the ABox is considered to be independent. Materialization-based and hybrid
approaches—such as those by Kontchakov et al. [9], and Rodŕıguez-Muro and
Calvanese [14]—are out of the scope of this paper.

Table 1. Overview of existing rewriting algorithms

DL-Lite Beyond DL-Lite

UCQ PerfectRef Nyaya (Datalog±)
Requiem
Prexto
Rapid
Nyaya

DQ Presto Requiem (ELHIO¬)
Clipper Clipper (Horn-SHIQ)

Notable approaches include that of Calvanese et al. (PerfectRef) [3], Pérez-
Urbina et al. (Requiem) [11], Chortaras et al. (Rapid) [5], Rosati and Almatelli

36

6

(Presto) [16], Rosati (Prexto) [15], Gottlob et al. (Nyaya) [8], and Eiter et al.
(Clipper) [6]. In Table 1 these approaches are classified by the type of rewrit-
ings they produce (either UCQ or DQ) and by the Description Logic (DL) they
support. Unsurprisingly, most approaches have been proposed for DL-Lite; how-
ever, note that there are a few algorithms that support DL-Lite as well as more
expressive logics (shown in parentheses). Among the approaches that go beyond
DL-Lite, Requiem is the only one that produces UCQs for DL-Lite and DQs for
more expressive logics. In fact, Requiem will only produce DQs when the rewrit-
ing has to be recursive in order to ensure correct results; therefore, in many cases
Requiem will produce UCQs even for logics more expressive than DL-Lite.

Most of the papers cited previously include an empirical evaluation of the
approach with respect to others. We have summarized these results in Table 2,
which shows the comparison of the approaches with respect to the rewritings size
(number of clauses), their structural complexity, the time it takes to compute
them, and the time it takes to evaluate them over some ABox.

Table 2. Comparison of existing rewriting algorithms

Size [Clipper ≈ Presto], Prexto <
[PerfectRef = Requiem = Rapid = Nyaya]

Complexity [PerfectRef ≈ Requiem ≈ Prexto ≈ Rapid ≈ Nyaya] <
[Clipper ≈ Presto]

Time Rapid, Nyaya, [Clipper ≈ Presto] < Requiem < PerfectRef

Eval time [Requiem ≈ Clipper ≈ Presto] < PerfectRef

Note 1. All these comparison were made over DL-Lite ontologies. The relationship
between approaches separated with commas is not discussed in the literature.

The approaches that produce DQs (see Table 1) produce smaller rewritings
than their UCQ-producing counterparts, with the exception of Prexto. This is
due to the fact that UCQs are larger than semantically equivalent (non UCQ)
DQs (conjunctive normal form versus disjunctive normal form). Prexto stands
apart because, unlike other UCQ-producing approaches, it implements an op-
timization that considers the ABox to reduce the size of the rewritings. Re-
garding complexity, we see that UCQ-producing approaches do better than DQ-
producing ones. With respect to time, as it is related to size, it is not surprising
that producing DQs is faster than producing UCQs; it is important to mention,
however, that among those algorithms that produce UCQs, some approaches are
much more efficient than others (hours versus seconds). Finally, with respect to
evaluation time, we see that Presto outperforms PerfectRef, and, interestingly,
that Requiem, Clipper, and Presto perform similarly, in spite of the fact that
Requiem’s rewritings are larger.

37

Evaluation of Query Rewriting Approaches for OWL 2 7

The comparison between Requiem, Clipper, and Presto regarding evaluation
times was carried out by evaluating the computed rewritings of each system using
DLV.7 Using such a system was necessary as both Presto and Clipper require a
deductive database of this type for query evaluation even for DL-Lite ontologies;
note, however, that Requiem produces UCQs in this scenario. Therefore, these
results suggest that evaluating semantically equivalent UCQs and DQs in DLV
takes approximately the same time, so there is no substantial gain in evaluation
time by producing (smaller but more complex) DQs versus UCQs. It would be
interesting to see, however, whether UCQs can be evaluated more efficiently in
an RDBMS or an RDF database.

Another important aspect to consider is the time it takes to compute the
rewritings. According to Table 2, both Clipper and Presto outperform Requiem
with respect to this metric (in fact, Requiem is outperformed by every algorithm
except PerfectRef). It would be interesting to see whether Requiem can be made
faster by enhancing it with the various optimization techniques used in the other,
more efficient approaches.

In order to address these two questions, we present an empirical evaluation
of Clipper and Blackout—an optimized version of Requiem—in Section 5. We
chose these two approaches as they are the ones that support the most expres-
sive logic within their respective rewriting type (UCQ vs DQ) categories. The
optimizations implemented in Blackout are described in Section 4.

4 Blackout Optimizations

In this section we describe Blackout, a highly optimized version of Requiem.
Blackout is part of the state-of-the-art triplestore Stardog.8 Besides careful soft-
ware engineering for efficiency, Blackout improves Requiem with two core opti-
mizations.

First, Blackout implements an eager query containment optimization, as op-
posed to Requiem’s lazy approach that computes query containment as the last
step. As observed in most of the papers referenced in Section 3, this is one of
Requiem’s major drawbacks as the final containment step could take a very
long time. Eager containment prunes redundant queries earlier in the rewriting
process; thus, it prevents additional rewritings from being generated from these
redundant queries, which themselves would be redundant. Even though this does
not ultimately change the number of rewritings, it does significantly minimize
the time spent on query containment checks. Thus, Blackout does not waste time
generating redundant queries that will eventually be pruned, and it reduces the
total number of containment checks performed.

Second, Blackout implements an optimization technique known as data ora-
cle. This optimization is related to the so-called extensional constraints technique
presented in [13]. If a derived query contains an atom which is empty with respect
to a given ABox, the query is discarded as it would obviously produce empty

7 http://www.dlvsystem.com/
8 http://stardog.com/

38

8

results when evaluated. For instance, consider the rewriting obtained in Example
1, if we knew via the data oracle that the class Professor had no instances in A,
then there would be no need to include query (6) in the final rewriting.

The effectiveness of this optimization lies in the fact that even when a TBox
might contain a large number of classes and properties, the assertions in the
ABox typically use a much smaller number of classes and properties. This is
frequently the case for deep class hierarchies where asserted types use leaf classes
of the hierarchy, instead of more general classes higher in the hierarchy. For this
reason, querying for a generic class might produce many rewritings because of
the class hierarchy, but we might not need to execute all of those rewritings
depending on the specific ABox at hand.

In Section 2 we pointed out that one advantage of the query rewriting ap-
proach is that it is independent of the ABox, whereas clearly the data oracle
optimization introduces a dependency. This dependency, however, is a very weak
one and requires the data oracle to only check the existence of an atom, a class
or a property, in the data. Stardog, like other RDF databases, maintains special
index structures that make this very efficient. Therefore, the query rewriting
component can still be loosely-coupled from the storage system and does not
need to maintain special in-memory data structures for this optimization. More-
over, as will be discussed further, the data oracle implementation can be crucial
to the success of query rewriting in practice.

5 Evaluation

In this section we present an empirical evaluation of Clipper and Blackout. Our
evaluation is based on the LUBM benchmark—a well-known standard that pro-
vides customizable data generation capabilities.9 We first examined the perfor-
mance of the two approaches with respect to size/complexity of the rewritings,
including the time it took to compute them; and then, we looked into how these
rewritings perform when evaluated.

All experiments were performed on Ubuntu 3.0.0 with a 3.2Ghz AMD Phe-
nom processor, 8GB of RAM running Java 1.6.033 with 8GB allocated to the
JVM for each run. We recorded the average of 10 runs after 5 warmups for each
experiment.

5.1 Computing Rewritings

The first part of the evaluation consisted of rewriting the 14 LUBM queries with
respect to three TBoxes: TQL, TRL, and TEL, which correspond to QL, RL, and
EL versions of the LUBM TBox, respectively. Table 3 summarizes our results.
On the left-hand-side, we show the time in milliseconds that each system took
to produce the rewritings for the 14 queries, whereas on the right-hand-side we
show the number of clauses that each system produced overall.

9 http://swat.cse.lehigh.edu/projects/lubm/

39

Evaluation of Query Rewriting Approaches for OWL 2 9

Table 3. Computation of Rewritings

Time (ms) Size (clauses)
TQL TRL TEL TQL TRL TEL

Clipper 8.4 4.3 14.0 145 138 866
Blackout 25.0 21.0 108.8 20 21 102

As can be seen, Blackout is generally slower than Clipper, but it produces
smaller rewritings. We believe the rewritings with few clauses produced by Black-
out are the result of the data oracle optimization. In order to verify the benefits
of this optimization, we ran Blackout without it and obtained 66 clauses for TQL,
65 clauses for TRL, and 253 clauses for TEL. The most significant gain was in
query 5 over TEL, in which Blackout produced a rewriting containing 51 clauses,
whereas Blackout with no data oracle produced 117. These results suggest that
the data oracle optimization, when applicable, may have a big impact.

As can be seen in Table 4, Clipper produced DQs exclusively for all the
queries and profiles, whereas Blackout produced UCQs most of the time, even
for RL and EL. These results suggest that it is not always necessary to produce
DQs as rewritings even for RL or EL ontologies. The type of the rewriting
impacts evaluation time as UCQs are structurally less complex than DQs, and
might be easier to evaluate, depending on their size.

Table 4. Rewritings Type

TQL TRL TEL

Clipper DQ (100%) DQ (100%) DQ (100%)
Blackout UCQ (100%) UCQ (86%) UCQ (79%)

5.2 Evaluating Rewritings

The second part of our evaluation consisted of evaluating the rewritings produced
by the two approaches. We used DLV—a state-of-the-art deductive database sys-
tem (datalog engine) maintained by DLVSYSTEM s.r.l.—to evaluate Clipper
and Blackout rewritings, and we used Stardog to evaluate Blackout rewritings
only.10 We considered four ABoxes of increasing size: A1, A10, A100, and A1000,
which contain approximately 138K, 1.38M, 13.8M, and 138M triples, respec-
tively.11

10 Note that Stardog cannot presently evaluate DQs.
11 Since the current implementation of Clipper does not support data property asser-

tions, we ignored this type of assertion in our tests.

40

10

Tables 5 and 6 summarize our results. Table 5 shows the time in milliseconds
that it took DLV to evaluate the rewritings produced by Clipper and Blackout
over the various ABoxes.

Table 5. DLV Evaluation Performance (ms)

Clipper Blackout
TQL TRL TEL TQL TRL TEL

A1 23.3 19.9 24.0 15.2 15.5 17.4
A10 20.8 28.3 30.2 16.3 18.5 15.6
A100 - - - - - -
A1000 - - - - - -

As can be seen, DLV was able to execute Blackout rewritings faster than those
of Clipper, which is not surprising as the former are smaller and less complex than
the latter. Unfortunately, DLV was unable to execute the rewritings over A100

and A1000 due to lack of memory since it maintains all the clauses in memory.
Clearly, in order to be able to evaluate rewritings and queries in general over
large ABoxes, we would need a system that makes use of secondary storage.

Table 6. Stardog Evaluation Performance (ms)

TQL TRL TEL

A1 1.3 1.0 0.9
A10 13.8 14.4 14.1
A100 133.5 137.2 133.2
A1000 334.0 1036.0 69558.0

Table 6 shows the time in milliseconds that it took Stardog to evaluate the
rewritings produced by Blackout over the various ABoxes. Stardog allows the
creation of in-memory and disk databases. The experiments over A1, A10, and
A100 were carried out using in-memory databases, whereas those over A1000

were performed over a disk database. As can be seen, Stardog outperformed
DLV both with respect to Clipper and Blackout rewritings regarding A1 and
A10. Moreover, it was able to scale to A100 and A1000.

5.3 Computation and Evaluation

In this section we summarize the results from previous sections with respect
to Blackout and Stardog. Table 7 shows the overall performance of Stardog in

41

Evaluation of Query Rewriting Approaches for OWL 2 11

milliseconds counting the time it took Blackout to compute the rewritings and
the time it took Stardog to evaluate them. It also shows the percentage of time
that was spent on evaluating the produced rewritings.

Table 7. Blackout/Stardog Overall Performance

TQL TRL TEL

Eval Total (ms) Eval Total (ms) Eval Total (ms)

A1 4.94% 26.3 4.54% 22.0 0.82% 109.7
A10 35.57% 38.8 40.64% 35.4 11.48% 122.9
A100 84.23% 158.5 86.71% 158.2 55.05% 242.0
A1000 93.04% 359.0 98.01% 1057.0 99.84% 69666.8

Our results show that the larger the ABox, the longer time is spent on evalu-
ating the rewritings. Therefore, we believe it is important to produce the simplest
and smallest rewritings possible, even if this means spending a bit more time on
the rewriting phase.

6 Conclusions

In this section we present a summary of our results.
DQ-producing approaches, such as Clipper, do not necessarily produce smaller

rewritings than UCQ-producing approaches as formerly thought. Taking into
consideration the underlying data might result in optimizations, such as the
data oracle optimization, that can significantly reduce the size of the produced
UCQs. This type of optimization should apply to DQs as well; it would be in-
teresting to see to what extent it does and the impact it has.

It is not necessary to produce DQs for RL and EL in many cases. This is
important as users can benefit from several of the languages features that are
not included in QL without needing a datalog engine for query evaluation. As
shown in this paper, the size of UCQs can be reduced and, importantly, UCQs
are amenable to straightforward parallel evaluation. Therefore, we believe that
one should only have to deal with DQs, and datalog engines, when necessary.

Evaluating the rewritings dominates the overall query answering time at large
scales. Therefore, even though it may not be beneficial at small scales, it is worth
investing time on optimizing the computation of rewritings in order to produce
smaller and simpler rewritings that can be evaluated more efficiently.

7 Future Work

We are currently working on adding datalog evaluation to Stardog so that it can
correctly evaluate Blackout rewritings even when they are DQs. Our ongoing

42

12

implementation is based on the well-known algorithm Query-SubQuery [1]. Once
it is ready, it will be interesting to compare its performance with that of DLV
and other state-of-the-art datalog engines (e.g., IRIS12).

Additionally, we plan to work on the parallelization of UCQ evaluation within
Stardog. Currently, Stardog executes the results of the query rewriting as a single
query; it takes the UCQ produced by Blackout and creates a single query by
unioning each of the queries. However, the queries composing the UCQ tend
to be relatively small, simple, and easy to evaluate. Crucially, they are also
independent: the results of one conjunct are not needed to produce the results
of another. This lends itself very nicely to evaluation of each query in parallel,
which can be done by taking advantage of existing architecture within Stardog.

We are also working on the implementation of SPARQL 1.1 with Stardog.
There are new features in SPARQL 1.1 such as sub-queries and property paths
that have an interesting overlap with features provided, or planned, within Star-
dog and Blackout. First, we will explore what the performance implications are
for rewriting sub-queries in SPARQL 1.1, and if there are advantages the QSQ
approach can provide during evaluation, or even if rewriting sub-queries is a
feasible design. Additionally, with some OWL language features, such as tran-
sitivity, now available in SPARQL, we will determine whether Blackout can be
used to handle queries utilizing these features.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. F. Baader and W. Nutt. Basic Description Logics, chapter 2, pages 47–100. Cam-
bridge University Press, 2003.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. Journal of Automated Reasoning, 9:385–429, 2007.

4. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, Inc., Orlando, FL, USA, 1997.

5. A. Chortaras, D. Trivela, and G. B. Stamou. Optimized Query Rewriting for OWL
2 QL. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE, volume 6803
of Lecture Notes in Computer Science, pages 192–206. Springer, 2011.

6. T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, and G. Xiao. Towards Practical Query
Answering for Horn-SHIQ. In Y. Kazakov, D. Lembo, and F. Wolter, editors,
Description Logics, volume 846 of CEUR Workshop Proceedings. CEUR-WS.org,
2012.

7. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive Query Answering for
the Description Logic SHIQ. CoRR, abs/1111.0049, 2011.

8. G. Gottlob, G. Orsi, and A. Pieris. Ontological Queries: Rewriting and Optimiza-
tion. In S. Abiteboul, K. Böhm, C. Koch, and K.-L. Tan, editors, ICDE, pages
2–13. IEEE Computer Society, 2011.

12 http://www.iris-reasoner.org/

43

Evaluation of Query Rewriting Approaches for OWL 2 13

9. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The com-
bined approach to query answering in dl-lite. In F. Lin and U. Sattler, editors,
Proceedings of the 12th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR2010). AAAI Press, 2010.

10. M. Lenzerini. Data Integration: a theoretical perspective. In PODS ’02: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 233–246, New York, NY, USA, 2002. ACM Press.

11. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable Query Answering and
Rewriting under Description Logic Constraints. J. Applied Logic, 8(2):186–209,
2010.

12. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking Data to Ontologies. J. on Data Semantics, X:133–173, 2008.

13. M. Rodriguez-Muro and D. Calvanese. Dependencies: Making Ontology Based
Data Access Work. In P. Barceló and V. Tannen, editors, AMW, volume 749 of
CEUR Workshop Proceedings. CEUR-WS.org, 2011.

14. M. Rodriguez-Muro and D. Calvanese. High performance query answering over
dl-lite ontologies. In G. Brewka, T. Eiter, and S. A. McIlraith, editors, KR. AAAI
Press, 2012.

15. R. Rosati. Prexto: Query Rewriting under Extensional Constraints in DL-Lite. In
E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and V. Presutti, editors, ESWC,
volume 7295 of Lecture Notes in Computer Science, pages 360–374. Springer, 2012.

16. R. Rosati and A. Almatelli. Improving Query Answering over DL-Lite Ontologies.
In F. Lin, U. Sattler, and M. Truszczynski, editors, KR. AAAI Press, 2010.

44

Triangle Finding: How Graph Theory can Help

the Semantic Web

Edward Jimenez, Eric L. Goodman

Sandia National Laboratories, Albuquerque, NM, USA
{esjimen,elgoodm}@sandia.gov

Abstract. RDF data can be thought of as a graph where the subject
and objects are vertices and the predicates joining them are edge at-
tributes. Despite decades of research in graph theory, very little of this
work has been applied to RDF data sets and it has been largely ignored
by the Semantic Web research community. We present a case study of
triangle finding, where existing algorithms from graph theory provide
excellent complexity bounds, growing at a significantly slower rate than
algorithms used within existing RDF triple stores. In order to scale to
large volumes of data, the Semantic Web community should look to the
many existing graph algorithms.

1 Introduction

The Semantic Web continues to evolve and grow with data sizes becoming in-
creasingly large and unwieldy. As such, we need to utilize the most efficient and
effective algorithms in order to scale to meet the growing data requirements. We
believe that the graph theory body of research has much to offer in terms of
formal analysis and understanding of the Semantic Web. Also, graph theory has
much to offer in terms of efficient algorithms that can be employed for the Se-
mantic Web. In particular we examine triangle finding. For several decades there
have been algorithms for finding triangles that have a temporal complexity of
O(m3/2) where m is the number of edges [5]. As such, we believe it incumbent of
any SPARQL engine to use these methods whenever a triangle appears as part
of a query.

In Section 2 we introduce formally the notion of triangle finding and the as-
sociated notation. In Section 3 we discuss the frequency of triangles in SPARQL
query benchmarks. In Section 4 we discuss how SPARQL can be used to find all
the triangles in a graph. We then outline the particular triangle finding algorithm
we employ in Section 5 that is O(m3/2). Section 6 compares experimentally the
triangle finding method we employ against Jena1 and Sesame2, two common
open-source RDF/SPARQL engines. Section 7 outlines related work. We then
conclude in Section 8.

1 jena.apache.org
2 www.openrdf.org

45

2 Edward Jimenez, Eric L. Goodman

2 Formalisms

RDF data can be modeled as a graph, G = (V,E) where V is a set of vertices
and E is a set of edges connecting the vertices v ∈ V . We use n to refer to
the number of vertices, |V |, and m as the number of edges, |E|. For RDF, the
subjects and objects are vertices in V . The predicates can be thought of as
attributes associated with each edge. We enumerate the vertices so that each
has a unique id in [1, n]. Also, we enumerate the edges of G to be in [1,m]. The
notation ei refers to the ith edge under the enumeration. Since RDF is described
directionally, i.e. there is a subject uni-directionally related to an object, edges
in the graph are also directed. We will use source(ei) to refer to the source
or subject of the edge. target(ei) refers to the target or object of the edge.
We call two vertices v1, v2 ∈ V adjacent if there is an edge e ∈ E where
(source(e) = v1 ∧ target(e) = v2) ∨ (source(e) = v2 ∧ target(e) = v1). We use
δ(vi) to denote the total degree, both incoming and outgoing, of a vertex. Below
we formally define the notion of a triangle.

Definition 1. A triangle in a graph G is a set of three edges, ei, ej, ek ∈ E such
that the set of vertices v̂ = {v|v = source(ei)∨ target(ei)∨ v = source(ej)∨ v =
target(ej) ∨ v = source(ek) ∨ v = target(ek)} have the following properties:

1. |v̂| = 3
2. All v ∈ v̂ are adjacent to one another.

We also refer to triads, which we define as pair of edges with a common vertex.
It is also useful to define the notion of triangle equality.

Definition 2. Two triangles are considered equal if their edge sets are the same.

While triangle equality may seem obvious, it is important point to consider
when generating result sets via SPARQL. Without care, duplicate triangles can
be generated that are not prunable with the DISTINCT keyword. Duplicate trian-
gles can be produced that differ in the order in which the nodes and edge labels
are presented (i.e. to which variables they are bound), and thus DISTINCT will
have no effect on these duplicates. More of this will be discussed in Section 4.

3 Applicability to Current Benchmarks

An obvious question when optimizing for triangles in SPARQL queries is how
often triangles occur in practice. We examine two popular benchmarks, LUBM
[11] and SP2Bench [15]. Two out of the 14 queries in LUBM have triangles in
them, namely queries 2 and 9. For brevity and to emphasize the triangle portion
of the queries, we omit the prefixes and the type constraints on each of the
variables.

46

Triangle Finding 3

Query 2

SELECT ?X, ?Y, ?Z WHERE
{?X ub:memberOf ?Z .
?Z ub:subOrganizationOf ?Y .
?X ub:undergraduateDegreeFrom ?Y}

Query 9

SELECT ?X, ?Y, ?Z WHERE
{?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z}

These two queries are also some of the more complicated and time inten-
sive ones as reported by various vendors and researchers (e.g. AllegroGraph3

OWLIM4), pointing to the need for efficient processing.
SP2Bench does not have any queries with triangles in them, but there are

several queries that with a natual extension of one more constaint form a triangle.
For example, Query 4 requests all distinct pairs of article author names for
authors that have published in the same journal. A natural extension is to define
a constraint between the two authors, either directly, forming a triangle, or
to another common vertex. The latter case forms what is called a quadrangle,
and the algorithmic approach is similar and has the same complexity as finding
triangles [5]. In conclusion, there appears to be a small but significant portion
of queries that contain triangle structures within them.

4 Finding Triangles with SPARQL

Expressing a SPARQL query to find all triangles in a graph is surprisingly con-
voluted. Figure 1 is a query that finds all unique triangles in an RDF graph, but
perhaps more importantly it finds the triangles with no duplication, meaning
that no two solution triangles in the result set are equal. We will refer to this
query as the Triangle-finding SPARQL query. Note that this query only works on
data involving only IRIs as the subjects and objects. According to the standard
the STR function is not defined for blank nodes and the function also removes
typing and language modifiers on literals which may cause the comparison filter
to be incorrect.

Before we discuss how this query finds the triangles without duplication, we
must first discuss two concepts, that of graph isomorphism and graph automor-
phism. Two graphs G and H are isomorphic if there is a bijection, f , mapping
the vertex sets of G and H such that two vertices vi and vj are adjacent in G
if and only if f(vi) and f(vj) are also adjacent in H. A graph automorphism is

3 http://www.franz.com/agraph/allegrograph/agraph_bench_lubm.lhtml
4 http://www.ontotext.com/owlim/benchmark-results/lubm

47

4 Edward Jimenez, Eric L. Goodman

SELECT ?X ?Y ?Z
WHERE {
{ ?X ?a ?Y .
?Y ?b ?Z .
?Z ?c ?X
FILTER (STR(?X) < STR(?Y))
FILTER (STR(?Y) < STR(?Z))

}
UNION
{
?X ?a ?Y .
?Y ?b ?Z .
?Z ?c ?X
FILTER (STR(?Y) > STR(?Z))
FILTER (STR(?Z) > STR(?X))

}
UNION
{
?X ?a ?Y .
?Y ?b ?Z .
?X ?c ?Z

}
}

Fig. 1. The above query finds all unique triangles and each is represented once in the
result set.

when there is a isomorphism of a graph G onto itself, and generally we will be
concerned with non-identity mappings.

The reason this is important can be understood from the query below:

SELECT ?X ?Y ?Z
WHERE {
{ ?X ?a ?Y .
?Y ?b ?Z .
?Z ?c ?X }

For this query, every triangle found will appear three times. For instance, a
triangle with solution �s1, s2, s3� will also appear as �s2, s3, s1� and �s3, s1, s2�.
The reason for this is that each of the vertices s1, s2, and s3 each bind to each
of the three variables ?X, ?Y, and ?Z under different circumstances. All three
solutions satisfy the query, but each solution is the same triangle. DISTINCT
does not help because the bindings are different for each duplicate solution. The
problem arises because the query graph represented above is automorphic. Each
non-trivial automorphism is a mapping to translate from one solution to another
solution using the same set of edges.

Thus we arrive at the convoluted nature of the query in Figure 1. When
constructing the SPARQL query, we need to account for all possible triangles

48

Triangle Finding 5

but not generate duplicates. There are eight types of triangles, shown in Figure
2. However, all eight of these types can be collapsed down to the three unioned
clauses in Figure 1. We present this formally as a proof.

Fig. 2. The eight possible triangle patterns.

Theorem 1. The Triangle-finding SPARQL query finds all triangles in the
queried graph and each solution is unique.

Proof. First consider that triangle type iii is isomorphic to types iv through
viii. The below table outlines the functions needed to show the isomorphisms.
As they are isomorphic, type iii is sufficient to represent all the other types iv -
viii. Also, type iii is not automorphic, and thus will not produce any duplicate
triangles. Finally, the solutions resulting from iii are disjoint from i and ii as
there is not mapping from iii to either i or ii. Thus we can deal with the solution
sets separately.

Mapping ?X ?Y ?Z
iii to ...

iv ?X ?Z ?Y
v ?Y ?X ?Z
vi ?Z ?Y ?X
vii ?Z ?X ?Y
vii ?Y ?Z ?X

49

6 Edward Jimenez, Eric L. Goodman

Concerning types i and ii, they are isomorphic under the mapping f(?X) =
?Z, f(?Y) =?Y , and f(?Z) =?X. Thus, we need only include one of the patterns
in the query. We arbitrarily select type i. However, type i is automorphic (as is
ii), and we must concoct a way of avoiding duplicate triples with the available
SPARQL language features. We solve the issue by enforcing an ordering on the
bindings. The first clause of the Triangle-finding SPARQL query enforces that
the string representation of the bindings must obey ?X <?Y <?Z under an
alphanumeric ordering. The second clause enforces ?Y >?Z >?X. It remains to
show that these two orderings will find all triangles of type i without duplication.
The table below outlines all possible relations between the variables assuming
no self loops.

?X ? ?Y ?Y ? ?Z ?Z ? ?X
< < < Empty since ?X <?Y ∧?Y <?Z =⇒ ?X <?Z,

contradicting the third constraint.
< < > Fulfilled directly by first clause
< > < Use automorphism f(?X) =?Y, f(?Y) =?Z, f(?Z) =?X.

Fulfilled by first clause.
< > > Fulfilled directly by second clause.
> < < Use automorphism f(?X) =?Z, f(?Y) =?X, f(?Z) =?Y .

Fulfilled by first clause.
> < > Use automorphism f(?X?) =?Z, f(?Y) =?X, f(?Z) =?Y).

Fulfilled by second clause.
> > < Use automorphism f(?X) =?Y, f(?Y) =?Z, f(?Z) =?X.

Fulfilled by second clause.
> > > Empty since ?X >?Y ∧?Y >?Z =⇒ ?X >?Z,

contradicting the third constraint.

Two of the possibilities are invalid because the constraints are contradictory.
Another two possibilities directly match the first two clauses of the triangle-
finding query. The remaining four cases match the two clauses through an au-
tomorphism. Thus, we may conclude that the Triangle-finding SPARQL query
does in fact find all triangles in the graph with no duplicates. ��

5 An O(m
3/2

) Triangle Finding Algorithm

There are many triangle finding algorithms that are O(m3/2). For the experi-
ments we employ an algorithm presented by Cohen [6]. This algorithm has the
benefit of already being described in a parallel fashion in terms of mappers and
reduces of the MapReduce paradigm [8]. Also, there is a version implemented in
the MultiThreaded Graph Library5 (MTGL) [2]. However, a formal complexity
analysis was not outlined in [6], so we perform that here.

5 https://software.sandia.gov/trac/mtgl

50

Triangle Finding 7

Cohen’s algorithm operates on what he calls a simplified graph. Namely, a
graph in which self-loops are eliminated, directionality is ignored, and there are
no duplicate edges. In our later experiments we do not allow self-loops, but we
account for directionality and do allow duplicate edges. This is due to the fact
that RDF is directional and multiple edges can be defined between vertices with
different edge types (predicate types). We do not want to collapse all of these
edge types down into one edge. We do not formally account for these different
assumptions in our analysis.

Theorem 2. Given a simplified graph G, Cohen’s triangle finding algorithm is
O(m3/2).

Proof. We assume the worst case, that G is completely connected. Relating m
to n, we have

m =
n−1�

i=1

i =
(n− 1)(n)

2
(1)

Cohen’s algorithm is composed of two MapReduce phases. The input to the
first map is a list of edges. Each edge has been previously been augmented with
the degree of each vertex. If one were to include this preprocessing step in the
overall complexity, it is O(m) which is also in O(m3/2).

Map 1 Map each edge to its low-degree vertex. According to our assumptions,
δ(vx) = δ(vy) ∀x, y ≤ n. Cohen suggests a tie-breaker based on vertex ordering;
we’ll use v1 < v2 < · · · < vn. Below is the composition of the bins. Since
directionality is ignored, we’ll use a canonical representation of each edge, �vi, vj�,
such that i < j.

Bin 1 Bin 2 · · · Bin n− 1
�v1, v2� �v2, v3� · · · �vn − 1, vn�
�v1, v3� �v2, v4�

...
...

... �v2, vn�
�v1, vn�

Thus, for m edges, perform m mappings; hence, O(m).

Reduce 1 Emit a record for each pair of edges in a bin (one for every open
triad). For the graph G, the first Map phase created n−1 bins, and bin i contains

51

8 Edward Jimenez, Eric L. Goodman

n− i edges. Therefore the number of triads created is

n−2�

i=1

�
n− i

2

�
=

n−2�

i=1

(n− i)!

2(n− (i+ 2))!
(2)

=
1

2

n−2�

i=1

(n− i)(n− (i+ 1)) (3)

<
1

2

n−2�

i=1

(n− 1)(n− (i+ 1)) (4)

=
n− 1

2

n−2�

i=1

(n− (i+ 1)) (5)

=
n− 1

2

n−2�

i=1

i (6)

=
n− 1

2

(n− 1)(n− 2)

2
(7)

<

√
2(n− 1)3

4
(8)

=

�
(n− 1)2

2

�3/2

(9)

<

�
n(n− 1)

2

�3/2

(10)

= m3/2 = O(m3/2) (11)

Hence, the first MapReduce task has complexity O(m3/2).
For the second MapReduce phase the input is the emitted records of the first

MapReduce phase (O(m3/2)) as well as the augmented edge list that was used
as the input for the first MapReduce phase (O(m)). For the second MapReduce
phase, let p be the size of the combined input, note:

O(p) = O(m) +O(m3/2) = O(m3/2).

Map 2 Combine degree-augmented file and output from Reduce 1. For the aug-
mented edge list we have the following mapping to remove the vertex valences:

key1 = [e1, δ(vx), δ(vy)]
key2 = [e2, δ(vw), δ(vz)]

...
keyn = [en, δ(vu), δ(vt)]

⇒

keye1 = [e1]
keye2 = [e2]

...
keyen = [en]

,

and for the records emitted by Reduce 2, we have the identity operation. There-
fore, this task is O(p).

52

Triangle Finding 9

Reduce 2 Each bin corresponds with a vertex pair. A bin will contain at most
one edge record and any number of triad records. With our assumptions of a
completely connected graph, bin i contains

�n−i
2

�
triad records and one edge

record, and the reducer will emit
�n−i

2

�
triangles. From our previous analysis,

this is O(m3/2) and therefore the overall complexity is O(m3/2). ��

6 Experiments

We experimentally compare open source RDF/SPARQL engines, Jena, version
2.7.2, and Sesame, version 2.6.8, with MTGL’s implementation of Cohen’s al-
gorithm. For both Jena and Sesame we use the in-memory backend version of
each. We did need to make some modifications to the MTGL version in order to
allow for directionality and duplicate edges. Namely, we created a multimap that
gives a the list of edges connecting any two vertices. This allowed us to create
multiple triangles from single instances of a triad in the last reduce phase. We
used a workstation with 8 GB of memory and a 2.2 GHz Intel Core i7 processor.
Detailed times for our experiments can be found in the Appendix.

For our experiments we create R-MAT [4] graphs to simulate real-world graph
properties such as power-law distributions on degree, small-world graphs, and
small diameter. We varied the size of the graph from between n = 25 to n = 219.
Also, we tried three different edge factors (average degree per vertex), namely
16, 32, and 64. R-MAT has four other parameters, a, b, c, and d. These four
parameters are probabilities used recursively to determine where edges exist
within the adjacency matrix. We set these to the values of the Graph5006 search
benchmark: a = 0.57, b = 0.19, c = 0.19, and d = 0.05. To enable the SPARQL
engines the ability to process the data, we created IRI’s of the form <http://i>
where i is the vertex id given by the R-MAT generator. Also we made all edges
of the same type.

Figures 3(a), 3(b), and 3(c) show the individual performance of each of the
three platforms as a function of the number of edges. All of the plots have a log-
log scale. Figure 3(d) shows the three platforms side by side. For this Figure, we
exclude graphs below 8192 edges to give a better idea of the scaling behavior for
larger graphs. Both Jena and Sesame exhibit a fair amount of constant overhead
per query that dominates the times in the smaller graphs. When excluding this
data, the fit of trendlines using power regression is quite good, with R2 all
exceeding 0.98. As can be seen from Figure 3(d), Jena has a complexity of around
O(m1.83), Sesame has O(m1.58), and MTGL’s version of Cohen’s algorithm is
around O(m1.39). The best possible for this data would be around O(m1.12),
which is rate of growth of triangles for the data as determined experimentally
and shown in Figure 3(e).

It is clear that both Jena and Sesame are not employing a triangle finding
algorithm as their rate of growth is significantly larger than O(m1.5). While
the differences in powers may seem small between the three, consider that ex-
trapolating out to a billion edges, the difference in times between an O(m1.39)

6 www.graph500.org

53

10 Edward Jimenez, Eric L. Goodman

(a) Jena (b) Sesame

(c) MTGL (d) All

(e) Triangle Growth

Fig. 3.

algorithm and one with O(m1.58) with the same constant is about a 50x differ-
ence. And the difference between O(m1.39) and O(m1.83) is around 9000x. While
not the focus of this paper, it is interesting to note that the MTGL version com-
puted the triangles in about two-orders of magnitude less time than either Jena
or Sesame.

54

Triangle Finding 11

7 Related Work

There is much work within the graph theory community where there is a straight-
forward application to the Semantic Web. For the most part, interfacing with
the Semantic Web takes place through SPARQL. This largely confines interac-
tions to subgraph matching tasks. Under this limitation, we can find work on
clique-finding [5,10], or generalizations of cliques such as trusses [6]. An excellent
overview of research in subgraph pattern matching over a thirty year timespan
can be found in Conte et al. [7].

There are also algorithms outside of subgraph matching that can be of help
in analyzing the Semantic Web. Probably one of the most fundamental algo-
rithms is breadth-first search. In recent years, the Graph500 list has signifi-
cantly increased the competitiveness and visibility of the task, and scalability
and performance have increased concomitantly with the greater attention. Other
algorithms include single source shortest path [13], betweeness centrality [1], con-
nected components [12], and many others.

Related to all of these efforts is the task of graph partitioning. Graphs have
historically been difficult to partition in a distributed memory setting, where
the interconnectedness of the graph make it difficult to divide the data in such
a way to minimize communication overhead. Notable efforts include Buluç and
Madduri [3] and Devine et al. [9].

Programming models have also been created to aid development of graph-
centric algorithms. Notable among them are Google’s Pregel [14] and Signal/Collect
by Stutz et al. [16]. These may prove to be valuable paradigms for implementing
efficient graph-oriented code that can scale on large distributed systems.

8 Conclusions

In order for Semantic Web applications to scale, the community needs to adopt
efficient algorithms to use as the computational kernels underlying analytics. In
this paper we’ve demonstrated how long existing triangle finding algorithms can
be employed to speed up SPARQL queries. We believe there are other algorithms
and lessons from graph theory that can utilized to speed up Semantic Web
applications and also open up other avenues for analysis.

References

1. D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating between-
ness centrality. In Proceedings of the 5th international conference on Algorithms

and models for the web-graph, WAW’07, pages 124–137, Berlin, Heidelberg, 2007.
Springer-Verlag.

2. J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Software and algorithms
for graph queries on multithreaded architectures. Parallel and Distributed Process-

ing Symposium, International, 0:495, 2007.

55

12 Edward Jimenez, Eric L. Goodman

3. A. Buluç and K. Madduri. Graph partitioning for scalable distributed graph com-
putations. In Proc. 10th DIMACS Implementation Challenge Workshop – Graph

Partitioning and Graph Clustering, Feb. 2012.

4. D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph
mining. In M. W. Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, editors, SDM.
SIAM, 2004.

5. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM

Journal on Computing, 14(1):210–223, 1985.

6. J. Cohen. Graph twiddling in a mapreduce world. Computing in Science Engi-

neering, 11(4):29 –41, july-aug. 2009.

7. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. IJPRAI, pages 265–298, 2004.

8. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51:107–113, January 2008.

9. K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek.
Parallel hypergraph partitioning for scientific computing. In Proceedings of the 20th

international conference on Parallel and distributed processing, IPDPS’06, pages
124–124, Washington, DC, USA, 2006. IEEE Computer Society.

10. F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci., 326(1-3):57–67, Oct. 2004.

11. Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems.
J. Web Sem., 3(2-3):158–182, 2005.

12. A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and K. Yelick. Connected com-
ponents on distributed memory machines. In Parallel Algorithms: 3rd DIMACS

Implementation Challenge October 17-19, 1994, volume 30 of DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, pages 1–21. American
Mathematical Society, 1994.

13. K. Madduri, D. Bader, J. Berry, and J. Crobak. An experimental study of a parallel
shortest path algorithm for solving large-scale graph instances. In ALENEX, 2007.

14. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings

of the 2010 ACM SIGMOD International Conference on Management of data,
SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

15. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2bench: A sparql perfor-
mance benchmark. CoRR, abs/0806.4627, 2008.

16. P. Stutz, A. Bernstein, and W. Cohen. Signal/collect: graph algorithms for the
(semantic) web. In Proceedings of the 9th international semantic web conference on

The semantic web - Volume Part I, ISWC’10, pages 764–780, Berlin, Heidelberg,
2010. Springer-Verlag.

A Experimental Data

Below is the data we collected running the triangle query on Jena, Sesame, and
MTGL. We divide the data into three tables, one for each edge factor. Times
are in seconds.

56

Triangle Finding 13

A.1 Edge Factor = 16

|V | |E| Num Triangles Jena Sesame MTGL
25 512 7,645 0.66 0.39 0.0011
26 1,024 16,159 0.96 0.44 0.0024
27 2,048 33,263 1.23 0.57 0.0081
28 4,096 72,357 1.96 0.88 0.0132
29 8,192 156,716 2.96 1.78 0.0365
210 16,384 333,174 7.79 3.86 0.0721
211 32,768 739,951 26.38 10.67 0.1798
212 65,536 1,648,301 89.72 31.12 0.4696
213 131,072 3,450,520 291.65 92.78 1.1767
214 262,144 7,573,624 1263.91 317.21 3.3691
215 524,288 16,864,063 5550.93 1022.38 8.7734
216 1,048,576 35,286,039 3062.77 21.6454
217 2,097,152 74,837,468 57.1703
218 4,194,304 168,767,188 153.9390
219 8,388,608 357,383,850 409.6070

A.2 Edge Factor = 32

|V | |E| Num Triangles Jena Sesame MTGL
25 1,024 37,561 1.151 0.496 0.0048
26 2,048 66,132 1.288 0.643 0.0115
27 4,096 137,725 1.845 1.083 0.0225
28 8,192 292,062 3.878 2.299 0.0514
29 16,384 624,619 10.916 5.064 0.1197
210 32,768 1,388,020 35.841 13.330 0.2796
211 65,536 3,033,157 122.567 42.596 0.7512
212 131,072 6,537,422 448.030 135.857 1.8940
213 262,144 14,955,653 1829.724 459.467 5.4287
214 524,288 32,521,939 8067.696 1486.286 14.8550
215 1,048,576 73,026,129 4916.445 38.6545
216 2,097,152 155,196,692 100.6970
217 4,194,304 342,379,527 275.3078
218 8,388,608 746,302,590 720.8690

57

14 Edward Jimenez, Eric L. Goodman

A.3 Edge Factor = 64

|V | |E| Num Triangles Jena Sesame MTGL
26 4096 303,016 2.510 1.464 0.0432
27 8,192 554,405 5.053 2.937 0.0843
28 16,384 1,151,110 14.524 7.235 0.1872
29 32,768 2,481,009 48.234 19.189 0.4539
210 65,536 5,452,648 168.198 91.224 1.1790
211 131,072 12,051,583 612.075 189.095 3.0500
212 262,144 26,614,815 2674.014 657.880 8.4796
213 524,288 57,835,285 9738.723 2103.770 22.5987
214 1,048,576 131,190,442 63.0300
215 2,097,152 290,104,980 166.7070
216 4,194,304 634,855,745 451.3670
217 8,388,608 1,420,402,577 1250.280

58

Cascading Map-Side Joins over HBase

for Scalable Join Processing

Alexander Schätzle, Martin Przyjaciel-Zablocki,
Christopher Dorner, Thomas Hornung, and Georg Lausen

Department of Computer Science, University of Freiburg, Germany
{schaetzle,zablocki,dornerc,hornungt,lausen}

@informatik.uni-freiburg.de

Abstract. One of the major challenges in large-scale data processing
with MapReduce is the smart computation of joins. Since Semantic Web
datasets published in RDF have increased rapidly over the last few years,
scalable join techniques become an important issue for SPARQL query
processing as well. In this paper, we introduce the Map-Side Index Nested
Loop Join (MAPSIN join) which combines scalable indexing capabilities
of NoSQL data stores like HBase, that suffer from an insufficient dis-
tributed processing layer, with MapReduce, which in turn does not pro-
vide appropriate storage structures for efficient large-scale join process-
ing. While retaining the flexibility of commonly used reduce-side joins,
we leverage the effectiveness of map-side joins without any changes to
the underlying framework. We demonstrate the significant benefits of
MAPSIN joins for the processing of SPARQL basic graph patterns on
large RDF datasets by an evaluation with the LUBM and SP2Bench
benchmarks. For selective queries, MAPSIN join based query execution
outperforms reduce-side join based execution by an order of magnitude.

1 Introduction

Most of the information in the classical ”Web of Documents” is designed for
human readers, whereas the idea behind the Semantic Web is to build a ”Web

of Data” that enables computers to understand and use the information in the
web. The advent of this Web of Data gives rise to new challenges with regard to
query evaluation on the Semantic Web. The core technologies of the Semantic
Web are RDF (Resource Description Framework) [1] for representing data in
a machine-readable format and SPARQL [2] for querying RDF data. However,
querying RDF datasets at web-scale is challenging, especially because the com-
putation of SPARQL queries usually requires several joins between subsets of the
data. On the other side, classical single-place machine approaches have reached
a point where they cannot scale with respect to the ever increasing amount
of available RDF data (cf. [16]). Renowned for its excellent scaling properties,
the MapReduce paradigm [8] is an attractive candidate for distributed SPARQL
processing. The Apache Hadoop platform is the most prominent and widely used
open-source MapReduce implementation. In the last few years many companies

59

have built-up their own Hadoop infrastructure but there are also ready-to-use
cloud services like Amazon’s Elastic Compute Cloud (EC2) offering the Hadoop
platform as a service (PaaS). Thus, in contrast to specialized distributed RDF
systems like YARS2 [15] or 4store [14], the use of existing Hadoop MapReduce
infrastructures enables scalable, distributed and fault-tolerant SPARQL process-
ing out-of-the-box without any additional installation or management overhead.
Following this avenue, we introduced the PigSPARQL project in [26] that offers
full support for SPARQL 1.0 and is implemented on top of Hadoop. However,
while the performance and scaling properties of PigSPARQL for complex analyt-
ical queries are competitive, the performance for selective queries is not satisfying
due to the lack of built-in index structures and unnecessary data shuffling as join
computation is done in the reduce phase.

In this paper we present a new MapReduce join technique, the Map-Side

Index Nested Loop Join (MAPSIN join), that uses the indexing capabilities of a
distributed NoSQL data store to improve query performance of selective queries.
MAPSIN joins are completely processed in the map phase to avoid costly data
shuffling by using HBase as underlying storage layer. Our evaluation shows an
improvement of up to one order of magnitude over the common reduce-side join
for selective queries. Overall, the major contributions of this paper are as follows:

– We describe a space-efficient storage schema for large RDF graphs in HBase
while retaining favourable access characteristics. By using HBase instead of
HDFS, we can avoid shuffling join partitions across the network and instead
only access the relevant join partners in each iteration.

– We present the MAPSIN join algorithm, which can be evaluated cascadingly
in subsequent MapReduce iterations. In contrast to other approaches, we do
not require an additional shuffle and reduce phase in order to preprocess the
data for consecutive joins. Moreover, we do not require any changes to the
underlying frameworks.

– We demonstrate an optimization of the basic MAPSIN join algorithm for the
efficient processing of multiway joins. This way, we can save n MapReduce
iterations for star join queries with n+ 2 triple patterns.

The paper is structured as follows: Section 2 provides a brief introduction to the
technical foundations for this paper. Section 3 describes our RDF storage schema
for HBase, while Section 4 presents the MAPSIN join algorithm. We continue
with a presentation of the evaluation of our approach in Section 5, followed by
a discussion of related work in Section 6. We conclude in Section 7 and give an
outlook on future work.

2 Background

2.1 RDF & SPARQL

RDF [1] is the W3C recommended standard model for representing knowledge
about arbitrary resources, e.g. articles and authors. An RDF dataset consists of a

60

set of RDF triples in the form (subject, predicate, object) that can be interpreted
as ”subject has property predicate with value object”. For clarity of presentation,
we use a simplified RDF notation in the following. It is possible to visualize an
RDF dataset as directed, labeled graph where every triple corresponds to an
edge (predicate) from subject to object. Figure 1 shows an RDF graph with
information about articles and corresponding authors.

Article1 Alex

Martin Article2

authorauthor

"PigSPARQL"

"2011"
"RDFPath"

"2011"
author

year

title

author

cite

title

year

SPARQL BGP query

SELECT *
WHERE {

?article title ?title .
?article author ?author .
?article year ?year

}

Fig. 1. RDF graph and SPARQL query

SPARQL is the W3C recommended declarative query language for RDF. A
SPARQL query defines a graph pattern P that is matched against an RDF graph
G. This is done by replacing the variables in P with elements of G such that the
resulting graph is contained in G (pattern matching). The most basic constructs
in a SPARQL query are triple patterns, i.e. RDF triples where subject, predicate
and object can be variables, e.g. (?s, p, ?o). A set of triple patterns concatenated
by AND (.) is called a basic graph pattern (BGP) as illustrated in Figure 1. The
query asks for all articles with known title, author and year of publication. The
result of a BGP is computed by joining the variable mappings of all triple pat-
terns on their shared variables, in this case ?article. For a detailed definition of
the SPARQL syntax we refer the interested reader to the official W3C Recom-
mendation [2]. A formal definition of the SPARQL semantics can also be found
in [23]. In this paper we focus on efficient join processing with MapReduce and
NoSQL (i.e. HBase) and therefore only consider SPARQL BGPs.

2.2 MapReduce

The MapReduce programming model [8] enables scalable, fault tolerant and mas-
sively parallel computations using a cluster of machines. The basis of Google’s
MapReduce is the distributed file system GFS [12] where large files are split into
equal sized blocks, spread across the cluster and fault tolerance is achieved by
replication. The workflow of a MapReduce program is a sequence of MapReduce
iterations each consisting of a Map and a Reduce phase separated by a so-called
Shuffle & Sort phase. A user has to implement map and reduce functions which
are automatically executed in parallel on a portion of the data. The map function
gets invoked for every input record represented as a key-value pair. It outputs a
list of new intermediate key-value pairs which are then sorted and grouped by
their key. The reduce function gets invoked for every distinct intermediate key

61

together with the list of all according values and outputs a list of values which
can be used as input for the next MapReduce iteration.

We use Apache Hadoop as it is the most popular open-source implementation
of Google’s GFS and MapReduce framework that is used by many companies
like Yahoo!, IBM or Facebook.

Map-Side vs. Reduce-Side Join. Processing joins with MapReduce is a chal-
lenging task as datasets are typically very large [5,20]. If we want to join two
datasets with MapReduce, L � R, we have to ensure that the subsets of L and R
with the same join key values can be processed on the same machine. For joining
arbitrary datasets on arbitrary keys we generally have to shuffle data over the
network or choose appropriate pre-partitioning and replication strategies.

The most prominent and flexible join technique in MapReduce is called
Reduce-Side Join [5,20]. Some literature also refer to it as Repartition Join [5]
as the idea is based on reading both datasets (map phase) and repartition them
according to the join key (shuffle phase). The actual join computation is done
in the reduce phase. The main drawback of this approach is that both datasets
are completely transferred over the network regardless of the join output. This
is especially inefficient for selective joins and consumes a lot of network band-
width. Another group of joins is based on getting rid of the shuffle and reduce
phase to avoid transferring both datasets over the network. This kind of join
technique is called Map-Side Join since the actual join processing is done in
the map phase. The most common one is the Map-Side Merge Join [20]. How-
ever, this join cannot be applied on arbitrary datasets. A preprocessing step is
necessary to fulfill several requirements: datasets have to be sorted and equally
partitioned according to the join key. If the preconditions are fulfilled, the map
phase can process an efficient parallel merge join between pre-sorted partitions
and data shuffling is not necessary. However, if we want to compute a sequence
of such joins, the shuffle and reduce phases are needed to guarantee that the
preconditions for the next join iteration are fulfilled. Therefore, map-side joins
are generally hard to cascade and the advantage of avoiding a shuffle and reduce
phase is lost. Our MAPSIN join approach is designed to overcome this drawback
by using the distributed index of a NoSQL system like HBase.

2.3 HBase

HBase is a distributed, scalable and strictly consistent column-oriented NoSQL
data store, inspired by Google’s Bigtable [7] and well integrated into Hadoop.
Hadoop’s distributed file system, HDFS, is designed for sequential reads and
writes of very large files in a batch processing manner but lacks the ability to
access data randomly in close to real-time. HBase can be seen as an additional
storage layer on top of HDFS that supports efficient random access. The data
model of HBase corresponds to a sparse multi-dimensional sorted map with the
following access pattern:

(Table, RowKey, Family, Column, T imestamp) → V alue

62

The rows of a table are sorted and indexed according to their row key and every
row can have an arbitrary number of columns. Columns are grouped into column

families and column values (denoted as cell) are timestamped and thus support
multiple versions. HBase tables are dynamically split into regions of contiguous
row ranges with a configured maximum size. When a region becomes too large,
it is automatically split into two regions at the middle key (auto-sharding).

However, HBase has neither a declarative query language nor built-in sup-
port for native join processing, leaving higher-level data transformations to the
overlying application layer. In our approach we propose a map-side join strategy
that leverages the implicit index capabilities of HBase to overcome the usual
restrictions of map-side joins as outlined in Section 2.2.

3 RDF Storage Schema for HBase

In contrast to relational databases, NoSQL data stores do neither have a common
data model nor a common query language like SQL. Hence, the implementation
of our join approach strongly relies on the actual NoSQL store used as backend.
In our initial experiments we considered HBase and Cassandra, two popular
NoSQL stores with support for MapReduce. We decided to use HBase for our
implementation as it proved to be more stable and also easier to handle in our
cluster since HBase was developed to work with Hadoop from the beginning.

In [28] the authors adopted the idea of Hexastore [30] to index all possible
orderings of an RDF triple for storing RDF data in HBase. This results in six
tables in HBase allowing to retrieve results for any possible SPARQL triple pat-
tern with a single lookup on one of the tables (except for a triple pattern with
three variables). However, as HDFS has a default replication factor of three and
data in HBase is stored in files on HDFS, an RDF dataset is actually stored
18 times using this schema. But it’s not only about storage space, also loading
a web-scale RDF dataset into HBase becomes very costly and consumes many
resources. Our storage schema for RDF data in HBase is inspired by [10] and
uses only two tables, Ts po and To ps. We extend the schema with a triple pat-
tern mapping that leverages the power of predicate push-down filters in HBase
to overcome possible performance shortcomings of a two table schema. Further-
more, we improve the scalibility of the schema by introducing a modified row key
design for class assignments in RDF which would otherwise lead to overloaded
regions constraining both scalability and performance.

In Ts po table an RDF triple is stored using the subject as row key, the
predicate as column name and the object as column value. If a subject has
more than one object for a given predicate (e.g. an article having more than
one author), these objects are stored as different versions in the same column.
The notation Ts po indicates that the table is indexed by subject. Table To ps

follows the same design. In both tables there is only one single column family
that contains all columns. Table 1 illustrates the corresponding Ts po table for
the RDF graph in Section 2.1.

63

Table 1. Ts po table for RDF graph in Section 2.1

rowkey family:column→value
Article1 p:title→{”PigSPARQL”}, p:year→{”2011”},

p:author→{Alex, Martin}
Article2 p:title→{”RDFPath”}, p:year→{”2011”},

p:author→{Martin, Alex}, p:cite→{Article1}

At first glance, this storage schema seems to have performance drawbacks
when compared to the six table schema in [28] since there are only indexes for
subjects and objects. However, we can use the HBase Filter API to specify addi-
tional column filters for table index lookups. These filters are applied directly on
server side such that no unnecessary data must be transferred over the network
(predicate push-down). As already mentioned in [10], a table with predicates as
row keys causes scalability problems since the number of predicates in an ontol-
ogy is usually fixed and relatively small which results in a table with just a few
very fat rows. Considering that all data in a row is stored on the same machine,
the resources of a single machine in the cluster become a bottleneck. Indeed, if
only the predicate in a triple pattern is given, we can use the HBase Filter API
to answer this request with a table scan on Ts po or To ps using the predicate as
column filter. Table 2 shows the mapping of every possible triple pattern to the
corresponding HBase table. Overall, experiments on our cluster showed that the
two table schema with server side filters has similar performance characteristics
compared to the six table schema but uses only one third of storage space.

Table 2. SPARQL triple pattern mapping using HBase predicate push-down filters

pattern table filter
(s, p, o) Ts po or To ps column & value
(?s, p, o) To ps column
(s, ?p, o) Ts po or To ps value
(s, p, ?o) Ts po column
(?s, ?p, o) To ps

(?s, p, ?o) Ts po or To ps (table scan) column
(s, ?p, ?o) Ts po

(?s, ?p, ?o) Ts po or To ps (table scan)

Our experiments also revealed some fundamental scaling limitations of the
storage schema caused by the To ps table. In general, an RDF dataset uses a
relatively small number of classes but contains many triples that link resources
to classes, e.g. (Alex, rdf:type, foaf:Person). Thus, using the object of a triple
as row key means that all resources of the same class will be stored in the
same row. With increasing dataset size these rows become very large and exceed
the configured maximum region size resulting in overloaded regions that contain
only a single row. Since HBase cannot split these regions the resources of a single
machine become a bottleneck for scalability. To circumvent this problem we use
a modified To ps row key design for triples with predicate rdf:type. Instead of
using the object as row key we use a compound row key of object and subject,

64

e.g. (foaf:Person|Alex). As a result, we can not access all resources of a class
with a single table lookup but as the corresponding rows will be consecutive in
To ps we can use an efficient range scan starting at the first entry of the class.

4 MAPSIN Join

The major task in SPARQL query evaluation is the computation of joins be-
tween triple patterns, i.e. basic graph patterns. However, join processing on large
RDF datasets, especially if it involves more than two triple patterns, is challeng-
ing [20]. Our approach combines the scalable storage capabilities of NoSQL data
stores (i.e. HBase), that suffer from a suitable distributed processing layer, with
MapReduce, a highly scalable and distributed computation framework, which
in turn does not support appropriate storage structures for large scale join pro-
cessing. This allows us to catch up with the flexibility of reduce-side joins while
utilizing the effectiveness of a map-side join without any changes to the under-
lying frameworks.

First, we introduce the needed SPARQL terminology analogous to [23]: Let
V be the infinite set of query variables and T be the set of valid RDF terms.

Definition 1. A (solution) mapping µ is a partial function µ : V → T . We

call µ(?v) the variable binding of µ for ?v. Abusing notation, for a triple pattern

p we call µ(p) the triple pattern that is obtained by substituting the variables

in p according to µ. The domain of µ, dom(µ), is the subset of V where µ is

defined and the domain of p, dom(p), is the subset of V used in p. The result of

a SPARQL query is a multiset of solution mappings Ω.

Definition 2. Two mappings µ1, µ2 are compatible if, for every variable ?v ∈
dom(µ1)∩dom(µ2), it holds that µ1(?v) = µ2(?v). It follows that mappings with

disjoint domains are always compatible and the set-union (merge) of µ1 and µ2,

µ1 ∪ µ2, is also a mapping.

4.1 Base Case

To compute the join between two triple patterns, p1 � p2, we have to merge
the compatible mappings for p1 and p2. Therefore, it is necessary that subsets
of both multisets of mappings are brought together such that all compatible
mappings can be processed on the same machine.

Our MAPSIN join technique computes the join between p1 and p2 in a sin-
gle map phase. At the beginning, the map phase is initialized with a parallel
distributed HBase table scan for the first triple pattern p1 where each machine
retrieves only those mappings that are locally available. This is achieved by
utilizing a mechanism for allocating local records to map functions, which is
supported by the MapReduce input format for HBase. The map function is in-
voked for each retrieved mapping µ1 for p1. To compute the partial join between
p1 and p2 for the given mapping µ1, the map function needs to retrieve those

65

mappings for p2 that are compatible to µ1 based on the shared variables be-
tween p1 and p2. At this point, the map function utilizes the input mapping µ1

to substitute the shared variables in p2, i.e. the join variables. The substituted
triple pattern psub2 is then used to retrieve the compatible mappings with a table
lookup in HBase following the triple pattern mapping outlined in Table 2. Since
there is no guarantee that the corresponding HBase entries reside on the same
machine, the results of the request have to be transferred over the network in
general. However, in contrast to a reduce-side join approach where a lot of data
is transferred over the network, we only transfer the data that is really needed.
Finally, the computed multiset of mappings is stored in HDFS.

HDFS

SCAN for local mappings: ?article title ?title 1

 NoSQL
 Storage System

Node 1

Node 2

Node 3

?article=article1 ?title="PigSPARQL"

?article=article2 ?title="RDFPath"

map inputs

GET bindings: article2 author ?author3

?article=article1 ?title="PigSPARQL" ?author=Alex
?article=article1 ?title="PigSPARQL" ?author=Martin

?article=article2 ?title="RDFPath" ?author=Martin
?article=article2 ?title="RDFPath" ?author=Alex

map outputs

GET bindings: article1 author ?author3

1

2

2

3

2

3

4

4
4

2

4

Fig. 2. MAPSIN join base case for the first two triple patterns of query in Figure 1

Figure 2 is an example for the base case of our MAPSIN join that illustrates
the join between the first two triple patterns of the SPARQL query in Figure 1.
While the mappings for the first triple pattern (?article, title, ?title) are retrieved
locally using a distributed table scan (step 1+2), the compatible mappings for
(?article, author, ?author) are requested within the map function (step 3) and
the resulting set of mappings is stored in HDFS (step 4).

4.2 Cascading Joins

Chains of concatenated triple patterns require some slight modifications to the
previously described base case. To compute a query of at least three triple pat-
terns we have to process several joins successively, e.g. p1 � p2 � p3. The pro-
cessing of the first two patterns p1 � p2 correspond to the base case and the
results are stored in HDFS. The additional triple pattern p3 is then joined with
the mappings for p1 � p2. To this end, an additional map-phase (without any
intermediate shuffle or reduce phase) is initialized with the previously computed
mappings as input. Since these mappings reside in HDFS, they are retrieved

66

locally in parallel such that the map function gets invoked for each mapping
µ2 for p1 � p2. The compatible mappings for p3 are retrieved using the same
strategy as for the base case, i.e. µ2 is used to substitute the shared variables in
p3 and compatible mappings are retrieved following the triple pattern mapping
outlined in Table 2. Algorithm 1 outlines one iteration of the MAPSIN join. The
input for the map function contains either a mapping for the first triple pattern
(via distributed table scan) or a mapping for previously joined triple patterns
(loaded from HDFS).

Algorithm 1: MAPSIN join: map(inKey, inValue)
input : inKey, inValue: value contains input mapping, key can be ignored
output: multiset of mappings

1 pn+1 ← Config.getNextPattern()
2 µn ← inV alue.getInputMapping()
3 Ωn+1 ← ∅
4 if dom(µn) ∩ dom(pn+1) �= ∅ then
5 // substitute shared vars in pn+1

6 psub
n+1 ← µn(pn+1)

7 results ← HBase.GET(psub
n+1) // table index lookup using substituted pattern

8 else
9 results ← HBase.GET(pn+1) // table index lookup using unsubstituted pattern

10 end
11 if results �= ∅ then
12 // merge µn with compatible mappings for pn+1

13 foreach mapping µ in results do
14 µn+1 ← µn ∪ µ
15 Ωn+1 ← Ωn+1 ∪ µn+1

16 end
17 emit(null, Ωn+1) // key is not used since there is no reduce phase
18 end

4.3 Multiway Join Optimization

Instead of processing concatenated triple patterns successively as a sequence
of two-way joins, some basic graph patterns allow to apply a multiway join
approach to process joins between several concatenated triple patterns at once
in a single map phase. This is typically the case for star pattern queries where
triple patterns share the same join variable. The SPARQL query introduced in
Section 2.1 is an example for such a query as all triple patterns share the same
join variable ?article. This query can be processed by a three-way join in a single
map-phase instead of two consecutive two-way joins.

We extended our approach to support this multiway join optimization. Again,
the first triple pattern p1 is processed using a distributed table scan as input for
the map phase. But instead of using a sequence of n map phases to compute p1 �
p2 � ... � pn+1 we use a single map phase thus saving n−1 MapReduce iterations.
Hence, the map function needs to retrieve all mappings for p2, p3, ..., pn+1 that
are compatible to the input mapping µ1 for p1. Therefore, the join variable ?vs
in p2, p3, ..., pn+1 (e.g. ?article) is substituted with the corresponding variable

67

binding µ1(?vs). The substituted triple patterns psub2 , psub3 , ..., psubn+1 are then used
to retrieve the compatible mappings using HBase table lookups. This general case
of the MAPSIN multiway join is outlined in Algorithm 2.

Algorithm 2: MAPSIN multiway join: map(inKey, inValue)
input : inKey, inValue: value contains input mapping, key can be ignored
output: multiset of mappings

1 #p ← Config.getNumberOfMultiwayPatterns()
2 µn ← inV alue.getInputMapping()
3 Ωn ← {µn}
4 // iterate over all subsequent multiway patterns
5 for i ← 1 to #p do
6 Ωn+i ← ∅
7 pn+i ← Config.getNextPattern()
8 // substitute shared vars in pn+i

9 psub
n+i ← µn(pn+i)

10 results ← HBase.GET(psub
n+i) // table index lookup using substituted pattern

11 if results �= ∅ then
12 // merge previous mappings with compatible mappings for pn+i

13 foreach mapping µ in results do
14 foreach mapping µ� in Ωn+i−1 do
15 Ωn+i ← Ωn+i ∪ (µ ∪ µ�)
16 end
17 end
18 else
19 // no compatible mappings for pn+i hence join result for µn is empty
20 return
21 end
22 end
23 emit(null, Ωn+#p) // key is not used since there is no reduce phase

The performance of MAPSIN joins strongly correlates with the number of
index lookups in HBase. Hence, minimizing the number of lookups is a crucial
point for optimization. In many situations, it is possible to reduce the number of
requests by leveraging the RDF schema design for HBase outlined in Section 3.
If the join variable for all triple patterns is always on subject or always on object
position, then all mappings for p2, p3, ..., pn+1 that are compatible to the input
mapping µ1 for p1 are stored in the same HBase table row of Ts po or To ps,
respectively, making it possible to use a single instead of n subsequent table
lookups. Hence, all compatible mappings can be retrieved at once thus saving
n− 1 lookups for each invocation of the map function. Due to space limitations
the corresponding algorithm for this optimized case can be found in the technical
report version of this paper [24].

5 Evaluation

The evaluation was performed on a cluster of 10 Dell PowerEdge R200 servers
equipped with a Dual Core 3.16 GHz CPU, 8 GB RAM, 3 TB disk space and
connected via gigabit network. The software installation includes Hadoop 0.20.2,
HBase 0.90.4 and Java 1.6.0 update 26.

68

Table 3. SP2Bench & LUBM loading times for tables Ts po and To ps (hh:mm:ss)

SP2Bench 200M 400M 600M 800M 1000M
RDF triples ∼ 200 million ∼ 400 million ∼ 600 million ∼ 800 million ∼ 1000 million
Ts po 00:28:39 00:45:33 01:01:19 01:16:09 01:33:47
To ps 00:27:24 01:04:30 01:28:23 01:43:36 02:19:05
total 00:56:03 01:50:03 02:29:42 02:59:45 03:52:52

LUBM 1000 1500 2000 2500 3000
RDF triples ∼ 210 million ∼ 315 million ∼ 420 million ∼ 525 million ∼ 630 million
Ts po 00:28:50 00:42:10 00:52:03 00:56:00 01:05:25
To ps 00:48:57 01:14:59 01:21:53 01:38:52 01:34:22
total 01:17:47 01:57:09 02:13:56 02:34:52 02:39:47

We used the well-known Lehigh University Benchmark (LUBM) [13] as the
queries can easily be formulated as SPARQL basic graph patterns. Furthermore,
we also considered the SPARQL-specific SP2Bench Performance Benchmark [27].
However, because most of the SP2Bench queries are rather complex queries that
use all different kinds of SPARQL 1.0 operators, we only evaluated some of the
queries as the focus of our work is the efficient computation of joins, i.e. basic
graph patterns. Both benchmarks offer synthetic data generators that can be
used to generate arbitrary large datasets. For SP2Bench we generated datasets
from 200 million up to 1000 million triples. For LUBM we generated datasets
from 1000 up to 3000 universities and used the WebPIE inference engine for
Hadoop [29] to pre-compute the transitive closure. The loading times for both
tables Ts po and To ps as well as all datasets are listed in Table 3.

The goal of our approach was to optimize MapReduce based join computa-
tion for selective queries. Therefore, we compared our MAPSIN join approach
with the reduce-side join based query execution in PigSPARQL [26], a SPARQL
1.0 engine built on top of Pig. Pig is an Apache top-level project developed
by Yahoo! Research that offers a high-level language for the analysis of very
large datasets with Hadoop MapReduce. The crucial point for this choice was
the sophisticated and efficient reduce-side join implementation of Pig [11] that
incorporates sampling and hash join techniques which makes it a challenging can-
didate for comparison. We illustrate the performance comparison of PigSPARQL
and MAPSIN for some selected LUBM queries that represent the different query
types in Figure 3. Our proof-of-concept implementation is currently limited to
a maximum number of two join variables as the goal was to demonstrate the
feasibility of the approach for selective queries rather than supporting all pos-
sible BGP constellations. For detailed comparison, the runtimes of all executed
queries are listed in Table 4.

LUBM queries Q1, Q3, Q5, Q11, Q13 as well as SP2Bench query Q3a demon-
strate the base case with a single join between two triple patterns (cf. Figure 3a).
For the LUBM queries, MAPSIN joins performed 8 to 13 times faster compared
to the reduce-side joins of PigSPARQL. Even for the less selective SP2Bench
query, our MAPSIN join required only one third of the PigSPARQL execution
time. Furthermore, the performance gain increases with the size of the dataset
for both LUBM and SP2Bench.

69

Q1 PigSPARQL MAPSIN MAPSIN
500 174 23
1000 324 34
1500 475 51
2000 634 53
2500 790 70
3000 944 84

Q3 PigSPARQL MAPSIN MAPSIN
500 174 21
1000 324 33
1500 480 42
2000 642 49
2500 805 59
3000 961 72

PigSPARQL multi joinMAPSIN MAPSIN multi join
Q4 PigSPARQL PigSPARQL MJ HBase HBase MJ
500 642 436 63 23
1000 1202 861 121 37
1500 1758 1297 167 53
2000 2368 1728 182 62
2500 2919 2173 235 81
3000 3496 2613 279 92

Q5 PigSPARQL HBase
500 174 22
1000 329 33
1500 484 44
2000 640 53
2500 800 66
3000 955 80

Q6 PigSPARQL HBase
500 78 14
1000 149 48
1500 214 60
2000 284 69
2500 355 84
3000 424 104

Q7 PigSPARQL HBase
500 532 47
1000 1013 62
1500 1480 68
2000 1985 93
2500 2472 114
3000 2928 123

Q8 PigSPARQL HBase
500 628 50
1000 1172 64
1500 1731 77
2000 2318 93
2500 2870 108
3000 3431 121

Q11 PigSPARQL HBase
500 164 21
1000 319 33
1500 469 46
2000 620 53
2500 780 69
3000 931 79

Q13 PigSPARQL HBase
500 174 29
1000 325 44
1500 482 72
2000 645 84
2500 800 108
3000 957 128

Q14 PigSPARQL HBase
500 78 16
1000 149 43
1500 214 70
2000 288 79
2500 364 89
3000 434 107

Q1 PigSPARQL PigSPARQL MJ HBase HBase MJ
200M 545 310 58 42 200
400M 1026 600 118 87 400
600M 1527 896 153 118 600
800M 2018 1187 177 154 800
1000M 2519 1476 214 174 1000

Q2 PigSPARQL PigSPARQL MJ HBase HBase MJ
200 2066 1168 8982 241
400 4080 2341 444
600 6039 3514 671
800 8131 4745 834
1000 10037 6005 43597 999

Q3a PigSPARQL HBase HBase MJ
200M 227 187 70
400M 435 279 139
600M 641 417 178
800M 845 536 235
1000M 1050 707 274

Q10 PigSPARQL HBase HBase dist.
200 99 1 40
400 174 1 84
600 254 1 111
800 340 1 151
1000 414 1 167

LUBM

SP²Bench

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ1

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ3

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ4

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ5

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ6

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ7

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ8

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ11

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ13

1

10

100

1000

1000 1500 2000 2500 3000
LUBMQ1

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ4

1

10

100

1000

1000 1500 2000 2500 3000
LUBMQ6

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ7

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ8

MJ

MJ

MJ

MJ

MJ

MJ

MJ MJ

MJ MJ

1

10

100

1000

10000

LUBM

1

10

100

1000

10000

200M 400M 600M 800M 1000M
SP²BenchQ1

1

10

100

1000

10000

200M 400M 600M 800M 1000M

SP²BenchQ3a

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

PigSPARQL MAPSIN MJ:Multiway Join of PigSPARQL/MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

0

1000

2000

3000

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

PigSPARQL MAPSIN PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

100

200

300

400

500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM

0

600

1200

1800

2400

3000

1000 1500 2000 2500 3000
LUBM

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

600

1200

1800

2400

3000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

0

700

1400

2100

2800

3500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

100

200

300

400

500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

200M 400M 600M 800M 1000M

tim
e
in

se
co
nd

s

0

1000

2000

3000

200 300 400 500 600 700 800 900 1000

tim
e
in

se
co
nd

s

SP²Bench (triples in million)

PigSPARQL MAPSIN PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

10000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

1500

3000

4500

6000

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

10000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

250

500

750

1000

1250

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN

1

10

100

1000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

100

200

300

400

500

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN

(b)

(a)

(c)

Q1 PigSPARQL MAPSIN MAPSIN
500 174 23
1000 324 34
1500 475 51
2000 634 53
2500 790 70
3000 944 84

Q3 PigSPARQL MAPSIN MAPSIN
500 174 21
1000 324 33
1500 480 42
2000 642 49
2500 805 59
3000 961 72

PigSPARQL multi joinMAPSIN MAPSIN multi join
Q4 PigSPARQL PigSPARQL MJ HBase HBase MJ
500 642 436 63 23
1000 1202 861 121 37
1500 1758 1297 167 53
2000 2368 1728 182 62
2500 2919 2173 235 81
3000 3496 2613 279 92

Q5 PigSPARQL HBase
500 174 22
1000 329 33
1500 484 44
2000 640 53
2500 800 66
3000 955 80

Q6 PigSPARQL HBase
500 78 14
1000 149 48
1500 214 60
2000 284 69
2500 355 84
3000 424 104

Q7 PigSPARQL HBase
500 532 47
1000 1013 62
1500 1480 68
2000 1985 93
2500 2472 114
3000 2928 123

Q8 PigSPARQL HBase
500 628 50
1000 1172 64
1500 1731 77
2000 2318 93
2500 2870 108
3000 3431 121

Q11 PigSPARQL HBase
500 164 21
1000 319 33
1500 469 46
2000 620 53
2500 780 69
3000 931 79

Q13 PigSPARQL HBase
500 174 29
1000 325 44
1500 482 72
2000 645 84
2500 800 108
3000 957 128

Q14 PigSPARQL HBase
500 78 16
1000 149 43
1500 214 70
2000 288 79
2500 364 89
3000 434 107

Q1 PigSPARQL PigSPARQL MJ HBase HBase MJ
200M 545 310 58 42 200
400M 1026 600 118 87 400
600M 1527 896 153 118 600
800M 2018 1187 177 154 800
1000M 2519 1476 214 174 1000

Q2 PigSPARQL PigSPARQL MJ HBase HBase MJ
200 2066 1168 8982 241
400 4080 2341 444
600 6039 3514 671
800 8131 4745 834
1000 10037 6005 43597 999

Q3a PigSPARQL HBase HBase MJ
200M 227 187 70
400M 435 279 139
600M 641 417 178
800M 845 536 235
1000M 1050 707 274

Q10 PigSPARQL HBase HBase dist.
200 99 1 40
400 174 1 84
600 254 1 111
800 340 1 151
1000 414 1 167

LUBM

SP²Bench

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ1

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ3

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ4

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ5

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ6

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ7

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ8

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ11

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ13

1

10

100

1000

1000 1500 2000 2500 3000
LUBMQ1

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ4

1

10

100

1000

1000 1500 2000 2500 3000
LUBMQ6

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ7

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ8

MJ

MJ

MJ

MJ

MJ

MJ

MJ MJ

MJ MJ

1

10

100

1000

10000

LUBM

1

10

100

1000

10000

200M 400M 600M 800M 1000M
SP²BenchQ1

1

10

100

1000

10000

200M 400M 600M 800M 1000M

SP²BenchQ3a

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

PigSPARQL MAPSIN MJ:Multiway Join of PigSPARQL/MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

0

1000

2000

3000

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

PigSPARQL MAPSIN PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

100

200

300

400

500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM

0

600

1200

1800

2400

3000

1000 1500 2000 2500 3000
LUBM

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

600

1200

1800

2400

3000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

0

700

1400

2100

2800

3500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

100

200

300

400

500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

200M 400M 600M 800M 1000M

tim
e
in

se
co
nd

s

0

1000

2000

3000

200 300 400 500 600 700 800 900 1000

tim
e
in

se
co
nd

s

SP²Bench (triples in million)

PigSPARQL MAPSIN PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

10000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

1500

3000

4500

6000

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

10000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

250

500

750

1000

1250

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN

1

10

100

1000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

100

200

300

400

500

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN

(b)

(a)

(c)

Q1 PigSPARQL MAPSIN MAPSIN
500 174 23
1000 324 34
1500 475 51
2000 634 53
2500 790 70
3000 944 84

Q3 PigSPARQL MAPSIN MAPSIN
500 174 21
1000 324 33
1500 480 42
2000 642 49
2500 805 59
3000 961 72

PigSPARQL multi joinMAPSIN MAPSIN multi join
Q4 PigSPARQL PigSPARQL MJ HBase HBase MJ
500 642 436 63 23
1000 1202 861 121 37
1500 1758 1297 167 53
2000 2368 1728 182 62
2500 2919 2173 235 81
3000 3496 2613 279 92

Q5 PigSPARQL HBase
500 174 22
1000 329 33
1500 484 44
2000 640 53
2500 800 66
3000 955 80

Q6 PigSPARQL HBase
500 78 14
1000 149 48
1500 214 60
2000 284 69
2500 355 84
3000 424 104

Q7 PigSPARQL HBase
500 532 47
1000 1013 62
1500 1480 68
2000 1985 93
2500 2472 114
3000 2928 123

Q8 PigSPARQL HBase
500 628 50
1000 1172 64
1500 1731 77
2000 2318 93
2500 2870 108
3000 3431 121

Q11 PigSPARQL HBase
500 164 21
1000 319 33
1500 469 46
2000 620 53
2500 780 69
3000 931 79

Q13 PigSPARQL HBase
500 174 29
1000 325 44
1500 482 72
2000 645 84
2500 800 108
3000 957 128

Q14 PigSPARQL HBase
500 78 16
1000 149 43
1500 214 70
2000 288 79
2500 364 89
3000 434 107

Q1 PigSPARQL PigSPARQL MJ HBase HBase MJ
200M 545 310 58 42 200
400M 1026 600 118 87 400
600M 1527 896 153 118 600
800M 2018 1187 177 154 800
1000M 2519 1476 214 174 1000

Q2 PigSPARQL PigSPARQL MJ HBase HBase MJ
200 2066 1168 8982 241
400 4080 2341 444
600 6039 3514 671
800 8131 4745 834
1000 10037 6005 43597 999

Q3a PigSPARQL HBase HBase MJ
200M 227 187 70
400M 435 279 139
600M 641 417 178
800M 845 536 235
1000M 1050 707 274

Q10 PigSPARQL HBase HBase dist.
200 99 1 40
400 174 1 84
600 254 1 111
800 340 1 151
1000 414 1 167

LUBM

SP²Bench

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ1

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ3

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ4

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ5

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ6

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ7

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBM UniversitiesQ8

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ11

1

10

100

1000

1000 1500 2000 2500 3000
LUBM UniversitiesQ13

1

10

100

1000

1000 1500 2000 2500 3000
LUBMQ1

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ4

1

10

100

1000

1000 1500 2000 2500 3000
LUBMQ6

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ7

1

10

100

1000

10000

1000 1500 2000 2500 3000
LUBMQ8

MJ

MJ

MJ

MJ

MJ

MJ

MJ MJ

MJ MJ

1

10

100

1000

10000

LUBM

1

10

100

1000

10000

200M 400M 600M 800M 1000M
SP²BenchQ1

1

10

100

1000

10000

200M 400M 600M 800M 1000M

SP²BenchQ3a

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

MJ

PigSPARQL MAPSIN MJ:Multiway Join of PigSPARQL/MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

0

1000

2000

3000

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

PigSPARQL MAPSIN PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

100

200

300

400

500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM

0

600

1200

1800

2400

3000

1000 1500 2000 2500 3000
LUBM

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

600

1200

1800

2400

3000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

1000 1500 2000 2500 3000

tim
e
in

se
co
nd

s

LUBM (# universities)

0

700

1400

2100

2800

3500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

250

500

750

1000

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

1000 1500 2000 2500 3000

tim
e
in
se
co
nd

s

LUBM (# universities)

0

100

200

300

400

500

1000 1500 2000 2500 3000
LUBM (# universities)

PigSPARQL MAPSIN

1

10

100

1000

10000

200M 400M 600M 800M 1000M

tim
e
in

se
co
nd

s

0

1000

2000

3000

200 300 400 500 600 700 800 900 1000

tim
e
in

se
co
nd

s

SP²Bench (triples in million)

PigSPARQL MAPSIN PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

10000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

1500

3000

4500

6000

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN
(Multiway Join Optimization)

1

10

100

1000

10000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

250

500

750

1000

1250

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN

1

10

100

1000

200 400 600 800 1000

tim
e
in
se
co
nd

s

SP²Bench (triples in million)

0

100

200

300

400

500

200 400 600 800 1000
SP²Bench (triples in million)

PigSPARQL MAPSIN

(b)

(a)

(c)

Fig. 3. Performance comparison for LUBM Q1 (a), Q8 (b), Q4 (c)

LUBM queries Q4 (5 triple patterns), Q7 (4 triple patterns), Q8 (5 triple
patterns) and SP2Bench queries Q1 (3 triple patterns), Q2 (9 triple patterns)
demonstrate the more general case with a sequence of cascaded joins (cf. Fig-
ure 3b). In these cases, MAPSIN joins perform even up to 28 times faster than
PigSPARQL for LUBM queries and up to 12 times faster for SP2Bench queries.

Of particular interest are queries Q4 of LUBM and Q1, Q2 of SP2Bench
since these queries support the multiway join optimization outlined in Section
4.3 as all triple patterns share the same join variable. This kind of optimization
is also supported by PigSPARQL such that both approaches can compute the
query results with a single multiway join (cf. Figure 3c). The MAPSIN multiway
join optimization improves the basic MAPSIN join execution time by a factor of
1.4 (SP2Bench Q1) to 3.3 (LUBM Q4), independently of the data size. For the
LUBM queries, the MAPSIN multiway join optimization performs 19 to 28 times
faster than the reduce-side based multiway join implementation of PigSPARQL.
For the more complex SP2Bench queries, the performance improvements degrade
to a factor of approximately 8.5.

The remaining queries (LUBM Q6, Q14 and SP2Bench Q10) consist of only
one single triple pattern. Consequently they do not contain a join processing

70

Table 4. Query execution times for PigSPARQL (P) and MAPSIN (M) in seconds

LUBM 1000 1500 2000 2500 3000
P M P M P M P M P M

Q1 324 34 475 51 634 53 790 70 944 84
Q3 324 33 480 42 642 49 805 59 961 72
Q4 1202 121 1758 167 2368 182 2919 235 3496 279
Q4 MJ 861 37 1297 53 1728 62 2173 81 2613 92
Q5 329 33 484 44 640 53 800 66 955 80
Q6 149 48 214 60 284 69 355 84 424 104
Q7 1013 62 1480 68 1985 93 2472 114 2928 123
Q8 1172 64 1731 77 2318 33 2870 108 3431 121
Q11 319 33 469 46 620 53 780 69 931 79
Q13 325 44 482 72 645 84 800 108 957 128
Q14 149 43 214 70 288 79 364 89 434 107

SP2Bench 200M 400M 600M 800M 1000M
P M P M P M P M P M

Q1 545 58 1026 118 1527 153 2018 177 2519 214
Q1 MJ 310 42 600 87 896 118 1187 154 1476 174
Q2 MJ 1168 241 2341 444 3514 671 4745 834 6005 999
Q3a 227 70 435 139 641 178 845 235 1050 274
Q10 99 40 174 84 254 111 340 151 414 167

step and illustrate primarily the advantages of the distributed HBase table scan
compared to the HDFS storage access of PigSPARQL. Improvements are still
present but less significant, resulting in an up to 5 times faster query execution.

An open issue of the evaluation remains the actual data flow between HBase
and MapReduce as HBase is like a black box where data distribution and parti-
tioning is handled by the system automatically. Since data locality is an impor-
tant aspect of distributed systems, it is crucial to examine additional measures
for future optimizations.

Overall, the MAPSIN join approach clearly outperforms the reduce-side join
based query execution for selective queries. Both approaches reveal a linear scal-
ing behavior with the input size but the slope of the MAPSIN join is much
smaller. Especially for LUBM queries, MAPSIN joins outperform reduce-side
joins by an order of magnitude as these queries are generally rather selective.
Moreover, the application of the multiway join optimization results in a further
significant improvement of the total query execution times.

6 Related Work

Single machine RDF systems like Sesame [6] and Jena [31] are widely-used
since they are user-friendly and perform well for small and medium sized RDF
datasets. RDF-3X [21] is considered one of the fastest single machine RDF
systems in terms of query performance that vastly outperforms previous single
machine systems but performance degrades for queries with unbound objects and
low selectivity factor [17]. Furthermore, as the amount of RDF data continues to
grow, it will become more and more difficult to store entire datasets on a single
machine due to the limited scaling capabilities [16]. One possible approach are
specialized clustered RDF systems like OWLIM [19], YARS2 [15] or 4store [14].

71

However, these systems require a dedicated infrastructure and pose additional
installation and management overhead. In contrast, our approach builds upon
the idea to use existing infrastructures that are well-known and widely used. As
we do not require any changes to Hadoop and HBase at all, it is possible to use
any existing Hadoop cluster or cloud service (e.g. Amazon EC2) out of the box.

There is a large body of work dealing with join processing in MapReduce
considering various aspects and application fields [4,5,18,20,22,25,32]. In Sec-
tion 2.2 we briefly outlined the advantages and drawbacks of the general-purpose
reduce-side and map-side (merge) join approaches in MapReduce. In addition to
these general-purpose approaches there are several proposals focusing on certain
join types or optimizations of existing join techniques for particular application
fields. In [22] the authors discussed how to process arbitrary joins (theta joins)
using MapReduce, whereas [4] focuses on optimizing multiway joins. However,
in contrast to our MAPSIN join, both approaches process the join in the reduce
phase including a costly data shuffle phase. Map-Reduce-Merge [32] describes a
modified MapReduce workflow by adding a merge phase after the reduce phase,
whereas Map-Join-Reduce [18] proposes a join phase in between the map and re-
duce phase. Both techniques attempt to improve the support for joins in MapRe-
duce but require profound modifications to the MapReduce framework. In [9]
the authors present non-invasive index and join techniques for SQL processing
in MapReduce that also reduce the amount of shuffled data at the cost of an
additional co-partitioning and indexing phase at load time. However, the schema
and workload is assumed to be known in advance which is typically feasible for
relational data but does not hold for RDF in general.

HadoopDB [3] is a hybrid of MapReduce and DBMS where MapReduce is
the communication layer above multiple single node DBMS. The authors in [16]
adopt this hybrid approach for the semantic web using RDF-3X. However, the
initial graph partitioning is done on a single machine and has to be repeated if
the dataset is updated or the number of machines in the cluster change. As we
use HBase as underlying storage layer, additional machines can be plugged in
seamlessly and updates are possible without having to reload the entire dataset.

HadoopRDF [17] is a MapReduce based RDF system that stores data directly
in HDFS and does also not require any changes to the Hadoop framework. It
is able to rebalance automatically when cluster size changes but join processing
is also done in the reduce phase. Our MAPSIN join does not use any shuffle or
reduce phase at all even in consecutive iterations.

7 Conclusion

In this paper we introduced the Map-Side Index Nested Loop join (MAPSIN
join) which combines the advantages of NoSQL data stores like HBase with the
well-known and approved distributed processing facilities of MapReduce. In gen-
eral, map-side joins are more efficient than reduce-side joins in MapReduce as
there is no expensive data shuffle phase involved. However, current map-side
join approaches suffer from strict preconditions what makes them hard to ap-

72

ply in general, especially in a sequence of joins. The combination of HBase and
MapReduce allows us to cascade a sequence of MAPSIN joins without having to
sort and repartition the intermediate output for the next iteration. Furthermore,
with the multiway join optimization we can reduce the number of MapReduce
iterations and HBase requests. Using an index to selectively request only those
data that is really needed also saves network bandwidth, making parallel query
execution more efficient. The evaluation with the LUBM and SP2Bench bench-
marks demonstrate the advantages of our approach compared to the commonly
used reduce-side join approach in MapReduce. For selective queries, MAPSIN
join based SPARQL query execution outperforms reduce-side join based execu-
tion by an order of magnitude while scaling very smoothly with the input size.
Lastly, our approach does not require any changes to Hadoop and HBase at all.
Consequently, MAPSIN joins can be run on any existing Hadoop infrastructure
and also on an instance of Amazon’s Elastic Compute Cloud (EC2) without
additional installation or management overhead.

In our future work, we will investigate alternatives and improvements of the
RDF storage schema for HBase and incorporate MAPSIN joins into PigSPARQL
in a hybrid fashion such that the actual join method is dynamically selected based
on pattern selectivity and statistics gathered at data loading time.

References

1. RDF Primer. W3C Recom. (2004), http://www.w3.org/TR/rdf-primer/
2. SPARQL Query Language for RDF. W3C Recom. (2008), http://www.w3.org/

TR/rdf-sparql-query/
3. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.:

HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. PVLDB 2(1), 922–933 (2009)

4. Afrati, F.N., Ullman, J.D.: Optimizing Multiway Joins in a Map-Reduce Environ-
ment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

5. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A Compar-
ison of Join Algorithms for Log Processing in MapReduce. In: SIGMOD (2010)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: ISWC (2002)

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for Structured
Data. ACM Transactions on Computer Systems (TOCS) 26(2), 4 (2008)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of the ACM 51(1), 107–113 (2008)

9. Dittrich, J., Quiané-Ruiz, J.A., Jindal, A., Kargin, Y., Setty, V., Schad, J.:
Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even
Noticing). PVLDB 3(1), 518–529 (2010)

10. Franke, C., Morin, S., Chebotko, A., Abraham, J., Brazier, P.: Distributed Seman-
tic Web Data Management in HBase and MySQL Cluster. In: IEEE International
Conference on Cloud Computing (CLOUD). pp. 105 –112 (2011)

11. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S.M., Ol-
ston, C., Reed, B., Srinivasan, S., Srivastava, U.: Building a High-Level Dataflow
System on top of Map-Reduce: The Pig Experience. PVLDB 2(2) (2009)

73

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

12. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: ACM SIGOPS
Operating Systems Review. vol. 37, pp. 29–43. ACM (2003)

13. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Web Semantics 3(2) (2005)

14. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a
Clustered RDF Store. In: SSWS. pp. 94–109 (2009)

15. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository
for Querying Graph Structured Data from the Web. The Semantic Web (2007)

16. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF
Graphs. PVLDB 4(11), 1123–1134 (2011)

17. Husain, M.F., McGlothlin, J.P., Masud, M.M., Khan, L.R., Thuraisingham, B.M.:
Heuristics-Based Query Processing for Large RDF Graphs Using Cloud Comput-
ing. IEEE TKDE 23(9) (2011)

18. Jiang, D., Tung, A.K.H., Chen, G.: Map-Join-Reduce: Toward Scalable and Effi-
cient Data Analysis on Large Clusters. IEEE TKDE 23(9), 1299–1311 (2011)

19. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - A Pragmatic Semantic Repos-
itory for OWL. In: WISE Workshops. pp. 182–192 (2005)

20. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel Data Processing
with MapReduce: A Survey. SIGMOD Record 40(4), 11–20 (2011)

21. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1),
647–659 (2008)

22. Okcan, A., Riedewald, M.: Processing Theta-Joins using MapReduce. In: SIGMOD
Conference. pp. 949–960 (2011)

23. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Transactions on Database Systems (TODS) 34(3), 16 (2009)

24. Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., Dorner, C., Lausen, G.: Cas-
cading Map-Side Joins over HBase for Scalable Join Processing. Technical Report.
CoRR abs/1206.6293 (2012)

25. Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., Lausen, G.: RDFPath: Path
Query Processing on Large RDF Graphs with MapReduce. In: ESWC Workshops.
pp. 50–64 (2011)

26. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping SPARQL
to Pig Latin. In: Proceedings of the International Workshop on Semantic Web
Information Management (SWIM). pp. 4:1–4:8 (2011)

27. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. In: ICDE. pp. 222–233 (2009)

28. Sun, J., Jin, Q.: Scalable RDF Store Based on HBase and MapReduce. In:
ICACTE. vol. 1, pp. 633–636 (2010)

29. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL Reasoning
with WebPIE: Calculating the Closure of 100 Billion Triples. In: ESWC. pp. 213–
227 (2010)

30. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. PVLDB 1(1), 1008–1019 (2008)

31. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In: SWDB. pp. 131–150 (2003)

32. Yang, H.C., Dasdan, A., Hsiao, R.L., Jr., D.S.P.: Map-Reduce-Merge: Simplified
Relational Data Processing on Large Clusters. In: SIGMOD (2007)

74

Scalable Nonmonotonic Reasoning over RDF data using
MapReduce

Ilias Tachmazidis1,2, Grigoris Antoniou1,3, Giorgos Flouris1, and Spyros Kotoulas4

1 Institute of Computer Science, FORTH
2 Department of Computer Science, University of Crete

3 University of Huddersfield, UK
4 IBM Research, IBM Ireland

Abstract. In this paper, we are presenting a scalable method for nonmonotonic
rule-based reasoning over Semantic Web Data, using MapReduce. Our work is
motivated by the recent unparalleled explosion of available data coming from
the Web, sensor readings, databases, ontologies and more. Such datasets could
benefit from the introduction of rule sets encoding commonly accepted rules or
facts, application- or domain-specific rules, commonsense knowledge etc. This
raises the question of whether, how, and to what extent knowledge representation
methods are capable of handling huge amounts of data for these applications.
We present a scalable MapReduce-based method for reasoning using defeasible
stratified logics. Our results indicate that our method shows good scalability prop-
erties and is able to handle a benchmark dataset of 1 billion triples, bringing it on
par with state-of-the-art methods for monotonic logics.

1 Introduction

Recently, we experience a significant growth of the amount of available data published
on the Semantic Web. Billions of RDF triples from Wikipedia, U.S. Census, CIA World
Factbook, open government sites in the US and the UK, memory organizations like the
British Museum and Europeanna, as well as news and entertainment sources such as
BBC, are published, along with numerous vocabularies and conceptual schemas from
e-science aiming to facilitate annotation and interlinking of scientific and scholarly
data [24]. The recent rising of the Linked Open Data initiative5 [6] is an answer to
the need for such large and interconnected data. RDF(S) [18, 7] has become the de
facto standard for representing such knowledge in the Semantic Web, due to its flexible
and extensible representation of information, which is independent of the existence or
absence of a schema, under the form of triples.

The amount, diversity and interlinkage of data published in this manner enables a
new generation of decision making and business intelligence applications across do-
mains. To fully exploit the immense value of such datasets and their interconnections,
one should be able to reason over them using rule sets that allow the aggregation, vi-
sualization, understanding and exploitation of the raw data. Such reasoning is based on
rules which capture the RDFS or OWL inference semantics, but also rules which encode

5 http://linkeddata.org/

75

commonsense, domain-specific, or other practical knowledge that humans possess and
would allow the system to automatically reach useful conclusions based on the provided
data, i.e., infer new and useful knowledge based on the data and their interconnections.

The knowledge representation field has provided a rich set of semantics and tech-
niques to use for reasoning using such rule sets, although the focus has been on com-
plex knowledge structures and reasoning methods. On the other hand, RDF datasets
are much simpler, but their size raises scalability challenges that cannot be addressed
by standard approaches. For example, as described in [29], for 78,8 million statements
crawled from the Web (a small percentage of the available knowledge), the number of
inferred conclusions using the relatively simple RDFS ruleset consists of 1,5 billion
triples; it is evident that coping with such amounts of data is impossible in standard,
single-machine approaches due to both memory and performance issues.

To address this problem, the use of massive parallelism has been recently pro-
posed [28, 22, 29, 14, 10, 30], where reasoning is handled by a set of machines, assign-
ing each of them a part of the parallel computation. In some cases, this approach has
allowed scaling reasoning up to 100 billion triples [28]. However, such approaches have
focused on monotonic reasoning, or have not been evaluated in terms of scalability [19].

In this paper, we concentrate on nonmonotonic rule sets [2, 17]. Such rule sets pro-
vide additional benefits because they are more suitable for encoding commonsense
knowledge and reasoning. In addition, in the case of poor quality data, monotonic log-
ics such as RDFS cause an explosion of trivial (and often useless derivations), as also
identified in [12]. The occurrence of low quality data is very common in the context
of the Semantic Web [24], as data are fetched from different sources, which are not
controlled by the data engineer; thus, nonmonotonic reasoning is more suitable for this
context.

Our previous works [26, 27] described how defeasible logic reasoning [16], a com-
monly used nonmonotonic logic, can be implemented using massively parallel tech-
niques. In [26, 27] we adopted the MapReduce framework [8], which is widely used
for parallel processing of huge datasets. In particular, we used Hadoop, an open-source
implementation of the MapReduce framework, with an extensive user list including
companies like IBM, Yahoo!, Facebook and Twitter6.

The approach of [27] addressed reasoning for stratified rule sets. Stratification is a
well-known concept employed in many areas of knowledge representation for efficiency
reasons, e.g., in tractable RDF query answering [25], Description Logics [4, 11, 20]
and nonmonotonic formalisms [5], as it has been shown to reduce the computational
complexity of various reasoning problems.

This paper is the first attempt evaluating the feasibility of applying nonmonotonic
reasoning over RDF data using mass parallelization techniques. We present a tech-
nique for materialization using stratified defeasible logics, based on MapReduce and fo-
cussing on performance. A defeasible rule set for the LUBM7 benchmark is presented,
which is used to evaluate our approach. We present scalability results indicating that
our approach scales superlinearly with the data size. In addition, since load-balancing
is a significant performance inhibitor in reasoning systems [22], we show that our ap-

6 http://wiki.apache.org/hadoop/PoweredBy
7 http://swat.cse.lehigh.edu/projects/lubm/

76

Algorithm 1 Wordcount example

map(Long key, String value) :
// key: position in document
// value: document line
for each word w in value

EmitIntermediate(w, “1”);

reduce(String key, Iterator values) :
// key: a word
// values : list of counts
int count = 0;
for each v in values

count += ParseInt(v);
Emit(key , count);

proach performs very well in this respect for the considered dataset, distributing data
fairly uniformly across MapReduce tasks. Compared to our previous work with simi-
lar content, we extend [26] by considering multi-arity predicates, and improve [27] by
experimenting over a standard RDF data benchmark (LUBM).

The rest of the paper is organized as follows. Section 2 introduces briefly the MapRe-
duce Framework and Defeasible Logic. The algorithm for defeasible reasoning using
MapReduce is described in Section 3, while Section 4 presents our experimental results.
We conclude in Section 5.

2 Preliminaries

2.1 MapReduce

MapReduce is a framework for parallel processing over huge datasets [8]. Processing
is carried out in two phases, a map and a reduce phase. For each phase, a set of user-
defined map and reduce functions are run in a parallel fashion. The former performs a
user-defined operation over an arbitrary part of the input and partitions the data, while
the latter performs a user-defined operation on each partition.

MapReduce is designed to operate over key/value pairs. Specifically, each Map
function receives a key/value pair and emits a set of key/value pairs. All key/value pairs
produced during the map phase are grouped by their key and passed to the reduce phase.
During the reduce phase, a Reduce function is called for each unique key, processing
the corresponding set of values.

Probably the most well-known MapReduce example is the wordcount example. In
this example, we take as input a large number of documents and the final result is the
calculation of the number of occurrences of each word. The pseudo-code for the Map
and Reduce functions is depicted in Algorithm 1.

During the map phase, each map operation gets as input a line of a document. The
Map function extracts words from each line and emits that word w occurred once (“1”).

77

Here we do not use the position of each line in the document, thus the key in Map is
ignored. However, a word can be found more than once in a line. In this case we emit a
<w, 1> pair for each occurrence. Consider the line “Hello world. Hello MapReduce.”.
Instead of emitting a pair <Hello, 2>, our simple example emits <Hello, 1> twice
(pairs for words world and MapReduce are emitted as well). As mentioned above, the
MapReduce framework will group and sort pairs by their key. Specifically for the word
Hello, a pair <Hello, <1,1>> will be passed to the Reduce function. The Reduce
function has to sum up all occurrence values for each word emitting a pair containing
the word and the final number of occurrences. The final result for the word Hello will
be <Hello, 2>.

2.2 Defeasible Logic - Syntax

A defeasible theory [21], [3] (a knowledge base in defeasible logic) consists of five
different kinds of knowledge: facts, strict rules, defeasible rules, defeaters, and a supe-
riority relation.

Facts are literals that are treated as known knowledge (given or observed facts).
Strict rules are rules in the classical sense: whenever the premises are indisputable

(e.g., facts) then so is the conclusion. An example of a strict rule is “Emus are birds”,
which can be written formally as: “emu(X) → bird(X).”.

Defeasible rules are rules that can be defeated by contrary evidence. An example of
such a rule is “Birds typically fly”; written formally: “bird(X) ⇒ flies(X).”.

Defeaters are rules that cannot be used to draw any conclusions. Their only use is
to prevent some conclusions. An example is “If an animal is heavy then it might not be
able to fly”. Formally: “heavy(X) ❀ ¬flies(X).”.

The superiority relation among rules is used to define priorities among rules, that
is, where one rule may override the conclusion of another rule. For example, given the
defeasible rules “r : bird(X) ⇒ flies(X)” and “r� : brokenWing(X) ⇒ ¬flies(X)” which
contradict one another, no conclusive decision can be made about whether a bird with
broken wings can fly. But if we introduce a superiority relation > with r� > r, with the
intended meaning that r� is strictly stronger than r, then we can indeed conclude that the
bird cannot fly.

Note that in this paper, the aforementioned term literal is defined strictly by the
defeasible logic semantics. An RDF triple can be represented as a literal. However,
considering the term literal as an RDF literal would be a common misunderstanding.

2.3 Defeasible Logic - Formal Definition

A rule r consists (a) of its antecedent (or body) A(r) which is a finite set of literals, (b)
an arrow, and, (c) its consequent (or head) C(r) which is a literal. Given a set R of rules,
we denote the set of all strict rules in R by Rs, and the set of strict and defeasible rules
in R by Rsd. R[q] denotes the set of rules in R with consequent q. If q is a literal, ∼q
denotes the complementary literal (if q is a positive literal p then ∼q is ¬p; and if q is
¬p, then ∼q is p)

A defeasible theory D is a triple (F,R,>) where F is a finite set of facts, R a finite
set of rules, and > a superiority relation upon R.

78

2.4 Defeasible Logic - Proof Theory

A conclusion of D is a tagged literal and can have one of the following four forms:

– +∆q, meaning that q is definitely provable in D.
– −∆q, meaning that q is not definitely provable in D (this does not necessarily mean

that ∼q is definitely provable).
– +∂q, meaning that q is defeasibly provable in D.
– −∂q, meaning that q is not defeasibly provable in D (this does not necessarily mean

that ∼q is defeasibly provable).

Provability is defined below. It is based on the concept of a derivation (or proof) in
D = (F, R, >). A derivation is a finite sequence P = P(1), ..., P(n) of tagged literals sat-
isfying the following conditions. The conditions are essentially inference rules phrased
as conditions on proofs. P(1..ı) denotes the initial part of the sequence P of length i. For
more details on provability and an explanation of the intuition behind the conditions
below, see [16].

+∆: We may append P(ı + 1) = +∆q if either
q ∈ F or
∃r ∈ Rs[q] ∀α ∈ A(r): +∆α ∈ P(1..ı)

−∆: We may append P(ı + 1) = −∆q if
q /∈ F and
∀r ∈ Rs[q] ∃α ∈ A(r): −∆α ∈ P(1..ı)

+∂: We may append P (ı + 1) = +∂q if either
(1) +∆q ∈ P(1..ı) or
(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r): +∂α ∈ P(1..ı) and

(2.2) −∆ ∼q ∈ P(1..ı) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃α ∈ A(s): −∂α ∈ P(1..ı) or
(2.3.2) ∃t ∈ Rsd[q] such that

∀α ∈ A(t): +∂α ∈ P(1..ı) and t > s

−∂: We may append P(ı + 1) = −∂q if
(1) −∆q ∈ P(1..ı) and
(2) (2.1) ∀r ∈ Rsd[q] ∃α ∈ A(r): −∂α ∈ P(1..ı) or

(2.2) +∆ ∼q ∈ P(1..ı) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀α ∈ A(s): +∂α ∈ P(1..ı) and
(2.3.2) ∀t ∈ Rsd[q] either

∃α ∈ A(t): −∂α ∈ P(1..ı) or t ≯ s

3 Algorithm description

The algorithm that is described in this section, shows how parallel reasoning can be
performed using the MapReduce framework. Parallel reasoning can be based either on

79

(a) Stratified (b) Non-stratified

Fig. 1: Predicate dependency graph

rule partitioning or on data partitioning [13]. Rule partitioning assigns the computation
of each rule to a computer in the cluster. However, balanced work distribution in this
case is difficult to achieve, as the computational burden per rule (and node) depends
on the structure of the rule set. On the other hand, data partitioning assigns a subset of
data to each computer. Data partitioning is more flexible, providing more fine-grained
partitioning and allowing easier distribution among nodes in a balanced manner. Our
approach is based on data partitioning.

For reasons that will be explained later, defeasible reasoning over rule sets with
multi-argument predicates is based on the dependencies between predicates which is en-
coded using the predicate dependency graph. Thus, rule sets can be divided into two cat-
egories: stratified and non-stratified. Intuitively, a stratified rule set can be represented
as an acyclic hierarchy of dependencies between predicates, while a non-stratified can-
not. We address the problem for stratified rule sets by providing a well-defined reason-
ing sequence, and explain at the end of the section the challenges for non-stratified rule
sets.

The dependencies between predicates can be represented using a predicate depen-
dency graph. For a given rule set, the predicate dependency graph is a directed graph
whose:

– vertices correspond to predicates. For each literal p, both p and ¬p are represented
by the positive predicate.

– edges are directed from a predicate that belongs to the body of a rule, to a predicate
that belongs to the head of the same rule. Edges are used for all three rule types
(strict rules, defeasible rules, defeaters).

Stratified rule sets (correspondingly, non-stratified rule sets) are rule sets whose
predicate dependency graph is acyclic (correspondingly, contains a cycle). Stratified
theories are theories based on stratified rule sets. Figure 1a depicts the predicate depen-
dency graph of a stratified rule set, while Figure 1b depicts the predicate dependency
graph of a non-stratified rule set. The superiority relation is not part of the graph.

As an example of a stratified rule set, consider the following:

r1: X sentApplication A, A completeFor D ⇒ X acceptedBy D.
r2: X hasCertificate C, C notValidFor D ⇒ X ¬acceptedBy D.
r3: X acceptedBy D, D subOrganizationOf U ⇒ X studentOfUniversity U.
r1 > r2.

80

The predicate dependency graph for the above rule set is depicted in Figure 1a. The
predicate graph can be used to determine strata for the different predicates. In particular,
predicates (nodes) with no outgoing edges are assigned the maximum stratum, which is
equal to the maximum depth of the directed acyclic graph (i.e., the size of the maximum
path that can be defined through its edges), say k. Then, all predicates that are connected
with a predicate of stratum k are assigned stratum k − 1, and the process continues re-
cursively until all predicates have been assigned some stratum. Note that predicates are
reassigned to a lower stratum in case of multiple dependencies. The dashed horizontal
lines in Figure 1a are used to separate the various strata, which, in our example, are as
follows:

Stratum 2: studentOfUniversity
Stratum 1: acceptedBy, subOrganizationOf
Stratum 0: sentApplication, completeFor, hasCertificate, notValidFor

Stratified theories are often called decisive in the literature [5].

Proposition 1. [5] If D is stratified, then for each literal p:
(a) either D � +∆p or D � −∆p
(b) either D � +∂p or D � −∂p

Thus, there are three possible states for each literal p in a stratified theory: (a) +∆p
and +∂p, (b) −∆p and +∂p and (c) −∆p and −∂p.

Reasoning is based on facts. According to defeasible logic algorithm, facts are +∆
and every literal that is +∆, is +∂ too. Having +∆ and +∂ in our initial knowledge
base, it is convenient to store and perform reasoning only for +∆ and +∂ predicates.

This representation of knowledge allows us to reason and store provability informa-
tion regarding various facts more efficiently. In particular, if a literal is not found as a
+∆ (correspondingly, +∂) then it is −∆ (correspondingly, −∂). In addition, stratified
defeasible theories have the property that if we have computed all the +∆ and +∂ con-
clusions up to a certain stratum, and a rule whose body contains facts of said stratum
does not currently fire, then this rule will also be inapplicable in subsequent passes; this
provides a well-defined reasoning sequence, namely considering rules from lower to
higher strata.

3.1 Reasoning overview

During reasoning we will use the representation (<fact, (+∆,+∂)>) to store our in-
ferred facts. We begin by transforming the given facts, in a single MapReduce pass,
into (<fact, (+∆,+∂)>).

Now let us consider for example the facts “John sentApplication App”, “App com-
pleteFor Dep”, “John hasCertificate Cert”, “Cert notValidFor Dep” and “Dep subOr-
ganizationOf Univ” . The initial pass on these facts using the aforementioned rule set
will create the following output:

<John sentApplication App, (+∆,+∂)> <App completeFor Dep, (+∆,+∂)>
<John hasCertificate Cert, (+∆,+∂)> <Cert notValidFor Dep, (+∆,+∂)>
<Dep subOrganizationOf Univ, (+∆,+∂)>

81

No reasoning needs to be performed for the lowest stratum (stratum 0) since these
predicates (sentApplication, completeFor, hasCertificate, notValidFor) do not belong
to the head of any rule. As is obvious by the definition of +∂, −∂, defeasible logic
introduces uncertainty regarding inference, because certain facts/rules may “block” the
firing of other rules. This can be prevented if we reason for each stratum separately,
starting from the lowest stratum and continuing to higher strata. This is the reason why
for a hierarchy of N strata we have to perform N − 1 times the procedure described
below. In order to perform defeasible reasoning we have to run two passes for each
stratum. The first pass computes which rules can fire. The second pass performs the
actual reasoning and computes for each literal if it is definitely or defeasibly provable.
The reasons for both decisions (reasoning sequence and two passes per stratum) are
explained in the end of the next subsection.

3.2 Pass #1: Fired rules calculation

During the first pass, we calculate the inference of fired rules, which is performed by
joining predicates on common argument values. Such techniques for basic and multi-
way join have been described in [9] and optimized in [1]. In order to achieve an efficient
implementation, optimizations in [1] should be taken into consideration. Here we elab-
orate on our approach for basic joins and explain at the end of the subsection how it can
be generalized for multi-way joins.

Basic join is performed on common argument values. Consider the following rule:

r1: X sentApplication A, A completeFor D ⇒ X acceptedBy D.

The key observation is that “X sentApplication A” and “A completeFor D” can be
joined on their common argument A. Based on this observation, during the Map opera-
tion, we emit pairs of the form <A, (X, sentApplication)> for predicate sentApplication
and <A, (D, completeFor)> for predicate completeFor. The idea is to join sentApplica-
tion and completeFor only for literals that have the same value on argument A. During
the Reduce operation we combine sentApplication and completeFor producing accept-
edBy.

In our example, the facts “John sentApplication App” and “App completeFor Dep”
will cause Map to emit <App, (John, sentApplication)> and <App, (Dep, complete-
For)>. The MapReduce framework groups and sorts intermediate pairs passing <App,
<(John, sentApplication), (Dep, completeFor)>> to the Reduce operation. Finally, at
Reduce we combine given values and infer “John acceptedBy Dep”.

To support defeasible logic rules which have blocking rules, this approach must
be extended. We must record all fired rules prior to any conclusion inference, whereas
for monotonic logics this is not necessary, and conclusion derivation can be performed
immediately. The reason why this is so is explained at the end of the subsection. Pseudo-
code for Map and Reduce functions, for a basic join, is depicted in Algorithm 2. Map
function reads input of the form <literal, (+∆, +∂)> or <literal, (+∂)> and emits
pairs of the form <matchingArgumentValue, (nonMatchingArgumentValue, Predicate,
+∆, +∂)> or <matchingArgumentValue, (nonMatchingArgumentValue, Predicate,
+∂)> respectively.

82

Algorithm 2 Fired rules calculation

map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (derived conclusion)
For every common argumentValue in value

EmitIntermediate(argumentValue, value);

reduce(String key, Iterator values):
// key: matching argument
// value: literals for matching
For every argument value match in values

If strict rule fired with all premises being +∆ then
Emit(firedLiteral, “[¬,] +∆, +∂, ruleID”);

else
Emit(firedLiteral, “[¬,] +∂, ruleID”);

Now consider again the stratified rule set described in the beginning of the section,
for which the initial pass will produce the following output:

<John sentApplication App, (+∆,+∂)> <App completeFor Dep, (+∆,+∂)>
<John hasCertificate Cert, (+∆,+∂)> <Cert notValidFor Dep, (+∆,+∂)>
<Dep subOrganizationOf Univ, (+∆,+∂)>

We perform reasoning for stratum 1, so we will use as premises all the available
information for predicates of stratum 0. The Map function will emit the following
pairs:

<App, (John,sentApplication,+∆,+∂)> <App, (Dep,completeFor,+∆,+∂)>
<Cert, (John,hasCertificate,+∆,+∂)> <Cert, (Dep,notValidFor,+∆,+∂)>

The MapReduce framework will perform grouping/sorting resulting in the follow-
ing intermediate pairs:

<App, <(John,sentApplication,+∆,+∂), (Dep,completeFor,+∆,+∂)>>
<Cert, <(John,hasCertificate,+∆,+∂), (Dep,notValidFor,+∆,+∂)>>

During reduce we combine premises in order to emit the firedLiteral which consists
of the fired rule head predicate and the nonMatchingArgumentValue of the premises.
However, inference depends on the type of the rule. In general, for all three rule types
(strict rules, defeasible rules and defeaters) if a rule fires then we emit as output <firedLiteral,
([¬,] +∂, ruleID)> ([¬,] denotes that “¬” is optional and appended only if the firedLit-
eral is negative). However, there is a special case for strict rules. This special case covers
the required information for +∆ conclusions inference. If all premises are +∆ then we
emit as output <firedLiteral, ([¬,]+∆,+∂,ruleID)> instead of <firedLiteral, ([¬,]+∂,
ruleID)>.

For example, during the reduce phase the reducer with key:

83

App will emit <John acceptedBy Dep, (+∂, r1)>
Cert will emit <John acceptedBy Dep, (¬,+∂, r2)>

As we see here, “John acceptedBy Dep” and “John ¬acceptedBy Dep” are computed
by different reducers (with key App and Cert respectively) which do not communicate
with each other. Thus, none of the two reducers has all the available information in order
to perform defeasible reasoning. Therefore, we need a second pass for the reasoning.

Let us illustrate why reasoning has to be performed for each stratum separately,
requiring stratified rule sets. Consider again our running example. We will attempt to
perform reasoning for all the strata simultaneously. On the one hand, we cannot join
“John acceptedBy Dep” with “Dep subOrganizationOf Univ” prior to the second pass
because we do not have a final conclusion on “John acceptedBy Dep”. Thus, we will
not perform reasoning for “John studentOfUniversity Univ” during the second pass,
which leads to data loss. On the other hand, if another rule (say r4) supporting “John
¬studentOfUniversity Univ” had also fired, then during the second pass, we would have
mistakenly inferred “John ¬studentOfUniversity Univ”, leading our knowledge base to
inconsistency.

In case of multi-way joins we compute the head of the rule (firedLiteral) by perform-
ing joins, on common argument values, in one or more MapReduce passes as explained
in [9] and [1]. As above, for each fired rule, we must take into consideration the type of
the rule and whether all the premises are +∆ or not. Finally, the format of the output
remains the same (<firedLiteral, ([¬,] +∆, +∂, ruleID)> or <firedLiteral, ([¬,] +∂,
ruleID)>).

3.3 Pass #2: Defeasible reasoning

We proceed with the second pass. Once fired rules are calculated, a second MapReduce
pass performs reasoning for each literal separately. We should take into consideration
that each literal being processed could already exist in our knowledge base (due to the
initial pass). In this case, we perform duplicate elimination by not emitting pairs for
existing conclusions. The pseudo-code for Map and Reduce functions, for stratified
rule sets, is depicted in Algorithm 3.

After both initial pass and fired rules calculation (first pass), our knowledge base
will consist of:

<John sentApplication App, (+∆,+∂)> <App completeFor Dep, (+∆,+∂)>
<John hasCertificate Cert, (+∆,+∂)> <Cert notValidFor Dep, (+∆,+∂)>
<Dep subOrganizationOf Univ, (+∆,+∂)> <John acceptedBy Dep, (+∂, r1)>
<John acceptedBy Dep, (¬,+∂, r2)>

During the Map operation we must first extract from value the literal and the in-
ferred knowledge or the fired rule using extractLiteral() and extractKnowledge() re-
spectively. For each literal p, both p and ¬p are sent to the same reducer. The “¬” in
knowledge distinguishes p from ¬p. The Map function will emit the following pairs:

<Dep subOrganizationOf Univ, (+∆,+∂)> <John acceptedBy Dep, (+∂, r1)>
<John acceptedBy Dep, (¬,+∂, r2)>

84

Algorithm 3 Defeasible reasoning

map(Long key, String value) :
// key: position in document (irrelevant)
// value: inferred knowledge/fired rules
String p = extractLiteral(value);
If p does not belong to current stratum then

return;
String knowledge = extractKnowledge(value);
EmitIntermediate(p, knowledge);

reduce(String p, Iterator values) :
// p: a literal
// values : inferred knowledge/fired rules
For each value in values

markKnowledge(value);
For literal in {p, ¬p} check

If literal is already +∆ then
return;

Else If strict rule fired with all premises being +∆ then
Emit(literal, “+∆, +∂”);

Else If literal is +∂ after defeasible reasoning then
Emit(literal, “+∂”);

MapReduce framework will perform grouping/sorting resulting in the following in-
termediate pairs:

<Dep subOrganizationOf Univ, (+∆,+∂)>
<John acceptedBy Dep, <(+∂, r1), (¬,+∂, r2)>>

For the Reduce, the key contains the literal and the values contain all the available
information for that literal (known knowledge, fired rules). We traverse over values
marking known knowledge and fired rules using the markKnowledge() function. Sub-
sequently, we use this information in order to perform reasoning for each literal.

During the reduce phase the reducer with key:

“Dep subOrganizationOf Univ” will not emit anything
“John acceptedBy Dep” will emit <John acceptedBy Dep, (+∂)>

The literal “Dep subOrganizationOf Univ” is known knowledge. For known knowledge
a potential duplicate elimination must be performed. We reason simultaneously both for
“John acceptedBy Dep” and “John ¬acceptedBy Dep”. As “John ¬acceptedBy Dep” is
−∂, it does not need to be recorded.

3.4 Final remarks

The total number of MapReduce passes is independent of the size of the given data,
and is determined by the form of the rules, in particular by the number of strata that the

85

rules are stratified into. As mentioned in subsection 3.2, performing reasoning for each
stratum separately eliminates data loss and inconsistency, thus our approach is sound
and complete since we fully comply with the defeasible logic provability. Eventually,
our knowledge base consists of +∆ and +∂ literals.

The situation for non-stratified rule sets is more complex. Reasoning can be based
on the algorithm described in [15], performing reasoning until no new conclusion is
derived. However, the total number of required passes is generally unpredictable, de-
pending both on the given rule set and the data distribution. Additionally, an efficient
mechanism for “∀r ∈ Rs[q] ∃α ∈ A(r): −∆α ∈ P(1..ı)” (in −∆ provability) and
“∀r ∈ Rsd[q] ∃α ∈ A(r): −∂α ∈ P(1..ı)” (in 2.1 of −∂ provability) computation is
yet to be defined because all the available information for the literal must be processed
by a single node (since nodes do not communicate with each other), causing either main
memory insufficiency or skewed load balancing decreasing the parallelization. Finally,
we have to reason for and store every possible conclusion (+∆,−∆,+∂,−∂), producing
a significantly larger stored knowledge base.

4 Evaluation

In this Section, we are presenting the methodology, dataset and experimental results for
an implementation of our approach using Hadoop.

Methodology. Our evaluation is centered around scalability and the capacity of
our system to handle large datasets. In line with standard practice in the field of high-
performance systems, we have defined scalability as the ability to process datasets of
increasing size in a proportional amount of time and the ability of our system to per-
form well as the computational resources increase. With regard to the former, we have
performed experiments using datasets of various sizes (yet similar characteristics).

With regard to scaling computational resources, it has been empirically observed
that the main inhibitor of parallel reasoning systems has been load-balancing between
compute nodes [14]. Thus, we have also focused our scalability evaluation on this as-
pect.

The communication model of Hadoop is not sensitive to the physical location of
each data partition. In our experiments, Map tasks only use local data (implying very
low communication costs) and Reduce operates using hash-partitioning to distribute
data across the cluster (resulting in very high communication costs regardless of the
distribution of data and cluster size). In this light, scalability problems do not arise
by the number of compute nodes, but by the unequal distribution of the workload in
each reduce task. As the number of compute nodes increases, this unequal distribution
becomes visible and hampers performance.

Dataset. We have used the most popular benchmark for reasoning systems, LUBM.
LUBM allows us to scale the size of the data to an arbitrary size while keeping the rea-
soning complexity constant. For our experiments, we generated up to 8000 universities
resulting in approximately 1 billion triples.

Rule set. The logic of LUBM can be partially expressed using RDFS and OWL2-
RL. Nevertheless, neither of these logics are defeasible. Thus, to evaluate our system,
we have created the following ruleset:

86

r1: X rdf:type FullProfessor → X rdf:type Professor.
r2: X rdf:type AssociateProfessor → X rdf:type Professor.
r3: X rdf:type AssistantProfessor → X rdf:type Professor.
r4: P publicationAuthor X, P publicationAuthor Y → X commonPublication Y.
r5: X teacherOf C, Y takesCourse C → X teaches Y.
r6: X teachingAssistantOf C, Y takesCourse C → X teaches Y.
r7: X commonPublication Y → X commonResearchInterests Y.
r8: X hasAdvisor Z, Y hasAdvisor Z → X commonResearchInterests Y.
r9: X hasResearchInterest Z, Y hasResearchInterest Z → X commonResearchInterests Y.
r10: X hasAdvisor Y ⇒ X canRequestRecommendationLetter Y.
r11: Y teaches X ⇒ X canRequestRecommendationLetter Y.
r12: Y teaches X, Y rdf:type PostgraduateStudent ⇒ X ¬canRequestRecommendationLetter Y.
r13: X rdf:type Professor, X worksFor D, D subOrganizationOf U ⇒ X canBecomeDean U.
r14: X rdf:type Professor, X headOf D, D subOrganizationOf U ⇒ X ¬canBecomeDean U.
r15: X worksFor D ⇒ X canBecomeHeadOf D.
r16: X worksFor D, Z headOf D, X commonResearchInterests Z ⇒ X ¬canBecomeHeadOf D.
r17: Y teaches X ⇒ X suggestAdvisor Y.
r18: Y teaches X, X hasAdvisor Z ❀ X ¬suggestAdvisor Y.
r12 > r11, r14 > r13, r16 > r15, r18 > r17.

MapReduce jobs description. We need 8 jobs in order to perform reasoning on
the above rule set. The first job is the initial pass described in Section 3 (which we
also use to compute rules r1-r3). For the rest of the jobs, we first compute fired rules
and then perform reasoning for each stratum separately. The second job computes rules
r4-r6. During the third job we perform duplicate elimination, since r4-r6 are strict rules.
We compute rules r7-r14 during the fourth job while reasoning on them, is performed
during the fifth job. Jobs six and seven compute rules r15-r18. Finally, during the eighth
job we perform reasoning on r15-r18, finishing the whole procedure.

Platform. Our experiments were performed on a IBM x3850 server with 40 cores
and 750GB of RAM, connected to a XIV Storage Area Network (SAN), using a 10Gbps
storage switch. We have used IBM Hadoop Cluster v1.3, which is compatible with
Hadoop v0.20.2, along with an optimization to reduce Map task overhead, in line with
[23]. Although our experiments were run on a single machine, there was no direct com-
munication between processes and all data was transferred through persistent storage.
We have used a number of Mappers and Reducers equal to the number of cores in the
system (i.e. 40).

Results. Figure 2 shows the runtimes of our system for varying input sizes. We make
the following observations: (a) even for a single node, our system is able to handle very
large datasets, easily scaling to 1 billion triples. (b) The scaling properties with regard
to dataset size are excellent: in fact, as the size of the input increases, the throughput
of our system increases. For example, while our system can process a dataset of 125
million triples at a throughput of 27Ktps, for 1 billion triples, the throughput becomes
63Ktps. This is attributed to the fact that job startup costs are amortized over the longer
runtime of the bigger datasets.

The above show that our system is indeed capable of achieving high performance
and scales very well with the size of the input. Nevertheless, to further investigate how

87

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

Millions of facts

Tim
e i

n m
inu

tes

Job 1
Job 2
Job 3
Job 4
Job 5
Job 6
Job 7
Job 8
Linear

Fig. 2: Runtime in minutes for various datasets, and projected linear scalability. Job
runtimes are stacked (i.e. runtime for Job 8 includes the runtimes for Jobs 1-7).

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Job ID

Tim
e i

n s
ec

on
ds

min
average
max

(a) 40 reduce tasks

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Job ID

Tim
e i

n s
ec

on
ds

min
average
max

(b) 400 reduce tasks

Fig. 3: Minimum, average and maximum reduce task runtime for each job.

our system would perform when the data size precludes the use of a single machine, it
is critical to examine the load-balancing properties of our algorithm.

As previously described, in typical MapReduce applications, load-balancing prob-
lems arise during the reduce phase. Namely, it is possible that the partitions of the data
processed in a single reduce task vary widely in terms of compute time required. This is
a potential scalability bottleneck. To test our system for such issues, we have launched
an experiment where we have increased the number of reduce tasks to 400. We can
expect that, if the load balance for 400 reduce tasks is relatively uniform, our system is
able to scale at least to that size.

Figure 3 shows the load balance between different reduce tasks, for 1 billion triples
and 40 (Figure 3a) or 400 (Figure 3b) reduce tasks. In principle, an application performs
badly when a single task dominates the runtime, since all other tasks would need to wait
for it to finish. In our experiments, it is evident that no such task exists. In addition, one
may note that the system is actually faster with 400 reduce tasks. This is attributed both
to the fact that each core in our platform can process two threads in parallel, and to
implementation aspects of Hadoop that result in tasks, processing approximately 1GB,
demonstrating higher throughput than larger tasks.

Although a direct comparison is not meaningful, the throughput of our system is in
line with results obtained when doing monotonic reasoning using state of the art RDF
stores and inference engine. For example, OWLIM claims a 14.4-hour loading time

88

for the same dataset when doing OWL horst inference 8. WebPIE [28], which is also
based on MapReduce, presents an OWL-horst inference time of 35 minutes, albeit on
64 lower-spec nodes and requiring an additional dictionary encoding step.

Given the significant overhead of nonmonotonic reasoning, and in particular, the
fact that inferences can not be drawn directly, this result is counter-intuitive. The key to
the favorable performance of our approach is that the “depth” of the reasoning is fixed,
on a per rule set basis. The immediate consequence is that the number of MapReduce
jobs, which bear significant startup costs, is also fixed. In other words, the “predictable”
nature of stratified logics allows us to have less complicated relationships between facts
in the system.

Finally, we should take into consideration the fact that LUBM produces fairly uni-
form data. Although there is significant skew in LUBM (e.g. in the frequency of terms
such as rdf:type), the rule set that we have used in the evaluation does not perform joins
on such highly skewed terms. However, our previous work [27] shows that our approach
can cope with highly skewed data, which follow a zipf distribution.

5 Conclusion and Future Work

In this paper we studied the feasibility of nonmonotonic rule systems over large volumes
of semantic data. In particular, we considered defeasible reasoning over RDF, and ran
experiments over RDF data. Our results demonstrate that such reasoning scales very
well. In particular, we have shown that nonmonotonic reasoning is not only possible,
but can compete with state-of-the-art monotonic logics. To the best of our knowledge,
this is the first study demonstrating the feasibility of inconsistency-tolerant reasoning
over RDF data using mass parallelization techniques.

In future work, we intend to perform an extensive experimental evaluation in order
to verify our results for different input dataset morphologies. In addition, we plan to
apply the MapReduce framework to ontology dynamics (including evolution, diagnosis,
and repair) approaches based on validity rules (integrity constraints). These problems
are closely related to inconsistency-tolerant reasoning, as violation of constraints may
be viewed as a logical inconsistency.

6 Acknowledgments

This work was partially supported by the PlanetData NoE (FP7:ICT-2009.3.4, #257641).

References

1. Afrati, F.N., Ullman, J.D.: Optimizing joins in a mapreduce environment. In: EDBT (2010)
2. Antoniou, G., van Harmelen, F.: A Semantic Web Primer, 2nd Edition. The MIT Press, 2

edn. (March 2008)
3. Antoniou, G., Williams, M.A.: Nonmonotonic reasoning. MIT Press (1997)

8 http://www.ontotext.com/owlim/benchmark-results/lubm

89

4. Baader, F., Kosters, R.: Nonstandard Inferences in Description Logics: The Story So Far.
Mathematical Problems from Applied Logic I, volume 4 of International Mathematical Se-
ries (2006)

5. Billington, D.: Defeasible Logic is Stable. J. Log. Comput. 3(4), 379–400 (1993)
6. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semantic Web

Inf. Syst. 5(3), 1–22 (2009)
7. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.

www.w3.org/TR/2004/REC-rdf-schema-20040210 (2004)
8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters
9. Fische, F.: Investigation & Design for Rule-based Reasoning. Tech. rep., LarKC (2010)

10. Goodman, E.L., Jimenez, E., Mizell, D., Al-Saffar, S., Adolf, B., Haglin, D.J.: High-
Performance Computing Applied to Semantic Databases. In: ESWC (2). pp. 31–45 (2011)

11. Haase, C., Lutz, C.: Complexity of Subsumption in the EL Family of Description Logics:
Acyclic and Cyclic TBoxes. In: ECAI-08. pp. 25–29 (2008)

12. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning for the Web. Int.
J. Semantic Web Inf. Syst. 5(2), 49–90 (2009)

13. Kotoulas, S., van Harmelen, F., Weaver, J.: KR and Reasoning on the Semantic Web: Web-
Scale Reasoning (2011)

14. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: distributed inferencing by
speeddating in elastic regions. In: WWW. pp. 531–540 (2010)

15. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient Defeasible Reason-
ing Systems. IJAIT 10, 2001 (2001)

16. Maher, M.J.: Propositional Defeasible Logic has Linear Complexity. CoRR cs.AI/0405090
(2004)

17. Maluszynski, J., Szalas, A.: Living with Inconsistency and Taming Nonmonotonicity. In:
Datalog. pp. 384–398 (2010)

18. Manola, F., Miller, E., McBride, B.: RDF Primer. www.w3.org/TR/rdf-primer (2004)
19. Mutharaju, R., Maier, F., Hitzler, P.: A MapReduce Algorithm for EL+. In: Description Log-

ics (2010)
20. Nebel, B.: Terminological Reasoning is Inherently Intractable. Artificial Intelligence 43,

235–249 (1990)
21. Nute, D.: Defeasible Logic. In: Handbook of Logic in Artificial Intelligence and Logic

Programming-Nonmonotonic Reasoning and Uncertain Reasoning(Volume 3) (1994)
22. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin: Dis-

tributed reasoning over large-scale Semantic Web data. J. Web Sem. 7(4), 305–316 (2009)
23. R. Vernica, A. Balmin, K.B., Ercegovac, V.: Adaptive Mapreduce using Situation-Aware

Mappers. In: EDBT
24. Roussakis, Y., Flouris, G., Christophides, V.: Declarative Repairing Policies for Curated KBs.

In: HDMS (2011)
25. Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and Minimization of

RDF(S) Query Patterns. In: ISWC-05 (2005)
26. Tachmazidis, I., Antoniou, G., Flouris, G., Kotoulas, S.: Towards Parallel Nonmonotonic

Reasoning with Billions of Facts. In: KR-12 (2012)
27. Tachmazidis, I., Antoniou, G., Flouris, G., Kotoulas, S., McCluskey, L.: Large-scale Parallel

Stratified Defeasible Reasoning. In: ECAI-12 (2012)
28. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: OWL reasoning with

webPIE: Calculating the Closure of 100 Billion Triples. In: ESWC (1). pp. 213–227 (2010)
29. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using

MapReduce. In: ISWC. pp. 634–649 (2009)
30. Weaver, J., Hendler, J.A.: Parallel materialization of the finite rdfs closure for hundreds of

millions of triples. In: International Semantic Web Conference. pp. 682–697 (2009)

90

A Scalability Metric for Parallel Computations
on Large, Growing Datasets (like the Web)

Jesse Weaver

Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract. One of the greatest challenges facing computations on data
crawled from the Web is the (in)ability to scale to such large quantities
of data. While some computations are less challenged by this than oth-
ers, inference on the Semantic Web is certainly limited in this regard.
Parallelism has been employed to scale inference to larger datasets, but
evaluations of recent works have fallen back on common parallel com-
puting metrics that do not apply to this specific scalability challenge.
In this position paper, the name data scaling is given to this scalability
challenge, and the metric growth efficiency is defined.

1 Introduction

One of the greatest challenges facing computations on data crawled from the
Web is the (in)ability to scale to such large quantities of data. Parallelism is
often employed to scale computation to larger datasets while keeping execution
time reasonable. However, traditional parallel computing metrics focus on one of
two forms of scaling: strong scaling or weak scaling. The goal of strong scaling is
to reduce execution time for a fixed problem by adding processors. The goal of
weak scaling is to keep execution time constant by adding processors to accom-
modate additional workload (not necessarily proportional to amount of data).
In contrast to these notions of scaling, a new notion of scalability – data scaling
– is introduced herein, and it is concerned with keeping execution time constant
by adding processors to accommodate more data.

The ideas presented in this position paper are preliminary in nature, still
requiring formal development. The specific intent of this paper, though, is to
instigate a paradigm shift in the way scalability evaluations of parallel inference
(and possibly other problems) on large, RDF datasets are performed.

In section 2, the need for data scaling is motivated. In section 3, common
scalability metrics are shown to be unfit for measuring data scalability, and a
new data scaling metric – growth efficiency – is defined. Discussion about, and
a retroactive example of, evaluating a system with growth efficiency is given in
section 4, and conclusion is given in section 5.

2 Motivation: data scaling

This work subscribes to the following statement by Hitzler and van Harmelen:
“Concerning scalability, reasoning systems have made major leaps in the recent

91

past However, it remains an open question when (and if1) these approaches
will scale to the size of the web, . . . ” [5]. From this statement, two assumptions
are inferred which are used to motivate the work presented herein.

1. It is important for reasoning (including inference) systems to scale toward
the size of the Web.

2. The Web is continuously growing.

Perhaps these assumptions are debatable, but for the intents and purposes of this
paper, they are considered axiomatic. Additionally, although inference motivates
this work, the definitions and their application are not specific to any particular
class of problems.

To support definitions throughout this paper, a simplistic, intentionally non-
specific computational model is assumed. A (terminating) parallel computation
is performed on some dataset, in some amount of time, utilizing some number
of processors. This is sufficient for the following discussion.

Indeed, progress has been made for specific forms of reasoning on large
datasets. At the very least, varying degrees of RDFS and OWL inference have
been achieved on real-world datasets containing around a billion RDF triples [6,
8, 11, 14]. However, in 2010, linked RDF data on the Web consisted of over 24.7
billion RDF triples, and the amount of such data appears to be rapidly growing
[1]. Therefore, even if effective inference could be demonstrated on the entire
body of RDF data on the (current) Web, it would likely need to scale to even
larger datasets in the future.

Evaluations of recently studied, parallel inference approaches [2, 6–13] give
no direct indication of how well the approaches will scale to dataset sizes beyond
those used in the evaluations. This seems to be due to reliance on scalability met-
rics traditionally used in parallel computing that do not apply to the challenge
of large and growing datasets. Therefore, there is a need to explicitly name and
define this scalability issue, and to provide relevant metrics for it.

Data scaling is concerned with the change in execution time of a paral-
lel computation as processors are added to accommodate larger datasets. Data
scaling is arguably the central scalability issue for parallel computations on the
Web, and it is distinct from strong scaling and weak scaling as illustrated through
metrics in the following section.

3 Common scalability metrics and growth efficiency

This section contains a brief review of fundamental metrics often used for mea-
suring scalability (in some sense) of parallel systems. These are defined herein in
an atypical way in order to relate the metrics to dataset size, thus highlighting
their insufficiency for measuring data scalability. Then a new metric for data
scaling is introduced. To aide this discussion, the following definition is needed.

1 “Since the web keeps growing, they may never scale, even if they become much more
efficient.” Footnote in quote from [5]. Footnote number appearing in the quote herein
differs from the number used in [5].

92

Definition 1. A growing dataset is effectively a function D that maps positive
integers to datasets such that for any positive integer n, |D(n)| = n and D(n) ⊂
D(n+ 1).

Relative speedup and metrics based on it are the scalability metrics reported
by nearly every recent work [2, 8–12]. Others report only (variants of) execution
time [6, 7, 13].

Definition 2. Let D be a growing dataset, and fix k to some positive integer.
Let T1 be the execution time for one processor with dataset D(k), and let TP

be the execution time for P processors with dataset D(k). Then the relative
speedup is defined as SP = T1/TP .

Clearly, relative speedup (the most common strong scaling metric) gives no direct
indication of data scaling since the dataset is fixed. As an alternative, one may
resort to (empirical) scaled speedup [4] (the most common weak scaling metric).

Definition 3. Let D be a growing dataset, and fix k to some positive integer.
Let t1 be the execution time for one processor with dataset D(k). Let i > k be a
positive integer such that the execution time for P processors with dataset D(i)
is t1. Then let tP be the execution time for one processor with dataset D(i).
Then the scaled speedup is defined as SP = tP /t1.

Unlike with relative speedup, in scaled speedup, the dataset size changes with
the number of processors. However, processors are added not to accommodate
more data but rather to keep execution time constant.

Therefore, these metrics (and those metrics derived from them) are unsuited
for measuring data scalability, and a new metric is needed.

Definition 4. Let D be a growing dataset, and fix k to some positive integer. Let
T1 be the execution time for one processor with dataset D(k), and let TP be the
execution time for P processors with dataset D(P ·k). Then growth efficiency
is defined as GP = T1/TP .

Growth efficiency directly aligns with the notion of data scaling. The idea is that
the size of the input dataset should grow linearly with the number of processors,
as captured in the definition. Thus, processors are added to accommodate more
data. Growth efficiency is more comparable to efficiency EP = SP /P or scaled
efficiency EP = SP /P in that it is a value between zero and one2 (inclusively).

4 Evaluations using growth efficiency

Performance evaluations using growth efficiency are fairly intuitive, but there are
some important details, particularly when the evaluation is meant to compare
systems.

2 That is, in theory. Although undetermined at present, there may exist some condi-
tions in practice that allow for growth efficiency to be greater than one. This would
be akin to superlinear speedup in which efficiency can be greater than one.

93

Points 〈x, y〉 in scatter plots should be such that x is the dataset size and y is
the growth efficiency. Using notation from definition 4, the points are 〈P · k,GP 〉
for some k and various P . This brings up the issue of what k should be. k is
the amount of data for a single processor, and as such, it is referred to herein
as the processor capacity. Processor capacity can be defined in numerous ways.
One possibility is availability of space (e.g., RAM, disk); another possibility is
the maximum amount of data a single processor can handle without exceeding a
specific upper bound on execution time. Regardless, an evaluation should include
discussion and justification of how processor capacity is determined.

It is often the case that evaluations of different systems are performed inde-
pendently of each other, and some meaningful comparison is retroactively sought.
Thus, consideration must be given to potential differences in choice of growing
dataset and notion of processor capacity. That is, evaluations are comparable
only in as much as the parameters of the evaluations are comparable.

Growing datasets should be similar, if not the same. Meeting this require-
ment is straightforward with synthetic datasets, but more difficult with real-
world datasets. Unless it is obvious, an evaluation should make clear the method
by which the dataset was linearly “grown” with number of processors. It is con-
ceivable that the order of adding data can vary the change of execution time,
for example, in the context of inference with negation as failure.

Notions of processor capacity should be similar, although it is not necessary
that they be exactly the same. For example, two evaluations using different
notions of space-bounded, processor capacity are likely to still be comparable
strictly in the context of data scaling.

Although more thorough discussion is warranted, an example, retroactive
evaluation illustrating the differences of strong scaling and data scaling would
likely be a better use of the remaining space, given the limitation on paper length.
Some of the results from parallel, RDFS inference in [13] are reorganized in this
section to address data scaling. The growing dataset is LUBM [3] generated using
a seed of zero. A notion of space-bounded capacity is used, specifically RAM-
bounded capacity. In this case, the processor capacity is 2,699,360 triples. This
is not necessarily the maximum processor capacity, but since this evaluation is
retroactive, it is sufficient for the purposes of demonstration.

This example is intended to illustrate how growth efficiency differs from ef-
ficiency EP = SP /P in the strong scaling sense. Therefore, the two are plotted
below over number of processors. (Recall that it was stated that the x-axis
should be dataset size for growth efficiency, but such an x-axis is nonsensical for
efficiency.)

Table 1a shows metrics for the overall computation, which includes I/O
from/to a parallel file system. Efficiency and growth efficiency are plotted for
number of processors in figure 1a. Growth efficiency for 256 processors is 0.66.
That is, 256 times as much data was processed in about 1/0.66 ≈ 1.5 times as
much time as with a single processor. Efficiency, which is 0.36 for 256 processors,
does not make this evident at all.

94

Table 1b and figure 1b show the same metrics for only the inference portion
of the computation. The inference portion of the computation is embarrassingly
parallel, so there is no interprocess communication or contention. Clearly, the
inference portion of the computation is very scalable – at least for LUBM data
– in both the strong and data scaling senses. This indicates that the inference
portion of the computation will likely scale to very large datasets without sig-
nificantly impacting execution time, although the same cannot be said for the
overall computation.

P TP EP TP GP

1 360 1.00 360 1.00
2 178 1.01 415 0.87
4 98.0 0.92 415 0.87
8 49.1 0.92 408 0.88
16 26.3 0.85 409 0.88
32 14.4 0.78 442 0.81
64 8.39 0.67 466 0.77
128 3.91 0.52 506 0.71
256 3.91 0.36 546 0.66

(a) Overall

P TP EP TP GP

1 283 1.00 283 1.00
2 137 1.03 285 0.99
4 67.7 1.04 286 0.99
8 33.2 1.06 289 0.98
16 16.4 1.08 288 0.98
32 8.24 1.07 289 0.98
64 4.23 1.04 292 0.97
128 2.11 1.04 291 0.97
256 1.10 1.00 290 0.97

(b) Inference Only

Table 1: Execution times, efficiency, and growth efficiency up to 256 processors

0.1

1

1 10 100

Efficiency Growth Efficiency

(a) Overall

0.1

1

1 10 100

Efficiency Growth Efficiency

(b) Inference Only

Fig. 1: Efficiency and growth efficiency (log/log) up to 256 processors

5 Conclusion

Traditional scalability metrics from parallel computing fail to address the specific
scalability challenge faced by parallel computations on data crawled from the
Web, that is, the ability to handle large, growing datasets. A notion of data

95

scaling has been defined that is concerned with how execution time is affected
as data grows, increasing the number of processors linearly with dataset size. A
new metric, growth efficiency, has been introduced for evaluating data scalability
of parallel computations. Focus has been on inference over RDF data crawled
from the Semantic Web.

Acknowledgements. Much thanks to Jacopo Urbani and David Mizell for
their constructive feedback in revising this paper.

References

1. Bizer, C.: Pay-as-you-go Data Integration on the public Web of Linked Data.
Keynote Presentation at the 3rd Future Internet Symposium (September 2010)

2. Goodman, E.L., Mizell, D.: Scalable In-memory RDFS Closure on Billions of
Triples. In: Proceedings of the 6th International Workshop on Scalable Seman-
tic Web Knowledge Base Systems (2010)

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3)
(2005)

4. Gustafson, J.L.: Reevaluating Amdahl’s Law. Communications of the ACM 31(5),
532–533 (May 1988)

5. Hitzler, P., van Harmelen, F.: A Reasonable Semantic Web. Semantic Web Journal
1(1), 39–44 (2010)

6. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: Template Rule Optimisations
for Distributed Reasoning over 1 Billion Linked Data Triples. In: Proceedings of
the 9th International Semantic Web Conference. (2010)

7. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS Reasoning and Query Answering
on Top of DHTs. In: Proceedings of the 8th International Semantic Web Confer-
ence. pp. 499–516 (2008)

8. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the Data Skew: Distributed Infer-
encing by Speeddating in Elastic Regions. In: Proceedings of the 19th International
World Wide Web Conference (2010)

9. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
Marvin: Distributed reasoning over large-scale Semantic Web data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(4), 305–316 (2009)

10. Soma, R., Prasanna, V.K.: Parallel Inferencing for OWL Knowledge Bases. In:
Proceedings of the 37th International Conference on Parallel Processing. pp. 75–
82 (2008)

11. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning
with WebPIE: calculating the closure of 100 billion triples. In: Proceedings of the
7th Extended Semantic Web Conference (2010)

12. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Rea-
soning using MapReduce. In: Proceedings of the 8th International Semantic Web
Conference (2009)

13. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for
Hundreds of Millions of Triples. In: Proceedings of the 8th International Semantic
Web Conference. pp. 682–697 (2009)

14. Williams, G.T., Weaver, J., Atre, M., Hendler, J.A.: Scalable Reduction of Large
Datasets to Interesting Subsets. Web Semantics: Science, Services and Agents on
the World Wide Web 8 (2010)

96

	Title
	Table of Contents
	FishMark: A Linked Data Application Benchmark
	The Combined Approach to OBDA: Taming Role Hierarchies using Filters
	Evaluation of Query Rewriting Approaches for OWL 2
	Triangle Finding: How Graph Theory can Help the Semantic Web
	Cascading Map-Side Joins over HBase for Scalable Join Processing
	Scalable Nonmonotonic Reasoning over RDF data using MapReduce
	A Scalability Metric for Parallel Computations on Large, Growing Datasets (like the Web)

