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Abstract. Frequent itemsets and association rules are generally ac-
cepted concepts in analyzing item-based databases. The Apriori-frame-
work was developed for analyzing categorical data. However, many data
include numerical values. Therefore, most existing techniques transform
numerical values to categorical values. The transformation is done such
that the rules are optimal with respect to support or confidence.
In this paper we choose a different approach for analyzing data with
numerical and categorical data. We present methods to identify items,
which have a strong impact on a given numerical attribute. With other
words, we want to identify items, whose occurrence in an itemset allows
us to make predictions about the distribution function of the numerical
attribute.

1 Introduction

Analyzing categorical data is an important field in data mining. Examples in-
clude market-basket data as well as census data. The Apriori-framework [1, 2]
is widely used in this field. But, most datasets do not only contain categorical
attributes, they also contain numerical attributes.

The straightforward approach in order to use the Apriori-framework is to
discretize the numerical attribute [13]. There are two problems with the dis-
cretization: Finding a good binning of the data is a challenging task, especially
if one considers, that a good discretization might depend on the context of the
analysis or on the presence or absence of other values. To continue, a distance
between two numerical values can be defined, and this information should be
preserved during the analysis. Several methods, reported in section 2, were de-
veloped in order to achieve an optimal binning and to get the best rules with
respect to support and confidence.

Another solution comprises methods, which do not discretize the data [3]. The
categorical values are used as a filter, which selects a subset of the database. After
the selection the numerical attributes are analyzed. The goal is to find significant
statistical differences between the full database and the selected subset. The
method proposed in this paper belongs to this category.
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Instead of finding frequent itemsets and association rules, which consist of
categorical and numerical data, we aim at finding items, which have an impact
on the distribution function of the numerical attributes. For instance, in our ex-
perimental analysis of a census dataset we observe, that for the group of persons
with the property Own Child the fraction of younger people is higher than when
looking at the entire dataset. “Impact on the distribution function” means, that
the presence of Own Child leads to a left-skewed distribution function of Age,
i.e., the distribution function has more weight at lower values.

With our method we can find such items. The “impact” is not pre-specified
at all - the only measure, which describes the deviation from the average, is a
statistical test comparing the two distribution functions.

This paper is organized as follows: Up to now we presented the motivation of
our work. Next, in section 2, we describe existing work, which is relevant for this
paper. In section 3 we formalize the idea presented so far and give the necessary
algorithms. In section 4 we apply our method to real datasets and show the
relevance of our findings. We conclude the paper with a summary and an outline
of future work in section 5.

2 Related Work

Frequent itemsets and association rules are generally accepted concepts to ana-
lyze market-basket data in order to improve the decision making. Starting with a
database of transactions, which in turn consist of items sold together, algorithms
were developed to find associations between the items. The basic principles were
developed in [1], and the well-known Apriori-algorithm was proposed in [2]. Many
extensions were developed, and the concept of frequent itemsets and association
rules is applied in many areas.

The Apriori-framework was developed for analyzing categorical data. How-
ever, many data include numerical values. In [13] quantitative association rules
were proposed. The range of a quantitative attribute is partitioned into intervals
and they are handled as categorical values. The question is how to partition a
quantitative attribute. Increasing the number of intervals results in low support,
but decreasing the number of intervals results in loss of information. Solutions
proposed in [13] include joining adjacent intervals until a threshold of maximum
support is reached. Further on, a measure for the best number of intervals, which
requires equi-depth partitioning, as well as an interestingness measure for the
patterns is given.

For rules of the type “Quantitative → Categorical” with only one numerical
attribute algorithms were developed to maximize the support or the confidence
[5] of the rules. This approach was extended to rules “Quantitative, Quantitative
→ Categorical” with two numerical attributes [4]. A fully automated system for
such a type of association rules was proposed in [7], which does not require the
user to choose any of the parameters for generating the rules.

A generalization of [4, 5] is given in [11]. First, rules are permitted to contain
disjunctions over uninstantiated attributes, i.e., the rules have the type A ∈
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I1 ∨A ∈ I2 ∨ . . .∨A ∈ In → C. Second, the number of uninstantiated attributes
of a rule is not limited. And third, an uninstantiated attribute can be either
numerical or categorical. The attribute is called uninstantiated, if the boundaries
of the interval are not specified in advance, i.e., they must be found by the
algorithm. The optimal solution with respect to support and confidence turns
out to be NP-hard. Therefore, the follow up work [10, 12] concentrates on rules
with one or two numerical attributes.

The problem of finding good intervals was addressed in [8]. The drawbacks
of the equi-depth partitioning in [13] are pointed out. Consequentially, goals
for association rules over interval data are described, which yields in the term
distance-based association rules. The degree of association is expressed by dis-
tance measures. For instance, the rule C1 → C2 has the degree of association of
D, if the average inter-cluster distance between C1 and C2 is smaller then D.

In [3] a new definition of quantitative association rules based on statistical
inference theory was proposed. The goal is to identify subsets of the data, which
show a different behavior compared to the full dataset. For instance, selecting a
subset can be done by specifying the value of a categorical attribute. The subset
is interesting, if the mean and/or the variance of a numerical attribute for this
subset differs significantly from the average. Two types of association rules are
given: “Categorical → Quantitative” and “Quantitative → Quantitative” rules.

The “Categorical → Quantitative” rules in [3] are most relevant to our work.
We present categorical values, which have also a significant impact on the quan-
titative attributes. In contrast to [3] we pay regard to the complete distribution
function of the quantitative attribute and do not restrict ourselves to the mean
and the variance. Further on, we take into account, that many frequent item-
sets can have a very similar distribution function of the quantitative attribute.
Therefore, we determine a grouping of the distribution functions in order to
summarize the important information.

3 Algorithms

In this paper we present a framework, which makes it possible to use the items
of an itemset to predict the distribution of a numerical attribute. In the next
subsection we introduce the notations used in this paper. After that we give
a short introduction to the Kolmogorov-Smirnov-Test, which is used in order
to compare different distribution functions of quantitative attributes. Finally,
two methods are presented: The first method ranks single items with respect to
their impact on a quantitative attribute. The second method makes it possible
to predict the distribution function of a quantitative attribute.

3.1 Definitions

The underlying database consists of transactions, which in turn consist of items.
Formally: The set of items is denoted with I. The number of items is nI , and for
simplicity the items are given by consecutive numbers, i.e., I = {1, 2, . . . , nI}.
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The database of transactions is given by D = {t1, . . . , tnD}, where nD is the
number of transactions. For each i with 1 ≤ i ≤ nD it is ti ⊆ I. Each transaction
ti is associated with a numerical value given by value(ti).

A set of items is called itemset. The support sup(I) of an itemset I ⊆ I is
defined as the number of transactionsh containing I:

sup(I) = |{t|t ∈ D ∧ I ⊂ t}|

A numerical value is “attached” to each transaction. Therefore, it makes sense
to define the set of all numerical values, which are attached to the transactions
containing a given itemset I. This set is a multi-set, because duplicates are not
removed. It is given by:

values(I) = {value(t)|t ∈ D ∧ I ⊂ t}

The goal of this paper is to analyze values(I) in order to find dependencies
between items, itemsets and the numerical attribute.

In this paper we assume that an algorithm to find the frequent itemsets
of I was already applied. The set of the mined frequent itemsets is denoted
with FI = {I1, . . . , InFI}. nFI is the number of frequent itemsets. The value
specifying the minimum support parameter is denoted with min sup.

3.2 The Kolmogorov-Smirnov-Test

The Kolmogorov-Smirnov-Test (KS-Test) [6, 9] tries to determine, if two sets
of values differ significantly. The KS-Test has the advantage of making no as-
sumptions about the distribution of the data. That is, it is non-parametric and
distribution free. However, this generality comes at some cost: Other tests may
be more sensitive to the data. In the context of this paper we can not make any
assumptions about the data. For generality we use the KS-Test.

The KS-Test uses the empirical distribution function. For a set of values - in
our context values(I) for a given itemset I - the empirical distribution function
FI is defined as follows:

FI(x) =
number of values in values(I) that are ≤ x

number of values in values(I)

For completeness we note, that the distribution function of a random quantity
X is given by

F (x) = Pr(X < x) = probability that (X < x)

The KS-Test requires, that the two sets of values have continuous distribution
functions without jumps. In our context these two sets are given by values(I ′)
and values(I ′′) for corresponding itemsets I ′ and I ′′. The test statistic K is the
largest absolute deviation between FI′ and FI′′ over the range of the random
variable, i.e., over the range of the numerical attribute:

K = max
x

|FI′(x)− FI′′(x)|
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This value is compared with a critical value in order to accept or reject the
null hypothesis H0 that the two sets are drawn from the same population. At a
significance level of α the critical value Dα is given by

Dα = c(α)

√
sup(I ′) + sup(I ′′)
sup(I ′) · sup(I ′′)

where c(α) depends on the significance level:

α 0.10 0.05 0.025 0.01 0.005 0.001
c(α) 1.22 1.36 1.48 1.63 1.73 1.95

If K is equal or larger than Dα the null hypothesis must be rejected. In order
to use the value of Dα it must be ensured that both sup(I ′) and sup(I ′′) are
larger than 40. Otherwise there are equations for Dα, which are more adequate
for smaller values of sup(I ′) and sup(I ′′). The values K and Dα depend on I ′

and I ′′. Therefore, we had to write K(I ′, I ′′) and Dα(I ′, I ′′). But, if the context
is clear, we write simply K and Dα.

The work presented in this paper requires it, that different pairs (FI′ , FI′′) of
empirical distribution functions must be compared. Because the interpretation
of K(I ′, I ′′) depends on Dα(I ′, I ′′), which in turn depends on the support of the
corresponding itemsets, a normalization of K(I ′, I ′′) is needed. This is achieved
by defining

KS(I ′, I ′′) =
K(I ′, I ′′)
Dα(I ′, I ′′)

With this definition the similarity of itemsets is given by the similarity of
the corresponding empirical distribution functions of values(I ′) and values(I ′′).
The detailed application of this similarity measure will be clear in the next sub-
sections.

3.3 Analyzing FI for single items

In this subsection we will give a method to answer the question: “There are
any items such that the set of transactions containing this particular item has
an unusual distribution function of the numerical attribute?” We define the
term “unusual” as “different from the average”, which refers to the similarity
of two distribution functions. This can be formalized as follows: The item j ∈ I
corresponds to the itemset {j}, and the set of corresponding numerical values is
given by values({j}). Further on, the empirical distribution function is given by
F{j}. The average is simply given by all transactions, which can be achieved by
using ∅ as the particular itemset, i.e., we use values(∅) and F∅.

In order to express the difference to the average we use the KS-Test, i.e., for
a given item j the value KS({j}, ∅) is used. This value measures the deviation of
values({j}) from values(∅). An item j with a high value KS({j}, ∅), i.e., larger
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than one, is interesting, because the numerical values of transactions containing
this item have a distribution function significantly different from the average.

For the practical application all items are sorted with respect to KS({j}, ∅).
Then the user can inspect the most interesting items: Items with a high value of
KS({j}, ∅), as mentioned in the previous paragraph, as well as items with a small
value, i.e., close to zero. Those items are interesting, because the corresponding
distribution functions are very similar to the average. This sorting criterion for
items is simple and useful. Items with a specific impact can be identified and
give insight into to data. Experimental results are presented in section 4.

3.4 Identifying items with strong impact

Suppose we have a subset of the transactions. Therefore, we can compute the
distribution function of the numerical attribute. Different subsets can result in
different shapes of the distribution function. Two things are important to note:
First, in this section, such a subset is defined by all transactions containing
contain a given (frequent) itemset. Second, we want to identify items, whose
occurrence in an itemset is an indicator for a characteristic shape of the distri-
bution function. To give an example we refer to the example given at the end of
section 1.

As mentioned, there might be several different shapes of the distribution
functions (depending on the subsets). For now we assume, that we identified nC

such groups, each named with Ci for 1 ≤ i ≤ nC .
An item typically belongs to different itemsets. In this paper the items with

strong impact are those items, whose probability P (Ci|j) is very high. This proba-
bility describes the following: If an itemset I contains item j, then the distribution
function of values(I) has the shape of Ci with probability P (Ci|j).

The question arises how to define the groups of shapes: In this paper one
group consists of itemsets, such that the distribution functions are similar to
each other. Further on, itemsets from different groups have dissimilar distribution
functions. This is exactly the definition of a clustering, i.e., a clustering of the
itemsets.

The next subsection gives information about the clustering step. The sub-
section afterwards continues to explain how to identify the items.

Applying the clustering algorithm In order to find a clustering of the item-
sets the similarity of two itemsets is expressed by the similarity of the cor-
responding distribution functions. To specify the similarity the Kolmogorov-
Smirnov-Test is used as explained in section 3.2.

As the clustering algorithm we use a hierarchical, agglomerative clustering
algorithm. This algorithm merges the two clusters, which have the highest simi-
larity, starting with each itemset as its own cluster. The algorithm merges until
the specified number of clusters nC is reached. Finding the best number of clus-
ters is still an open question in theory and practice. The answer depends on the
data, and typically one have to try different settings.
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The motivation of using a hierarchical algorithm is twofold: First, the input
of such an algorithm is a similarity matrix. Only the similarity of the original,
unmerged itemsets is used by the algorithm. Therefore, we do not have to define
the centroid or the mean for sets of itemsets. Second, the similarity could be
determined with a metric. In this case it would be necessary to approximate the
distribution function with binning and histograms in order to get a vector-space.
This leads to the problem of finding an appropriate binning and an appropriate
metric, and problems with bin boundaries must be handled. Using a statistical
test as a similarity function might be an intuitive and simple solution for those
issues.

The similarity matrix is denoted with S ∈ RnFI×nFI , and the entry at (i, j)
is given by

Sij = KS(Ii, Ij)

where 1 ≤ i, j ≤ nFI , i.e., Ii and Ij are frequent itemsets. Note that S is a
symmetric matrix. The clustering partitions the set of frequent itemsets into nC

clusters, namely Ci for i = 1, . . . , nC . It is ∪nC
i=1Ci = FI and Ci∩Cj = ∅ if i 6= j

for 1 ≤ i, j ≤ nC .

Identifying the items Now we come back to the goal of identifying items with
a strong impact, i.e., we want to identify items j ∈ I with high P (Ci|j) for any
Ci (1 ≤ i ≤ nC). It turns out, that we can compute this probability with Bayes’s
Law.

The probability that an itemset from a given cluster Ci contains the item j
is given by

P (j|Ci) =
|{I : I ∈ Ci ∧ j ∈ I}|

|Ci|
Further on, the probability of cluster i is given by

P (Ci) =
|Ci|
nFI

The first equation enables us to predict the presence of an item in an itemset –
under the condition that this itemset belongs to a particular cluster. The second
equation enables us to predict a cluster.

The goal of this paper is to predict the cluster (that is, the distribution
function) of an itemset – under the condition that the itemset contains a given
item.

The prediction of the cluster corresponds to the probability P (Ci|j). With
Bayes’s Law this probability is given by

P (Ci|j) =
P (j|Ci) · P (Ci)∑nC

k=1 P (j|Ck) · P (Ck)

The interpretation of this probability is as follows: Given an itemset I, which
contains an item j, the probability, that the itemset I has a distribution function
similar to the distribution functions of itemsets in cluster Ci, is given by P (Ci|j).
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It is clear, that one is interested in items j with a high value of P (Ci|j) for
any i (1 ≤ i ≤ nC). These are the items, which have a strong impact on the
distribution function of the numerical attribute. The predictive power of those
items is very high.

4 Evaluation

The methods presented in this paper were evaluated with the adult dataset from
the UCI Machine Learning Repository at http://www.ics.uci.edu/∼mlearn.
The dataset contains continuous and categorical attributes. Each transaction
consists of 13 values. Continuous values include age, amount of capital gain and
capital loss in dollars, number of working hours per week and number of years
of education. Categorical values include the marital status, the education, the
occupation, the workclass, the relationship, the race, the sex and the home coun-
try. In our analysis we do not use the zip code and the class label. The set of
items is constructed as follows: It is the union of the domains of the categori-
cal attributes. For the evaluation the Age attribute is chosen as the numerical
attribute, because the findings can be easily verified. The findings about single
items are reported in the next subsection. Results about predicting the distri-
bution function are reported afterwards.

4.1 Analysis of single items

In this section we show the ordering of the items of the adult dataset. The
item j is ordered with respect to the difference between the distribution function
of values({j}) and the distribution function of values(∅). Figure 1 presents the
results. From the figure it can be seen, that persons with the item Never Married
for marital status are considerably younger than the average. Further on, it can
be seen, that persons which are Husband, are older than the average. Conversely,
the attribute United States does not have an impact on the distribution function
of Age. The census dataset comes from the US, and therefore, nearly all people,
i.e., the majority which forms the average, have this attribute value.

4.2 Items with strong impact

In this subsection we present the items of the adult dataset, which are capable
of predicting the distribution function of the numerical attribute.

As pointed out in section 3.4 the first step is to find the frequent itemsets.
There are 4135 frequent itemsets when choosing min sup = 300 (absolute value)
corresponding approximately to 10% of the data. The set of numerical values for
each frequent itemset is computed, which is required for computing the similarity
matrix S, whose entries are the normalized test statistic of the KS-Test.

The similarity matrix is the input to the clustering algorithm. We specified
the number of cluster with nC = 3. The motivation for nC = 3 will be explained
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9726 - 23.1037 4466 - 22.8827 12463 - 12.3529

12463 - 12.3529 827 - 11.633 4214 - 9.41835

9840 - 0.691635 25933 - 0.469673 27504 - 0.315257

Fig. 1. This figure shows the ordering of the items of the adult dataset. Each diagram
corresponds to one item, and the name is given on top of the diagram. The red bars
show the distribution function of values({j}), i.e., the age pattern for the given item is
shown. For comparison, the transparent (white) bars show the distribution function of
values(∅), i.e., the age pattern for the full dataset is shown. The support of the item
is given below the histogram (left value), and the difference to the average is given by
the KS value (right value). The figure shows items, which are either very similar or
very dissimilar to the average.
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later in this paragraph. In order to understand the clustering of the itemsets, i.e.,
the clustering of the distribution functions, for a given cluster the distribution
function of Age is computed as follows: The sets values(I) for all itemsets of
a given cluster are merged, and the histogram over this set is computed. Note
that multi-sets are used, i.e., duplicate values are not removed. In the case of
the adult dataset Age ranges from 0 to 99. This range is divided into equi-width
bins of width 5. The resulting histograms and explanations are given in Figure 2.
One can see, that the histograms are pairwise different. When choosing a higher
value for nC this desired property will disappear. That is, when choosing a higher
value for nC two (or more) clusters will have a similar distribution function, or
multiple clusters have a distribution function similar to the average. That is, the
uniqueness of the clusters disappears.

986 itemsets 2163 itemsets 986 itemsets
(1) (2) (3)

Fig. 2. The characteristic distribution function for each cluster is given. The red bars
show the distribution function, i.e., the age pattern for the cluster is shown. For compar-
ison, the transparent (white) bars show the distribution function, i.e., the age pattern,
of the full dataset is shown. The number of itemsets in a cluster is given below the his-
togram. From the diagrams the following can be seen: The first cluster contains itemsets
I whose distribution function of values(I) is similar to the average. The second clus-
ter contains itemsets I whose distribution of values(I) shows, that young people are
missing. The third cluster contains itemsets I whose distribution of values(I) shows,
that the fraction of young people is above average.

In order to use an item to predict the distribution function the probabilities
P (Ci|j) are computed. Figure 3 gives probabilities for the three clusters and
all items which are represented in frequent itemsets. The probabilities, i.e., the
prediction, have to be applied as follows: The item Never married has a high
probability, almost 1, for Cluster 3. That means, that for nearly all itemsets
with item Never married the distribution function of the numerical attribute
has a shape similar to the one shown in Figure 2(3). A similar statement can be
made for item 7th-8th. In this case all itemsets with this item have a distribution
function of the numerical attributes similar to 2(2).
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j P (C1|j) P (C2|j) P (C3|j)

10th 0.889 0.111 0.000
11th 0.000 0.050 0.950
12th 0.000 0.000 1.000
7th-8th 0.000 1.000 0.000
9th 0.800 0.200 0.000
Asian-Pac-Islander 0.333 0.583 0.083
Assoc-acdm 0.468 0.510 0.021
Assoc-voc 0.333 0.640 0.027
Bachelors 0.283 0.519 0.197
Black 0.456 0.327 0.215
Craft-repair 0.232 0.614 0.153
Divorced 0.004 0.996 0.000
Doctorate 0.000 1.000 0.000
Exec-managerial 0.166 0.770 0.063
Farming-fishing 0.107 0.892 0.000
Federal-gov 0.000 1.000 0.000
Female 0.328 0.293 0.377
HS-grad 0.255 0.546 0.198
Handlers-cleaners 0.364 0.000 0.636
Husband 0.029 0.970 0.000
Local-gov 0.175 0.824 0.000
Machine-op-inspct 0.309 0.619 0.071
Male 0.214 0.606 0.178
Married-civ-spouse 0.041 0.958 0.000

j P (C1|j) P (C2|j) P (C3|j)

Married-spouse-absent 0.000 1.000 0.000
Masters 0.038 0.961 0.000
Mexico 1.000 0.000 0.000
Never-married 0.058 0.000 0.941
Not-in-family 0.540 0.185 0.274
Other-relative 0.076 0.000 0.923
Other-service 0.264 0.190 0.545
Own-child 0.003 0.000 0.996
Private 0.292 0.417 0.290
Prof-school 0.000 1.000 0.000
Prof-specialty 0.270 0.615 0.113
Protective-serv 0.272 0.727 0.000
Sales 0.282 0.434 0.282
Self-emp-inc 0.000 1.000 0.000
Self-emp-not-inc 0.031 0.968 0.000
Separated 0.653 0.346 0.000
Some-college 0.227 0.426 0.346
Tech-support 0.409 0.568 0.022
Transport-moving 0.190 0.793 0.015
United-States 0.233 0.528 0.237
Unmarried 0.208 0.717 0.073
White 0.231 0.533 0.235
Widowed 0.000 1.000 0.000
Wife 0.235 0.764 0.000

Fig. 3. The probabilities P (Ci|j) for the three clusters C1, C2 and C3 and the items j

are given. Note that only items which appear in at least one of the frequent itemsets
are listed. The interpretation of the table is given in the text.

5 Conclusions

In this paper we presented methods to analyze the dependencies between the
items and the distribution function of a numerical attribute. In a first step the
single items are ordered with respect to their impact on the numerical attribute.
This enables to find subsets with a behavior different from the average. In the
second step groups of similar distribution functions were identified. A method
was proposed in order to find relations between items and the groups of distribu-
tion functions. The relations allow predicting a group of distribution functions
from the item.

Our future work is directed as follows: One goal is to understand the influence
of the parameters min sup and nC , and to develop criteria for good values.
Further on, we want to better understand the term “impact on the numerical
attribute”. Until now we can say, that, e.g., Never married has a strong impact
on Age. However, there might be exceptions to this rule, which should be covered
by our framework. Additionally we want to define the “impact” of combinations
of more than one item.
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