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Abstract. Concept lattices can significantly improve machine translation 

systems when applied as filters to their results. We have developed a rule-based 

machine translator from Turkish to English in a unification-based programming 

paradigm and supplemented it with an automatically constructed concept 

lattice. The test results achieved by applying this translation system to a Turkish 

child story reveals that lattices used as filters to translation results have a 

promising potential to improve machine translation. We have compared our 

system with Google Translate on the data. The comparison suggests that a rule-

based system can even compete with this statistical machine translation system 

that stands out with its wide range of users.  

Keywords: Concept Lattices, Rule-based Machine Translation, Evaluation of 

MT systems. 

1   Introduction 

Paradigms of Machine translation (MT) can be classified into two major categories 

depending on their focus: result-oriented paradigms and process-oriented ones. 

Statistical MT focuses on the result of the translation, not the translation process 

itself. In this paradigm, translations are generated on the basis of statistical models 

whose parameters are derived from the analysis of bilingual text corpora. Rule-based 

MT, a more classical paradigm, focuses on the selection of representations to be used 

and steps to be performed during the translation process. 

It is the rule-based paradigm that will be the concern of this paper. We argue for 

the viability of a rule-based translation model where a concept lattice functions as a 

filter for its results. 

In what follows, we first introduce the classical models for doing rule-based MT, 

illustrating particular problematic cases with translation pairs between Turkish and 

English (cf. Section 2). Then, we briefly introduce the basic notions of Formal 

Concept Analysis (FCA) and touch upon the question of how lattices built using FCA 

can serve as a bridge between two languages (cf. Section 3).  This is followed by the 

presentation of our translation system (cf. Section 4). Subsequently, we report on and 

evaluate several experiments which we have performed by feeding our translation 

system with a Turkish child story text (cf. Section 5). The discussion ends with some 

remarks and with a summary of the paper (cf. Section 6). 



2   Models for Rule-Based Translation 

2.1   Direct Translation  

The most straightforward MT strategy is the so-called direct translation. Basically, the 

strategy is to translate each word into its target language counterpart while proceeding 

word-by-word through the source language text or speech. If the only difference 

between two languages were due to their lexical choices, this approach could be a 

very easy way of producing high quality translation. However, languages differ from 

each other not only lexically but also structurally.  

In fact, the direct translation strategy works very well only for very simple cases 

like the following: 

(1)     Turkish:            Direct Translation to English:   

            Köpek-ler havlar-lar.         Dogs bark. 

dog-pl      bark-3pl    

In this example, the direct translation strategy provides us with a perfect translation of 

the Turkish sentence (interpreted as a kind-level statement about dogs). But, consider 

now the following example: 

(2)     Turkish:                 Direct Translation to English:  

                           

Supposing that the referent of the pronoun is a male person, the expected translation 

for the given Turkish sentence would be the following: 

(3)     Correct Translation:    

             The woman knows him. 

The direct translation approach fails in this example in the following respects: First, 

the translation results in a subject-object-verb (SOV) ordering, which does not 

comply with the canonical SVO ordering in English. SOV is the basic word order in 

Turkish. Second, the subject does not have the required definite article in the 

translation. The reason for this is another typological difference between the two 

languages: Turkish lacks a definite article. Third, the word-by-word translation leaves 

the English auxiliary verb ambiguous with respect to number, as the Turkish verb 

does not carry the number information. Fourth, the verb know is encoded in the 

progressive aspect in the translation, which is unacceptable as it denotes a mental 

state. This anomaly is the result of directly translating the Turkish continuous suffix   

–yor to the English suffix –ing. Fifth, the pronoun is left ambiguous with respect to 

gender in the translation, as Turkish pronouns do not bear this information. 



2.2   Transfer Approach  

2.2.1   Syntactic Transfer 

As Jurafsky and Martin [6] point out, examples like those above suggest that the 

direct approach to MT is too focused on individual words and that we need to add 

phrasal and structural knowledge into our MT models to achieve better results.  It is 

through the transfer approach that a rule-based strategy incorporates the structural 

knowledge into the MT model. In this approach, MT involves three phases: analysis, 

transfer, and generation. In the analysis phase, the source language text is parsed into 

a syntactic and/or semantic structure. In the transfer phase, the structure of the source 

language is transformed to a structure of the target language. The generation phase 

takes this latter structure as input and turns it to an actual text of the target language.  

Let us first see how the transfer technique can make use of syntactic knowledge to 

improve the translation result of the example discussed above. Assuming a simple 

syntactic paradigm, the input sentence can be parsed into the following structure: 

(4) 

 

Once the sentence has been parsed, the resulting tree will undergo a syntactic 

transfer operation to resemble the target parse tree and this will be followed by a 

lexical transfer operation to generate the target text: 

(5) 

 

   The syntactic transfer exploits the following facts about English: a singular count 

noun must have a determiner and the subject agrees in number and person with the 

verb. Collecting the leaves of the target parse tree, we get the following output: 

(6)     Translation via Syntactic Transfer:   

      
This output is free from the first three defects noted with the direct translation. 

However, the problem of encoding the mental state verb in progressive aspect and the 



gender ambiguity of the pronoun still await to be resolved. These require meaning-

related knowledge to be incorporated into the MT model. 

 

2.2.2   Semantic Transfer 

The context-independent aspect of meaning is called semantic meaning. A crucial 

component of the semantic meaning of a natural language sentence is its lexical 

aspect, which determines whether the situation that the sentence describes is a 

(punctual) event, a process or a state. This information is argued to be inherently 

encoded in the verb. Obviously, knowing is a mental state and, hence, cannot be 

realized in the progressive aspect.  

We can apply a shallow semantic analysis to our previously obtained syntactic 

structure, which will give us a tree structure enriched with aspectual information, and 

thereby achieve a more satisfactory transfer: 

 (7) 

 
The resulting translation is the following: 

(8)     Translation via Semantic Transfer: 

             

2.3   Interlingua Approach 

There are two problems with the transfer model: it requires contrastive knowledge 

about languages and it requires such knowledge for every pair of languages. If the 

meaning of the input can be extracted and encoded in a language-independent form 

and the output can, in turn, be generated out of this form, there will be no need for any 

kind of contrastive knowledge. A language-independent meaning representation 

language to be used in such a scheme is usually referred to as an interlingua.  

    A common way to visualize the three approaches to rule-based MT is with 

Vauquois triangle shown below (adopted from [6]):  



 
Fig. 1. The Vauquois triangle. 

As Jurafsky and Martin point out: 

[t]he triangle shows the increasing depth of analysis required (on both the 

analysis and generation end) as we move from the direct approach through 

transfer approaches, to interlingual approaches. In addition, it shows the 

decreasing amount of transfer knowledge needed as we move up the triangle, 

from huge amounts of transfer at the direct level (almost all knowledge is 

transfer knowledge for each word) through transfer (transfer rules only for 

parse trees or thematic roles) through interlingua (no specific transfer 

knowledge). (p. 867) 

3   Lattice-Based Interlingua Strategy 

A question left open above is that of what kind of representation scheme can be used 

as an interlingua. There are many possible alternatives such as predicate calculus, 

Minimal Recursion Semantics or an event-based representation. Another interesting 

possibility is to use lattices built using Formal Concept Analysis (FCA) as meaning 

representations to this effect. 

   FCA, developed by Ganter & Wille [5], assumes that data from an application are 

given by a formal context, a triple (G, M, I) consisting of two sets G and M and a so 

called incidence relation I between these sets. The elements of G are called the objects 

and the elements of M are called the attributes. The relation I holds between g and m, 

(g, m) ∈ I if and only if the object g has the attribute m. A formal context induces two 

operators, both of which usually denoted by ʹ. One of these operators maps each set of 

objects A to the set of attributes Aʹ which these objects have in common. The other 

operator maps each set of attributes B to the set of objects Bʹ which satisfies these 

attributes.  FCA is in fact an attempt to give a formal definition of the notion of a 

‘concept’. A formal concept of the context (G, M, I) is a pair (A, B) such that G ⊇	A	

= Aʹ and M ⊇	B	�	Bʹ. A is called the extent and B the intent of the concept (A, B). 

The set of all concepts of the context (G, M, I) is denoted by C(G, M, I). This set is 

ordered by a subconcept – superconcept relation, which is a partial order relation 

denoted by ≤.  If (A1, B1) and (A2, B2) are concepts in C(G, M, I), the former is said to 



be a subconcept of the latter (or, the latter a superconcept of the former), i.e., (A1, B1) 

≤ (A2, B2), if and only if A1 ⊆ A2 (which is equivalent to B1 ⊇	B2). The ordered set 

C(G, M, I; ≤) is called the concept lattice or (Galois lattice) of the context (G, M, I).   

A concept lattice can be drawn as a (Hasse) diagram in which concepts are 

represented by nodes interconnected by lines going down from superconcept nodes to 

subconcept ones.  

Priss [15], rewording an idea first mentioned by Kipke & Wille [8], suggests that 

once linguistic databases are formalized as concept lattices, the lattices can serve as 

an interlingua. She explains how a concept lattice can serve as a bridge between two 

languages with the aid of the figure below (taken from [13]): 

 
Fig. 2. – A concept lattice as an interlingua. 

 

[This figure] shows separate concept lattices for English and German words for 

“building”. The main difference between English and German is that in English 

“house” only applies to small residential buildings (denoted by letter “H”), 

whereas in German even small office buildings (denoted by letter “O”) and larger 

residential buildings can be called “Haus”. Only factories would not normally be 

called “Haus” in German. The lattice in the top of the figure constitutes an 

information channel in the sense of Barwise & Seligman [2] between the German 

and the English concept lattice. ([15] p. 158) 

 

   We consider Priss’s approach a promising avenue for interlingua-based translation 

strategies.  We suggest that this approach can work not only for isolated words but 

also even for text fragments. In what follows, we will sketch out a strategy with 

interlingual concept lattices serving as filters for refining translation results. The 

strategy proceeds as follows: 1) Compile a concept lattice from a data source like 

WordNet. 2) Link the nodes of the lattice to their possibly corresponding expressions 

in the source and target language. 3)  Translate the input text into the target language 

with no consideration of the pragmatic aspects of its meaning. 4) Integrate the 

concepts derived from the input text into the concept lattice. The main motivation 

behind this strategy is to refine the translation results to a certain extent by means of 

pragmatic knowledge structured as formal contexts.     



4   A Translation System with Interlingual Concept Lattices 

4.1   A Concept Lattice Generator 

 

Concept lattices to be used as machine translation filters should contain concept nodes 

associated with both functional and substantive words. All languages have a finite 

number of functional words. Therefore, a manual construction of the lattice fragments 

that would contain them would be reasonable.  However, manually constructing a 

concept lattice for lexical words would have considerable drawbacks such as the 

following: 

 

• It is labor intensive. 

• It is prone to yielding errors which are difficult to detect automatically.  

• It generates incomplete lists that are costly to extend to cover missing 

information. 

• It is not easy to adapt to changes and domain-specific needs. 

 

Taking these potential problems into consideration, we have developed a tool for 

generating concept lattices for lexical words automatically. As this is an FCA 

application, it is crucial to decide on which formal context to use before delving its 

implementation details. 

   Priss & Old [16] propose to construct concept neighborhoods in WordNet with a 

formal context where the formal objects are the words of the synsets belonging to all 

senses of a word, the formal attributes are the words of the hypernymic synsets and 

the incidence relation is the semantic relation between the synsets and their 

hypernymic synsets.  The neighborhood lattice of a word in WordNet consists of all 

words that share some senses with that word.1 Below is the neighborhood lattice their 

method yields for the word volume:  

 

 
Fig. 3. – Priss and Old’s neighborhood lattice for the word volume. 

 

                                                           
1 As lattices often grow very rapidly to a size too large to be visualized, Wille [18] describes a 

method for constructing smaller, so-called “neighborhood” lattices.   



Consider the bottom node. The concept represented by this node is not a naturally 

occurring one. Obviously, the adopted formal context causes two distinct natural 

concepts to collapse into one single formal concept here. The reason is simply that 

WordNet employs one single word, i.e., volume, for two distinct senses, i.e., 

publication and amount. This could leave a translation attempt with the task of 

disambiguating this word. In fact, WordNet marks each sense with a single so-called 

synset number.  

   When constructing concept lattices in WordNet, we suggest two amendments to the 

formal context adopted by Priss and Old. First, the formal objects are to be the synset 

numbers. Second, the formal attributes are to include also some information compiled 

from the glosses of the words. The first change allows us to distinguish between the 

two senses of the word volume, as shown in Fig. 4a. But, we are still far from 

resolving all ambiguities concerning this word, as indicated by the presence of two 

objects in the leftmost node. The problem is that the hypernymic attributes are not 

sufficiently informative to differentiate the 3-D space sense of the word volume from 

its relative amount sense. This extra information resides in the glosses of the word 

and once encoded as attributes it evokes the required effect, as shown in Fig. 4b. 

 

 

 
 

Fig. 4a. – A neighborhood lattice with the 

objects being synset numbers. 

Fig. 4b. – A more fine-grained neighborhood 

lattice with the objects being synset numbers. 

 

Each gloss, which is most likely a noun phrase, is parsed by means of a shift-reduce 

parser to extract a set of attributes. Having collected the objects (i.e. the synset 

numbers) and the associated attributes, the FCA algorithm that comes with the 

FCALGS library [9] is used for deriving a lattice-based ontology from that collection. 

FCALGS employs a parallel and recursive algorithm. Apart from its being parallel, it 

is very similar to Kuznetsov’s [10] Close-by-One algorithm.   

   However, even the lattice in Fig4.b is still defective in at least one respect. The 

names of the objects denoted are lost. To remedy this problem, we suggest to encode 

the objects as tuples of synset numbers and sets of names, as illustrated below.      

 

 



 
Fig. 5. – A neighborhood lattice including the names of the objects. 

Another point to note is that the name of a synset serves as the attribute of a 

subconcept. For example, ‘entity’ is the name of the topmost synset. But, as 

everything is an entity, any subconcept must treat it as an element of its set of 

attributes.  

4.2   A Sense Translator 

Each WordNet node is associated with a set of synonymous English words, which is 

referred to as its synset. Each synset, in effect, denotes a sense in English. Thus, one 

task to accomplish is to translate synsets into Turkish to the furthest possible extent. 

We should, of course, keep in mind that some synsets (i.e. some senses encoded in 

English) may not have a counterpart in the target language.  To find the Turkish 

translation of a particular synset, the Sense Translator first downloads a set of relevant 

articles via the links given in the disambiguation pages Wikipedia provides for the 

words in this set.  It searches for the hypernyms of the synset in these articles. It 

assigns each article a score in accordance with the sum of the weighted points of the 

hypernyms found in this article. More specifically, if a synset has N hypernyms, the 

K
th

 hypernym starting from the top is assigned WeightK = K/N. Let FrequencyK be the 

number of occurrences of an item in a given article, then the score of the article is 

calculated as follows: 

       Article Score = Weight1 * Frequency1 + ... + WeightN * FrequencyN.         (1) 

If the article with the highest score has a link to a Turkish article, the title of the 

article will be the translation of the English word under examination. Otherwise, the 

word will be left unpaired with a Turkish counterpart. Figure 6 visualizes how the 

word cat in WordNet is translated into its Turkish counterpart, kedi, via Wikipedia. 

 



 

Fig. 6. - Translating the word cat into Turkish via Wikipedia. 

 

  The Turkish counterparts will be added next to the English names, as shown 

below: 

 

 
Fig. 7. - A neighborhood lattice including the Turkish counterparts of the English names. 

4.3   A Rule-Based Machine Translator 

We have designed a transfer-based architecture for Turkish-English translation and 

implemented the translator in SWI-Prolog which is an open-source implementation of 

the Prolog programming language. Below is a figure representing the main modules 

of the translator: 



 

Fig. 8. - The main modules of the rule-based machine translator. 

The word list extracted by the Preprocessor is used as an input to the Analysis 

Module. We have devised a shift-reduce parser in the analysis phase for building up 

the grammatical structure of expressions. Briefly, a shift-reduce parser uses a bottom-

up strategy with an ultimate goal of building trees rooted with a start symbol [1]. The 

Generation Module first rearranges the constituents using transformation rules. 

Afterwards, all the structures are lexically transferred into English using a bilingual 

dictionary. 

 

4.4   Filtering Translation Results with the Concept Lattice 

 

Let us turn to our exemplary sentence introduced in (2) (i.e. Kadın onu tanıyor). 

Failing to take the context of the sentence into account, the rule-based translator 

generates the result in (8) (i.e. The woman knows him/her/it), where the pronoun is 

left ambiguous with respect to gender.  

   Our claim is that we can resolve such ambiguities using FCA and thereby refine our 

translations. To this effect, we propose to generate transient formal concepts for noun 

phrases. We make the following assumptions. Basically, personal pronouns, 

determiners and proper names introduce formal objects whereas adjectives and nouns 

encode formal attributes.  

   Suppose that our sentence is preceded by (the Turkish paraphrase of) a sentence like 

‘A man has arrived’. The indefinite determiner evokes a new formal object, say obj1. 

As the source text is in Turkish, all attributes will be Turkish words. The Turkish 

counterpart of the word man is adam. Thus, the transient concept for the subject of 

this sentence will be ({obj1}, {adam}). The task is now to embed this transient 

concept into the big permanent concept lattice. To do this, a node where the Turkish 

counterpart of the synset name is ‘adam’ is searched for. Immediately below this node 

is placed a new node with its set of objects being {obj1} and with no additional 

attributes. As this is a physical object, the subconcept of this new node has to be the 



lowest one. As for the second sentence, the NP kadın (the woman) will be associated 

with the transient concept ({X},{kadın}) and the pronoun onu (him/her/it) with the 

transient concept ({Y},{entity}). X and Y are parameters to be anchored to particular 

formal objects. In other words, they are anaphoric. It seems plausible to assert that the 

attributes of an anaphoric object must constitute a (generally proper) subset or 

hypernym set of the attributes of the object serving as the antecedent. Assume that X 

is somehow anaphorically linked to an object obj2.  Now, there are two candidate 

antecedents for Y. The woman, or the object obj2, is barred from being antecedent of 

the pronoun by a locality principle like one stated in Chomsky’s [3] Binding Theory: 

roughly stated, a pronoun and its antecedent cannot occur in the same clause. There 

remains one single candidate antecedent, obj1. As its attribute set is a hyponym set of 

{entity}, it can be selected as a legitimate antecedent. The concept node created for 

the man will also be the one denoted by the pronoun with Y being instantiated with 

obj1. In the concept lattice constructed in WordNet, the concept named as ‘man’ 

includes ‘male person’ in its set of attributes. Hence, the ambiguity is resolved and the 

pronoun translates into English as ‘him’.   

    It is worth noting that in case there is more than one candidate antecedent, an 

anaphora resolution technique, especially a statistical one, can be employed to pick 

out the candidate most likely to be the antecedent. The interested reader is referred to 

Mitkov [12] for a survey of anaphora resolution approaches in general and to 

Kılıçaslan et al [7] for anaphora resolution in Turkish.      

The gender disambiguation process can also be carried out for common nouns. 

Consider the following fragment taken from a child story: 

(9)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Turkish, leaves not only pronouns but also many other words ambiguous with respect 

to the gender feature. The word ‘kardeş’ in this example is ambiguous between the 

translations sister and brother. This ambiguity will be resolved in favor of the former 

interpretation in way similar to the disambiguation process sketched out for pronouns 

above. 

   In fact, the problem of sense disambiguation is a kind of specification problem. 

Therefore, it cannot be confined to gender disambiguation.  For example, given that 

we have somehow managed to compile the attributes listed in the column on the left-

hand side, our FCA-based system generates the translations listed on the right-hand 

side: 



 zehirli, diş ‘poisonous, tooth’  fang 

 zehirli, mantar ‘poisonous, mushroom’ toadstool 

sivri, diş ‘sharp, tooth’    fang 

 arka, koltuk ‘rear, seat’   rumble 

 acemi, asker ‘inexperienced, soldier’ recruit 

It will, of course, be interesting to try to solve other kinds of translation problems with 

FCA-based techniques. We leave this task to accomplish in the light of further 

research in the future.   

5   Results and Evaluation 

In the early years of MT, the quality of an MT system was determined by human 

judgment. Though specially trained for the purpose, human judges are prone to suffer 

at least from subjectivity. Besides, this exercise is almost always more costly and time 

consuming. Some automated evaluation metrics have been developed in order to 

overcome such problems. Among these are BLEU, NIST, WER and PER.  

BLEU [14] and NIST [4] are rather specialized metrics. They are employed by 

considering the fraction of output n-grams that also appear in a set of human 

translations (n-gram precision). This allows the acknowledgment of a greater diversity 

of acceptable MT results.  

As for WER (Word Error Rate) and PER (Position-independent Word Error Rate), 

they are more general purpose measures and they rely on direct correspondence 

between the machine translation and a single human-produced reference. WER is 

based on the Levenshtein distance [11] which is the edit distance between a reference 

translation and its automatic translation, normalized by the length of the reference 

translation. This metric is formulated as: 

                                            WER   = 
S+D+I 

     N 

(2) 

 

where N is the total number of words in the reference translation, S is the number of 

substituted words in the automatic translation, D is the number of words deleted from 

the automatic translation and I is the number of words inserted in the reference not 

appearing in the automatic translation.  

Although WER requires exactly the same order of the words in automatic 

translation and reference, PER neglects word order completely [17]. It measures the 

difference in the count of the words occurring in automatic and reference translations. 

The resulting number is divided by the number of words in the reference. It is worth 

noting that PER is technically not a distance measure as it uses a position-independent 

Levenshtein distance where the distance between a sentence and one of its 

permutations is always taken to be zero. 

We used WER to evaluate the performance of our MT system. This is probably the 

metric most commonly used for similar purposes. As we employed a single human-

produced reference, this metric suits well to our evaluation setup. We fed our system 



with a Turkish child story involving 91 sentences (970 words).2 We post-edited the 

resulting translation in order to generate a reference. When necessary calculations 

were done in accordance with formula (1), the WER turned out to be 38%. 

The next step was to see the extent to which the performance or our MT system 

could be improved using concept lattices as filters for the raw results. To this effect, 

we devised several concept lattices like that in figure 3 and filtered the lexical 

constituents of each automatic translation with them. 

A considerable regression in error rate is observed in our system supplemented with 

concept lattices: the WER score is reduced down to a value around 30%.  

One question that comes to mind at this point is that of whether the improvement 

achieved is statistically significant or not. To get an answer we had recourse to the 
Wilcoxon Signed-Rank test. This test is used to analyze matched-pair numeric data, 

looking at the difference between the two values in each matched pair. When applied 

to the WER scores of the non-filtered and filtered translation results, the test shows 

that the difference is statistically significant (p < 0.005). 

Another question is that of whether the results are practically satisfactory. To get 

some insight to this question, we should employ a baseline system for a comparison 

on usability. Google Translate, a statistical MT system that stands out with its wide 

range of users, can serve for this purpose. The WER score obtained employing 

Google Translate on our data is 34%. Recalling that the WER score of our system 

supplemented with concept lattices is 30%, we seem to be entitled to argue for the 

viability of rule-based MT systems. Of course, we need to make this claim tentatively 

since the size of the data on which the comparisons are made is relatively small. 

However, it should also be noted that we have employed a limited number of concept 

lattices of considerably small sizes. It is of no doubt that increasing the number and 

size of filtering lattices would improve the performance of our MT system. 

More importantly, we do not primarily have an NLP concern in this work. Rather, 

we would like the results to be evaluated from a computational linguistics perspective. 

Everything aside, the results show that even a toy lattice based ontology can yield 

statistically significant improvement for an MT system. 

6   Conclusion 

In this paper, we have illustrated some translation problems caused by some 

typological divergences between Turkish and English using a particular example. We 

have gone through the direct translation, syntactic transfer and semantic transfer 

phases of the rule-based translation model to see what problem is dealt with in what 

phase. We have seen that a context-dependent pragmatic process is necessary to get to 

a satisfactory result. Concept lattices appear to be very efficient tools for 

accomplishing this pragmatic disambiguation task. Supplementing a rule-based MT 

system with concept lattices not only yields statistically significant improvement on 

the results of the system but also enables it to compete with a statistical MT system 

like Google Translate. 

                                                           
2 This is the story where the example in (9) comes from. 
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