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Abstract. In this report, we present the results ofOptima+ in the Ontology
Alignment Evaluation Initiative (OAEI) 2012. We mainly foucused on threetracks
Benchmark, Conference, and Anatomy. However we were eavluatedin all the
tracks of the campaign offered in SEALS platform: Benchmark, Conference,
Anatomy, Multifarm, Library, and LargeBioMed. We present the new and im-
proved implementation of theOptima algorithm,Optima+ and its results for
all the tracks offered within SEALS platform.Optima+ is the latest version of
Optima , aimed to perform faster and better. Importantly, we match the highest
f-measure (0.65) obtained for the conference track in last year’s campaign. More-
over, this year we debut in large ontology tracks: Anatomy and Library aided by
a naive divide and conquer approach.

1 Presentation of the system

The increasing popularity and utility of the semantic web increase the number of on-
tologies in the web. The applications such as web service compositions and semantic
web search which utilize these ontologies demand a means to align these ontologies.
At present we witness numerous ontology alignment algorithm and tools, that includes
more than fifty ontology matching tools in SEALS platform [6]and many more which
are not yet reported in SEALS platform [12, 2]. They can be broadly identified using
their similarity measures, alignment algorithm and alignment extraction technique. We
present a fully automatic general purpose ontology alignment tool calledOptima+ , a
new and improved implementation of its ancestorOptima [4].

Optima alignment process starts by generating a seed alignment using the lexical at-
tributes of concepts (classes and properties) of the given ontology pair. Then it searches
the space of candidate alignments in an iterative fashion and finds the best alignment
which maximizes the likelihood. This likelihood estimation exploits the heuristic that
the chance of a node pair in correspondence increases if their children are already
mapped.Optima algorithm utilizes the lexical similarity between nodes within its struc-
tural matching such that its algorithm interlaces both structural and lexical attributes of
nodes to arrive at an alignment. We brief out the formal modelof an ontology as utilized
byOptima and the alignment algorithm adopted byOptima in the next two subsections.

1.1 Ontology Model

The ontology alignment problem is to find a set of correspondences between two on-
tologiesO1 andO2. Because ontologies may be modeled as labeled graphs (though



with some possible loss of information), the problem is often cast as a matching prob-
lem between such graphs. An ontology graph,O, is defined as,O = 〈V,E,L〉, where
V is the set of labeled vertices representing the entities,E is the set of edges repre-
senting the relations, which is a set of ordered 2-subsets ofV , andL is a mapping from
each edge to its label. Let M be the standard|V1|×|V2| matrix that represents the match
between the two graphsO∞ = 〈V1, E1, L1〉, O∈ = 〈V2, E2, L2〉:

M =
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(1)

Each assignment variable inM is,

maα =

{

1 if f(xa) = yα : xa ∈ V1, yα ∈ V2

0 otherwise

Wheref(·) represents the correspondence between the two ontology graphs. Conse-
quently,M is a binary matrix representing the match.

1.2 EM-based Alignment Algorithm

Optima formulates the problem of inferring a match between two ontologies as a maxi-
mum likelihood problem, and solves it using the technique ofexpectation-maximization
(EM) originally developed by Dempster et al. [3]. It implements the EM algorithm as
a two-step process of computing expectation followed by maximization, which is it-
erated until convergence. The expectation step consists ofevaluating the expected log
likelihood of the candidate alignment given the previous iteration’s alignment:

Q(M i|M i−1) =

|V1|
∑

a=1

|V2|
∑

α=1

Pr(yα|xa,M
i−1)× logPr(xa|yα,M

i)πi
α (2)

Wherexa andyα are the entities of ontologiesO1 andO2, respectively, andπi
α is the

prior probability ofyα. Pr(xa|yα,M
i) is the probability that nodexa is in correspon-

dence with nodeyα given the match matrixM i. The prior probability is computed using
the following equation,

πi
α =

1

|V1|

|V1|
∑

a=1

Pr(yα|xa,M
i−1)

The generalized maximization step involves finding a match matrix,M i
∗, that improves

on the previous one:

M i
∗ = M i ∈ M : Q(M i|M i−1

∗ ) ≥ Q(M i−1

∗ |M i−1

∗ ) (3)



1.3 Optima+

Optima+ is a new and improved redesign ofOptima to achieve a better alignment,
yet in significantly less time. It adopts the block coordinate descent (BCD) technique
for iterative ontology alignment proposed by us [14] to improve the convergence of
the iterative process. Briefly,Optima+ is an optimized and efficient implementation
of Optima algorithm. The new featuresOptima+ brings are 1) Block coordinate de-
scent 2) Improved similarity calculation 3) Improved alignment extraction and 4) Large
ontology matching. In the following four sub-sections we describe these four features.

Block Coordinate Descent ForOptima Optima+ improve its performance by ex-
tending theOptima algorithm with the block coordinate descent (BCD) technique pro-
posed in [14]. This technique helps to speed up its convergence. LetS denote a block of
coordinates, which is indexed by a non-empty subset of{1, 2, . . . , N}. We may define a
set of such blocks as,B = {S0, S1, . . . , SC}, which is a set of subsets each representing
a coordinate block with the constraint that,S1 ∪ S2 ∪ . . . ∪ SC = {1, 2, . . . , N}. Now,
in each iteration,Optima+ (BCD enhancedOptima ) chooses a block of the match
matrix, M i

Sc
, and its expected log likelihood is estimated. It chooses the blocks in a

sequential manner such that all the blocks are iterated in order. Equation 2 is modified
to estimate the expected log likelihood of the block of a candidate alignment as:

QS(M
i
Sc
|M i−1) =

|V1,c|
∑

a=1

|V2|
∑

α=1

Pr(yα|xa,M
i−1)× logPr(xa|yα,M

i
Sc
) πi

α,c (4)

Here,V1,c denotes the set of entities of ontology,O1, participating in the correspon-
dences included inSc. Notice that the prior probability,πi

α,c, is modified as well to
utilize justV1,c in its calculations.

The generalized maximization step now involves finding a match matrix block,
M i

Sc,∗
, that improves on the previous one:

M i
Sc,∗ = M i

Sc
∈ MSc

: QS(M
i
Sc,∗|M

i−1

∗ ) ≥ QS(M
i−1

Sc,∗
|M i−1

∗ ) (5)

Here,M i−1

Sc,∗
is a part ofM i−1

∗ . At iterationi, the best alignment matrix,M i
∗, is formed

by combining the block matrix,M i
Sc,∗

, which improves theQS function as defined in

Eq. 5 with the remaining from the previous iteration,M i−1

S̃c,∗
, unchanged.

An important heuristic, which has proven highly successfulin ontology alignment,
matches parent entities in two ontologies if their respective child entities were previ-
ously matched. This motivates grouping together those variables,maα in M , into a
coordinate block such that thexa participating in the correspondence belong to the
same height leading to a partition ofM . The height of an ontology node is the length of
the shortest path from a leaf node. Let the partition ofM into the coordinate blocks be
{MS0

,MS1
, . . . ,MSC

}, whereC is the height of the ontologyO1. Thus, each block is
a submatrix with as many rows as the number of entities ofO1 at a height and number
of columns equal to the number of all entities inO2. For example, the correspondences
between the leaf entities ofO1 and all entities ofO2 will form the block,MS0

.



Similarity measures Similarity has become a classical tool for ontology matching.
Similarity measure between ontological concepts such as classes and properties, is com-
monly a measure in the range of[0, 1] represents how similar the two concepts are. The
similarity measures used in the context of ontology matching can be broadly catego-
rized into lexical similarity and structural similarity. Lexical similarity measures use
the lexical properties of a concept (URIs, labels, names, and comments) to measure the
similarity between the concepts while structural similarity measures exploit the graph
matching algorithms to derive the similarity measure. The lexical similarity used in
Optima+ between two conceptsC1 andC2 is defined as,

Sim(C1, C2) = Max







SimLex(Label-C1, Label-C2),
SimLex(Name-C1, Name-C2),
Cos(Comment-C1, Comment-C2)







(6)

WhereLabel-C1,Name-C1, andComment-C1, are the label, name and comment
of the conceptC1. As shown in Eq. 7 below the lexical similarity between the phrases
P1 andP2 is,

SimLex(P1, P2) = Max







LinSim(P1, P2), CosSim(P1, P2),
SWSim(P1, P2), NWSim(P1, P2),
LevSim(P1, P2)







(7)

Here, LinSim is the popular similarity measure introduced by Lin [7] and CosSim
is the gloss based cosine similarity described in [15]. These two similarity measures
requires a lexical database like WordNet [9].Optima+ uses WordNet version 3.0 for
OAEI 2012 along with the information content database provided by [11]. SWSim is the
Smith-Waterman [13] similarity measure and NWSim is the Needleman-Wunsch [10]
similarity measure. LevSim is the similarity measure that is the inverse of Levenshtein
distance between the phrases.

Alignment Extraction Alignment extraction is the process of pruning a set of corre-
spondences in an alignment to achieve a minimal and consistent alignment. A minimal
alignment is achieved by removing the correspondences which can be inferred by an
existing correspondence. A consistent alignment is achieved by resolving conflicting
correspondences.Optima+ adopts a simple heuristic based alignment extraction pro-
cess, which is described below,

– For each class-correspondence(N1, N2) in the alignment, any correspondence among
the children ofN1 and children ofN2 is removed.

– For each class-correspondence(N1, N2) in the alignment, any correspondence which
maps children ofN1 to parent ofN2 or children ofN2 to parent ofN1 is removed
if its similarity is less than the similarity ofN1 andN2.

– If a concept is mapped to more than one concept then, we selectthe correspondence
with highest similarity (MaxSim) and remove all other correspondences which are
less than a predefined thresholdT1. We also remove all other correspondences with
similarity less than theMaxSim − δ. Hereδ is a user configurable value in the
range of[0, 0.5].



Large Ontology Matching The time complexity ofOptima to align OntologyO1 of
size|O1| andO2 of size|O2| is (|O1| × |O2|)

2 [4]. Hence, despite its efficient imple-
mentation inOptima+ , it still takes significantly longer time to match larger ontologies.
We solve this problem using a naive divide and conquer approach. The large ontology
matching is triggered if number of classes in one of the ontology exceeds a user config-
urable threshold (for this campaign it is set to 600 named classes).Optima+ partitions
the ontology using a structural partitioning algorithm andmatches every block from first
ontology with every block from the second ontology separately. Finally, it merges all
the block-alignments together as final alignment. The partitioning algorithm employed
in Optima+ is based on breadth first tree traversal described in [4].

1.4 State, purpose, general statement

Optima+ is a general purpose ontology alignment tool capable of matching English
language ontologies described in OWL, RDFS/RDF, and N3.

1.5 Specific techniques used

As described earlier,Optima+ employs a variety of similarity measures, a simple align-
ment extraction and large ontology matching using a naive divide and conquer ap-
proach.

1.6 Adaptations made for the evaluation

We made couple of changes to the alignment extraction process for this campaign. First,
we filtered the correspondences between imported concepts even though they have been
directly used within the ontologies. Second, we implemented the heuristics mentioned
in the sub-section 1.3 to make the alignment minimal. The default alignment extraction
of optima is not as strict as the one configured for this campaign.

1.7 Link to the system and parameters file

A detail presentation of the system, its configuration and parameters used for this cam-
paign and results can be found athttp://thinc.cs.uga.edu/thinclabwiki/
index.php/OAEI_2012.

2 Results

Optima+ is evaluated in all the six tracks under SEALS platform in OAEI 2012 though,
we only focused in benchmark, conference and anatomy tracks. For this report the re-
sults for all these tracks are summarized except for large biomedical track.Optima+
could not successfully finish aligning the large biomedicaltrack due to a fatal error.
Detailed results for individual tracks and test cases can befound athttp://thinc.
cs.uga.edu/thinclabwiki/index.php/OAEI_2012.



2.1 benchmark

The Benchmark test library consists of 5 different test suites [8]. Each of the test suits is
based on individual ontologies, consists of number of test cases. Each test case discards
a number of information from the ontology to evaluate the change in the behavior of
the algorithm. There are six categories of such alterations– changing name of entities,
suppression or translation of comments, changing hierarchy, suppressing instances, dis-
carding properties with restrictions or suppressing all properties and expanding classes
into several classes or vice versa. Suppressing entities and replacing their names with
random strings results into scrambled labels of entities. Test cases from 248 till 266 con-
sist of such entities with scrambled labels. Table. 1 showsOptima+ ’s performance in
benchmark track on, 100 series test cases, 200 series test cases without scrambled labels
test cases and all the scrambled labels test cases. The average precision forOptima+
is 0.95 while average recall is 0.83 for all the test cases in 200 series except those with
scrambled labels. For test cases with scrambled labels, theaverage recall is dropped by
0.53 while precision is dropped only by 0.04. When labels are scrambled, lexical sim-
ilarity becomes ineffective. ForOptima+ algorithm, structural similarity stems from
lexical similarity hence scrambling the labels makes the alignment more challenging
for Optima+ . Result is 46% decrease in average F-Measure from 0.85 to 0.46. This
trend of reduction in precision, recall and f-measure can beobserved throughout the
benchmark track. For all the test suits, test cases with scrambled labels resulted into
lower precision, recall and f-measure.Optima+ ’s algorithm faces difficulties in align-
ing ontologies with low or no lexical similarity.

Bibliography 2 3 4 Finance
P R F P R F P R F P R F P R F

100 Series 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
201-247 0.880.850.85 1 0.840.870.970.880.890.930.770.790.96 0.8 0.83
248-266 0.650.350.43 1 0.360.460.980.380.490.960.340.430.960.380.49

Table 1.Performance ofOptima+ in OAEI 2012 for benchmark track

2.2 anatomy

Previous year,Optima could not sucessfully complete aliging anatomy track. Thisyear,
with the help of large ontology matching process,Optima+ is able to sucessfully align
ontologies of this track. In anatomy track,Optima+ yields 0.854 precision and 0.584
recall in 6460 seconds. We hope with bio medical lexical databases like Unified Medical
Language System (UMLS) [1]Optima+ could improve its recall.

2.3 conference

For this track,Optima+ achieves recall of 0.68 and precision of 0.62. Both the recall
and the precision are improved compared to the performance of Optima in OAEI 2011.
Overall there is 81% increase in F-Measure compared to OAEI 2011. This makesOp-
tima+ , to tie the top performer in OAEI 2011[5] in terms of F-Meaure(0.65). Table 2
lists the harmonic means for precision, recall and f-measure along with total runtime
for conference track ofOptima in OAEI 2011 andOptima+ in OAEI 2012.



The performance improvement in conference track arises from the improved sim-
ilarity measure and the alignment extraction (Section 1.3). Optima+ also utilizes im-
proved design and optimization techniques to reduce the runtime. The runtimes reported
in the Table 2 cannot be compared directly as the underlying systems used for evalua-
tions differ. However, the runtime improvement from 15+ hours to around 23 minutes
is perspicuous.

Year Precision (H-mean)Recall (H-mean)F-Measure (H-mean)Total Runtime
2011 0.26 0.60 0.36 15hrs
2012 0.62 0.68 0.65 1349sec

Table 2. Comparison between performances ofOptima+ in OAEI 2012 andOptima in OAEI
2011 for conference track

2.4 multifarm

SinceOptima+ focus only on English language ontologies, it gives low performance
in this track as expected. However it is interesting to notice thatOptima+ yields an
average recall of 1.0 with an average precision of 0.01.

2.5 library

Library is another large ontology matching track in OAEI 2012. Optima+ attains a
precision of 0.321 and a recall of 0.072 in 37,457 seconds.

3 General comments

Last yearOptima debuted the OAEI campaign with promising results. However it took
too long to finalize the alignment process. This year we redesigned theOptima algo-
rithm to complete the alignment process faster and were ableto speed it from minutes to
seconds. Additionally, we implemented a naive divide and conquer approach to tackle
the large ontology matching problem.

Optima+ matches the last year’s best f-measure (0.65) in conferencetrack, and
gives 0.87 f-measure on average for benchmark track excluding the scrambled labeled
test cases. However, as revealed in benchmark trackOptima+ heavily relies on lexical
features of ontologies to align them. In large ontology tracks (anatomy and library)
Optima+ struggles to perform well as it performed in other tracks (conference and
benchmark). We suppose that a dedicated alignment extraction is needed to merge the
results of blocks in large ontology matching process.

We are aiming to improve our f-measure for large ontology matching by improving
the entire large ontology matching process. Specifically, we would like to introduce an
exclusive alignment extraction process for large ontologymatching. Further, we want to
find an optimum partition strategy for BCD technique which yields better alignment yet
faster. On top of these, extending the current similarity measure calculation with more
useful similarity measures and lexical databases would help Optima+ to improve its f-
measure. Though there is an inherent means to align instances usingOptima algorithm,
Optima+ implementation is not yet fully capable of matching instances. In its next
versions, we expect it to be able to match instances as well.



4 Conclusion

In this report we present the results ofOptima+ in OAEI 2012 campaign in six tracks in-
cluding Benchmark, Conference, Anatomy, Multifarm, Library, and LargeBioMed. We
also present the new and redesigned implementation ofOptima , Optima+ . Optima+
shows impressive performance in benchmark track, but struggles to align ontologies
with scrambled labels. However, it matches the top f-measure of last year’s conference
track. It debuted in large ontology tracks (anatomy and library) with promising results.
In future we want to participate in more tracks, especially instance matching tracks.
More importantly, we wish to leverage our performance in large ontology tracks to
attain a higher f-measure.

References

1. Bethesda. Umls reference manual.http://www.ncbi.nlm.nih.gov/books/
NBK9676/, 2009.

2. S. Castano, A. Ferrara, and S. Montanelli. Matching ontologies in opennetworked systems:
Techniques and applications.Journal on Data Semantics (JoDS), V, 2005.

3. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood fromincomplete data
via the em algorithm.Journal of the Royal Statistical Society., 39:1–38, 1977.

4. P. Doshi, R. Kolli, and C. Thomas. Inexact matching of ontology graphs using expectation-
maximization.Web Semantics, 7(2):90–106, 2009.
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