
(

PCTE . SOLVING CASE DATA INTEGATION

Kari Rossi
Kim Portman

Software Engineering Department
Nokia Research Center
P.O.BOX 156
SF-02101 Espoo
Finland.

PCfE is a programming interface which provides basic operating system primitives for the developer of
an integrated software engineering environment. PCfE is designed to be npward compatible with the

UNIX1 operating system. It was defined in an ESPRIT project during 1983-1986.

PCfE replaces the file system of traditional operating systems by an object management system, which
serves as a base for data integration. The data model of the object management system is a derivation of
the Entity-Relationship model. PCfE is aimed to be the kernel for bnilding software engineering
environments for 1990's.

Keywords: CASE, Object Management Systems, PCfE, Software Engineering Environments, UNIX.

lUNIX is a trademark of AT&T.

•

1. INTRODUCTION

There is a large amount of data to be managed iu a software engineering environment (SEE). This data is
highly structured and the differeut data clements are closely related to each other. The softwate
development data consists of informatinn like:

all forms of programs; sources, objects and executables

documents; requirements} specifications and designs

project management data; plaus, schedules and resources

relations between different development data

mUltiple versions of software development objects.

Current operatiog systems are not well equipped to manage all this data in an integrated and efficient way.
The traditional character oriented me systems do not provide sufficient means to structure the design data.
pCTE is a progranulling interface desigued to support particularly the management of software
engineering data.

pCTE was defined during 1983-1986 in an ESPRIT project, participated by Bull, GEC, TCL, Nixdorf.
Olivetti and Siemens fPCTES?I. PCTE interface definition was placed in public domain. Full
implementations are already available for several different workstations. PCTE is gradually gaining
acceptance among software tool writers. It is currently used in several European research projects
developing tools for SEEs.

This paper describes PCTE basic funetionalities and analyses it by comparing it to UNIX. The paper is
based on the material in references lBach86/. fPCTES6a/, fPCTES6b/, 1B0ud88/, ICamp8?1,
ICamp88/, !Lyon8?1, (Thom881 and fPort88/.

2. NEED FOR A TOOL ENVIRONMENT

Traditionally software has been developed in centralized computer systems nsing separate text oriented
tools. Recent developments in computer technology have made personal workstations available for
software engineers. These workstations are characterized by high processing power, high resolution
graphics and operatioo over local area network. Tlus hardware base is a required step in achieving the
long waited productivity gains in software development.

Although these achievements the software base to take advantage of thc current hardware is still largely
unavailable. The effort for developiug software engineering tools for highly integrated environments is
much greater than for traditional environments. These new tools arc expected to provide increasing levels
of services and support for the software developer. The tools are required to be graphics oriented, utilize
database technology and support operation in a distributed environment.

The services of traditional operating systems arc insufficient for building these sophisticated software
engineering tools. These operating systems, including UNIX, were designed to process mainly character
oriented information, store data in untyped files and support the work of individuals. To tap the power of
workstation tcclmology) betler operating environments afC needed for building future engineering tools.

1

3. PCTE BASIC CONCEPTS

3.2 Object Management

(
3.1

PCfE provides a Public Tool Interface (PTI) for tool developers. The interface definition is non
proprietary and it contains services valuable for creating highly integrated tool environments. PCfE
addresses some of the key requirements of tool developers:

it contains graphics services for user interface construction

it provides data storage in an object management system

it snpports operation in a distributed and heterogeneous workstation environment.

Processes

PCfE process management is based on XlOPEN-standard /XOPE87/. Most of the XlOPEN calls are
included as such, but some calls have been added and some extended. Programs are run in UNIX
processes. Each process has a system wide unique identifier so it is possible to refer it even from other
workstations.

UNIX system calls are extended in the process invocation. Fork- and exec -primitives are not required
from an implementation, they are replaced by call and start primitives:'

call creates a new process which starts to execute the specified program) and the original process
waits for the termination of the created process

start is similar, except that the original process doesn't wait for the termination of the created
process.

Processes communicate via pipes, signals and message queues. Pipes aud signals are UNIX compatible.
PCfE message queues are an extension of UNIX message queues. They are named so that unrelated
processes can also exchange messages easily. Many processes may write to a message queue at the same
time hut only one can read it.

One of the key features in PCfE is distrihution. Both processes and ohject management system are
distributed. The distribution is as transparent as possible to the user. Therefore it is possible to execnte
processes and manipulate data in the same way from all 'connected workstations.

In PCfE the file system of traditiunal operating systems is replaced by an object management system
(OMS). OMS is based on ER-model /Chen76/ where objects have attributes and relations. Like
conventional databases OMS also supports transactions.

OMS objects are typed. There is a type hierarchy and therefore snbtypes of an object type inherit
definitions from its parent type. The root object type is called 'object'. The most important subtype of this
type is 'file', which has contents like ordinary files in UNIX.

2

Type defmitions are described in a data definition language(DDL). The following is an example of DOL
definitions:

source_file: subtype of filc ;
C_module: snbtype of source_file;
project: subtype of object;

3.2.1 Attributes

There are four attribute types in OMS:

integers

booleans

strings

dates.

Attribntes can be associated either to objects or to links. They are used to store typed information in the
database. Attributes can be accessed and changed by thc user and they cau have default values on
initialization. Below are some examples of attribute type definitions:

project_name: string i

reserved: boolean: = true;
error_code: integer: == -1 ;

3.2.2 Links and Relations

Objects in OMS are always referred to by links. The root object is referred to by '_'. It is called the
'common_root' since it is common through all workstations, Hence, OMS objects don't actually have
names, only links have. In fact, the only way to create an object is to create a link from an existing (origin)
object to the new (destination) object.

Objects are referred by their path names. A path name is a sequence of link names scparated by 'J', e. g.,
'_/compiler,system/scanner.c'.

OMS links are classified to three categories:

composition

reference

implicit.

An OMS object is created by establishing a composition link from an cxisting object to it. An object is
dcletcd when the last composition link leading to it is deleted. Reference links arc used to refer to cxisting
objects. Each link has a reverse link, and if the category is left unspecified it is implicit.

3

(

(

(

(

The cardinality of a link is either one or many. If the cardinality is one an object may be origin to only one
link of that type. Otherwise many such links are allowed. In that case the different links are distinguished
by a key. The following DDL definitions extend the previous examples:

user_name: string;

works_in: reference link (project_name) to project;

user: subtype of object
with
attribute

user_name;
link

works_in ;
end;

A relationship is composed of two link types leading from one object to the other and vice versa. The
purpose of relationship types is to preserve integrity between two link types.

3.2,3 Schemas

Each type definition belongs to a schema definition set (SDS). For example, the predefined schema 'sys'
contains the following definition for the PCI'E common root:

common_root: subtype of object;

end sys ;

By import and extend facilities it is possible to use existing type defioitions. For example, in the schema
below some type definitions are imported from the 'sys' schema. The definition of 'commonJoot' is also
extended to have a link to C-program development objects:

import sys-object as object;
import sys-file as file ;
import sys-common_root as commonJoot;

C_module: subtype of file ;
C_header: subtype of file ;

name: string;

c: composition link (name) to C_module;
h : composition link (name) to C_header ;

4

relationship (
header: reference link (name) to C_header;
module: reference link (name) to C_module

) ;

extend common_fool

with
link
c;
hi

end cOllunOIl_root ;

At a particular time the objects visible to the user depend on the working schema. Working schema is the
union of the schemas activated at each time. The types are resolved in the order they are loaded in the (
working schema.

When tbe previous schemas 'sys' and 'simple_C_development' are loaded into the working scbema, the
visiblc type definitions is the sum of the types in those schemas. The user may refer to C-modulcs and C- (
headers thc following way:

to the objccts '-"tesl.c' and '-"defs.h'

to the object '-"defs.h' by the relation '-"teSl.c/defs.header' leading from 'tcsl.c' to 'defs.h'

to the object'-"test.c' by the relation '-"defs.h/teSl.module' lcading from 'defs.h' to 'tesl.c'.

3.3 User Interface

The most important concept of the PCTE user interface (VI) is the window. The screcn may contain
several overlapping windows. They arc used to display application outpnt and catch user inputs. Current
window is the one wbere tbe cursor is at a particular moment, and applications receive all input from the
current window.

Other imporlant concepts of PCTE VI are frames and viewports. Application programs oUlput lhrough
the frame data structure. There are three lypes of frames:

bitmap for bit charts

graphic for primitive graphics, e.g. circles and lines

text for textual outpul.

Before an application may write to a frame it must be connected to a window. The connection is
cstablished via a viewport data struclure which defines which part of the frame will bc visible. In addition,
rCfE UI provides primitives for manipulating icons, cursor, carets (position within a window) and fOllls.

5

4. ANALYSIS OF PCTE INTERFACE

4.1 Process Management

PCfE process management is highly compatible with UNIX. However, there are some slight advantages
in the PCfE primitives.

One advantage is gained by using calI and start primitives instead of UNIX fork- and exec- calIs. The most
common way of using the UNIX calIs is to call exec as the first statement in the child process right after
fork is calIed. Fork starts a new child process which executes the same code as the parent process. This is
done by duplicating the parent process memory images to the child process. There is clearly an
unnecessary overhead when the new process as its flIst operation changes its mcmory contellts again.

Another benefit of PCfE is the distribution of processes. PCfE primitives allow the processes to be
created transparently in other workstations. For example, when the user types the command

compile main-'program.a

(in the command interpreter, the first step in the execution is to find out in which workstation the program
'compile' is located - if it is not in the workstation of the user 'compile' is run remotely. Therefore PCfE
processes are referenced by network wide process identifiers. Also PCfE message queues offer slight
advantages, since the communicating processes can refer to a message queue by its name instead of its •
queue identifier.

As a summary, PCfE provides some but not tremendous advantages in process management when
compared to UNIX.

4.2 Object Management

In the research community there is a common understanding that traditional databases and file systems
are not sufficient as software engineering data repositories. Since this is the key component in achieving
data integration the environment must support sophisticated manipulation of software engineering objects.
The most important requirements for software engineering data management are !BernS?!:

efficient storage of large amount of data

control of concurrent accesses, consistency and protection

support for multiple versions of data

support for multiple data representations, interface to different languages, tools and hardware

support for flexible and powerful operators, e.g., manipulation of syntax trees

support for variable length objects whose internal structure is hidden from the system, e. g., large
text files

support for flexible data types, complex objects 811(\ arbitrary types supported by thc programming
languages.

6

When compared to these requirements it is ohvious that PCfE OMS is a beller platform for software
engineering tools than hierarchical file systems. Its ER-model supports modelling of complex data: type
hierarchy of objects, attributes, links and relations and grouping of related type definitions into schema
definition sets. Fnrthcrmore, composition links are a natnral way of modelling composite objects, i. e.
objects, which consist of other objects. A versioning model has also been developed which provides basic
facilities for managing versions of (composite) objects {fhom88/.

The only strncturing mechanism in hierarchical file systems is a directory. In fact, directory hierarchy
could be modelled easily in OMS with an object type having link types to itself and to file type:

dir: composition link (name) to directory;
f: composition link (name) to file ;

directory: subtype of object
with
link
dir;
f·,

end;

cnd simple_hierarchical)i1e_system ;

Hence, all structures that can be modelled in a hierarchical file system can be modelled in OMS bnt not
vice versa.

Still, OMS is far from the optimal solution. The basic types are predefined and operations can not be
associated to types. In addition, although OMS doesn't impose restrictions to the size ofobjects, it is not
practical to model very small granularity objects with it.

4.3 User Interface

When PCfE user interface was defined no widely accepted windowing systems existed. Therefore PCfE
contains the UI althongh there arc hardly any software engineering specific needs for windowing systems.

However, currently there is a strong standardization effort going on, e.g., XlWindows, Open Look and
OSFIMotif. PCfE nser interface could be regarded as yet another XlWindows tool kit.

As a summary, it is not the purpose that PCfE user interface definitionwonld compete with the emerging
windowing system standards. This has also been noticed by the PCfE Interfacc Management Board
(PIMB) and hence, the emerging windowing standards will certainly have an innuence on rCfE UI.

5. CONCLUSIONS

From the previolls comparison it can be seen that rcrE is technically a belter platform for software
engineering tools than UNIX due to its object management system. However, it is not yet a conullcrcial
solution since there afC nol many examples of using PCfE in complex practical problems. Commercial

7

(

(

(

implementations are available from one source and only recently it has been ported to other workstations
besides Bull SPS7 and SUN 3.

One disadvantage of PCfE is that it is implemenled inside the operating system kernel. This makes il
difficult to port it to other environments. Also some parts of the current implementation, particularly the
user interface, have certain performance problems. Still there are some doubts whether an

implementation outside the operating system kernel wonld be feasible.

The future development of PCfE is done in PACf- and PCfE + -projects. There is also a technical
conunittee in ECMA studying PCfE standardization. The result of this standardization effort will likely
be that PCfE will bc more widely accepted. Although the rapid progress, it will be well in the 1990's until
PCfE will be found in commercial CASE tools.

GLOSSARY

CASE
DDL
ECMA
ER
OMS
PACf

PCfE
PIMB
PTI

SDS
SEE
UI

REFERENCES

/Bach86/

Compnter Aided Software Engineering
Data Definition Language
European Computer Manufacturers Association
Entity-Relationship
Object Management System of PCfE
PCfE Added Common Tools
Portable Common Tool Environmcnt
PCfE Interface Management Board

Public Tool Interface
Schema Defmition Set
Software Engineering Environment
User Interface

Bach M. J., The Design of the UNIX Operating System, Prentice-Hall, 1986.

/Bern87/ Bernstein P. A., Database System Snpport for Software Engineering, An Extended
Abstract. 9th International Conference on Software Engineering, March 30-April 2, 1987, Monterey
California, USA, pp. 166-178.

/Boud88/ Boudier G. & Gallo F. & Minot R. & Thomas I., An Overview of PCfE and PCfE +.
ACM SIGSOFT Software Engineering Notes, Vol 13 (1988), No 5, pp. 248-257.

/Camp87/ Campbell I., Standardization, Availability and Use of PCfE. Information and Softwarc

Technology, Vol 29 (1987), No 8, pp. 411-414.

/Camp88/ Campbell I., Emeraudc Portable Common Tool Environment. Information and Software

Technology, Vol 30 (1988), No 4, pp. 210-217.

/Chen76/ Chen P., The Entity-Relationship Model: Towards a Unified View of Data. ACM
Transactions on Database Systems, Vol 1 (1976), No 1, pp. 9-36.

!Lyon87/ Lyons T. & Tedd M., Recent Development in Tool Support Environments: CAIS and

PCfE. Ada User, Vol 8 (1987), Supplement, pp. 65-72.

8

/PCTE86a/ PCTE Functinnal Specifications. Bnll, GEC, ICL, Olivctti, Nixdorf, Siemens, Fourth
Edition, 1986.

/PCTE86b/ PCTE Ada Functional Specifications. Bnll, GEC, ICL, Olivetti, Nixdorf, Siemens, First
Edition, 1986.

/PCTE871 PCTE: A Basis for a Portable Conuuon Tool Environmeut, Project Rcport. Esprit '86
Results and Achievements, Elsevier Scieuce Publishers B.V., 1987, pp. 53-71.

/port88/ Portman K & Rossi K, PCTE - CASE Vcndor's UNIX (In Finnish). FUUG UNIX -88,
Finnish UNIX User's Gronp Meeting, November 16-17, 1988, Espoo, Finland, pp. 7-14.

/Thom88/ Thomas I., Writing Tools for PCTE and PACT: The How-to-do-it Guide. ESPRIT '88
Putting the Resnlts Together, Elsevier Science Publishers B.V., 1988, pp. 453-459.

/XOPE87/
1987.

X/OPEN Portability Guide (January 1987), Vol. 1-5. Elsevier Science Publishers B.V.,

9

(

(

