
(

(

\

Modelling CASE Environments in
Systems Development
by

Kalle Lyytinen
Kari Smolander
Veli-Pekka Tahvanainen

University of Jyviiskylii
Department of Computer Science
Jyviiskylii, Finland

Abstract

Computer Aided Systems Engineering (CASE) envirorunents are pushed into market place daily.
Novel features are being added to them, and the area is growing rapidly. However, we lack a more
profound understanding of the relationhips between CASE envirorunents and systems development
process in general. In this paper we try to make some preliminary steps to bridge this gap. We
propose a general framework to analyze and explore systems development process. Using this
framework we define the concept of a CASE envirorunent and discuss its role and functions in
systems development. Four aspects: organizational, communicational. technical and metalogical are
formulated which can be used to identify the effects of CASE upon systems development. The idea
of a CASE shell, a design envirorunent for the metalogical aspect and which can be used to "locate"
and "program" CASE envirorunents in three other aspects is introduced. We notify 17 dimensions
of modifiability in CASE envirorunents and show how these can be used to influence the use of a
CASE envirorunents in communicational. organizational and technical aspects. Finally, some
research issues raised by our study are discussed.

Keywords: Metamodelling, CASE shells

•

1. Introduction

Computer Aided Systems Engineering (CASE) is a booming activity in infonnation systems. Numerous
CASE products are being marketed and new products are launched nearly daily. And, even more there are pro­
grams that are sold as CASE environments, but which hardly can be considered such. The reneissance of
CASE has created an expanding and rapidly growing research activity (cf Chikofsky 1988; Penedo et al
1988; Bubenko 1988; Lockemann & MayI' 1986). New research topics arc opened just as tool integration in
CASE. CASE architectures. database interfaces and techniques associated with CASE, standards. CASE evo­
lution, integration of knowledge representation techniques, or quality assurance methods in CASE. Surpris­
ingly. there is no abundance of research concerning the concept and principles of CASE in relation to systems
development in general.

In this paper, we have set out on this topic. The general goal of this paper is to clarify the concept of a CASE
environment, and to layout a framework to study their impacts on systems development. In particular. we
want to explore how Ule modifiability of CASE environments achieved by the exploitation of CASE shells can
be used to "reprogram" and "reorganize" system development processes for greater adaptability and produc­
tivity. AIUlOugh most of the present work is concerned with CASE on a very general level, and alUlOugh we
have deliberately avoided making any claims about what might be Ule scope of CASE, we are nevertheless
mostly concerned with so-called upper case i.e. CASE in the early stages of systems development.

The paper is organized as follows. First, we present a framework for modelling and metamodelling which has
its roots in classic epistemology. Based on this we state some necessary conditions for a CASE environment,
and discuss the differences between system development tools and a CASE environment.

In Ule third section we present three aspects and one "meta-aspect" from which a sounder classification of
CASE environments can be derived and which does not apply arbitrary groupings of some technical features
found in CASE environments.

The fourOl section discusses at some length possible and necessary features of a CASE shell. i.e. an environ­

ment Um! can be used to generate customized CASE environments, and thus to "program" I Ule systems
development process. We also show how these features arc related to Ule three aspects of CASE enviromnents
presented.

LasUy. some research implications are summarized: what should be the proper focus of CASE research in near
future, and what problems need to be tackled in order to make most use of CASE environments and in particu­
lar of CASE shells.

2. A conceptual framework for systems development

In this scction we propose a conceptual franlework which helps to illuminate the nature of systems devclop­
ment process. Basic concepts that clarify various elements and functions in systems development process are
exposed. Then. we will use the framework to shed light on the role of a CASE enviromllent in a systems
development process and suggest two criteria to define the concept CASE more accurately.

2.1. A model of Systems Development
Generally speaking, systems development can be defined as an inquiry and change process that concerns a
specific field of actioll called here a field ofphellomella (Lyytinen 1987). This inquiry and change process is
social in nature, i.e. it involves more than two people who may take part in this process in different roles. In
order to explore the nature of Ulis process wc must distinguish Ulree fundamental domains of systems develop­
ment: (I) the real world, i.e. the basic "stuff" of inquiry and change: organizations, dala, communications,

I The word' 'program" docs not mcan that we would prefer a rigid approach to system developmellt, where every step is exactly
prescribed and tll8t remains unchanged from one development situation to another. However, we do assume here, that all systems
work exhibits some systematical pattern, although tllC particular tasks and thcir sequence may change from time 10 time.

(

(

(

(

activities, computers, files and the like; (2) conceptualizations of the real world, i.e. organizational theories,
theories of data and its modelling, or concepts used to understand and interpret the "rcality" , and (3) descrip­
tiollS of these conceptualizations, i.e. representations of organizational activities, data flows, data structures,
algorithms etc.

In more detail we should distinguish between (figure I):

• afield ofphenomena, i.e. a set of states of things in the real world, "reality".

• a conceptllal strllcture, a model in the beholder's mind, which conditions and affects how the field of
phenomena is conceived by him as certain objects, events and so on.

• a level of abstraction, a level of granularity related to the conceptual structure. The level of abstraction
determines which sorts of objects are constituted in the field of phenomena, and which parts therein are
considered to be relevant in different stages of systems development.

• a target system, which is formed from a part of the field of phenomena when seen through a pmticular
conceptual structure on a particular level of abstraction.

• a description language, a notation, in which the the target system is represented and communicated.

The framework thus distinguishes between the "reality" of systems development (that is or will be analyzcd
and changed), the developers' concepts and theories of it (conceptual structure), their "matching" as a particu­
lar "target system", and various representations made out of the target system in description languages. Con­
sider an inventory system. The field of phenomena consists of all possible things that can happen and take

I
I
I t-- "
I ' \

}
AbSlraClion: fField of \
level I phenomena ,

, I. ,
I ,.
\ '
\ .
\ (
,-.,-'

I

Machine

Prescriptions

Descriptions

Instructions

Target
system

representations

Defines

Concept structure

Figure I. A Model of Systems Development

2

place in the inventory systcm. The conceptual structure is formed by the concepts and UleOlies Ule developers
(systems analysts) have about the role of information systems in the inventory systems and all concepts that
help to understand. explain and predict Ule behavior of the system. The conceptual structure is thus partly con­
stituted by "methods" and "approaches" of systems development learned and used by systems analysts,
partly by the knowledge they have about inventory systems and their role in organizational action. The target
system is a particular "model" of an inventory system derived by the analyst when the conceptual structure is
"matched" with the inventory control problem in a particular setting. Description languages are notations that
the analysts use to represent the target system for analysis, communication and review such as a data flow
model of the current inventory system.

Although these clements are represented here as independent factors of a development situation, they in fact
are not independent, and therefore each one of them must be understood only in relation to the oUler elements.
The distinctions arc Ums not absolute. and Uley need to be made only when necessary. For example, Ule con­
ceptual structure and the level of abstraction are mutually dependent, but neiUler of Ulem can be explained by
and reduced to the other. One and the same conceptual structure can convey several levels of abstraction, and
one and the same level of abstraction can be found in several different conceptual structures. For example,
some data models can include conceptual structures of data on several levels of abstraction (storage dependent,
and independent concepts).

In the same vein, represcntations of target systems can be read on several levels of abstraction depending on
which conceptual structure is being applied. For example. a piece of program code can be read as a represen­
tation of scmiotie relationships (salary-field denotes to real salaries). as a representation of a fonnal expression
(salary-field has five integers and two decimals), or as a model of computer memory assignment (a salary-field
takes one word of the main memory). Finally, Ule same conceptual structure can be dressed into different
description languages i.e. the same target system can have several semantically equivalent representations (see
for example Venable & Truex 1988).

2.2. Description languages in system development
The main focus and interest in systems development lies naturally in description languages as Uley make the
conceptualizations of the field of phenomena shareable among the members of the development group. In
oUler words. only through description languages systems development as social activity is possible. This obvi­
ous conclusion becomes clear if we look at any book or research article on systems development. A majority
of Ule literature discusscs new and better ways to describe the target systems. The other components of our
framework help to wlderstand that the descriptions are of some field of phenomena and Ulat they arc based 011

some more or less explicit conceptualizations, "Uleories" , of the field of phenomena.

Thc representations of target systems in description languages serve several important functions in systems
development. First U1CY are a mealls of commullicatioll. Second, thcy are a means of allalysis, ullderstalldillg
alld predictioll of the structure and behavior of Ule target systems. In oUlcr words, descriptions are instrumen­
tal in inquiring Ule field of phenomena and obtaining knowledge of it and communicating this knowledge to
othcr participants during U1C development process. Therefore. it is necessary to consider in more detail the
types of communications and types of analysis Ulat take place in systems developmcnt.

First, the communications can have eiUler a descriptive or prescriptive purposc. In brief, the representations of
target systems can eiUler describe states of things as U1CY are here and now (or have becn in Ule past). or they
can prescribe statcs of things Ulat are intcnded to takc placc in the future. (Onc might suggcst an intermediatc
state. a description of a systcm to come. This could however be counted as a special case of description.) An
examplc of representations having dcscriptive purpose is a representation of data flows in thc current systcm.
An example of prescriptive representation is U1C logical data flow modcl of thc futllre systcm.

Another dimcnsion in our analysis of communications is whethcr the communication takes place betIVcell peo­
ple or betlVeell people alld compmers.

In thc former case thc communication ciUlcr clarifics. or explains thc structure and behavior of U1C target sys­
tcm. Somctimes U1C communications can also prcscribe behaviour of thc people taking part in the target sys­
tem (uscrdocumcntation). In the lattcr case the communication is not communication in a true scnsc. it is

3

(

(

raUler a way of instructing the behaviors to the computer system (i.e. programming in Ule real machine­
oriented meaning).

In Ule inquiry mode (as opposed to the communication mode discussed above) Ule representations serve as a
means to acquire, analyze and synthetize knowledge of a field of phenomena. This means that the representa­
tions enable checking the validity of Ule knowledge obtained. Several levels of correctness can be dis­
tinguished: the syntactic correctness. semantic consistency of the representations. Uleir correspondence with
developer's intentions and desires. or their pragmatic usefulness in proposing changes into the field of
phenomena.

In practice, the representafions of a target system can be used in several types of communications and inquiry
at Ule same time. For example. a piece of program source code may be considercd

(I) to serve descriptive communications. as it describes the functioning of the computer as well as the infor-
mation system at a (quite low) level of abstraction.

(2) to serve prescriptive communications. in stating how Ule computer should work;

(3) it may also be called an illStructive description from the human programmer to the computer;

(4) it also serves to communicate information between people about the functioning of the system; and

(5) finally. it may also be an object to study Ule syntactic and semantic correctness of the program (program
(verification) or to higlight Ule usefulness of the program to its users (aiUJOugh rarely).

2.3. The nature of system development process
Using this framework as a starting point we can now interpret Ule design process as an inquiry and change pro-
cess that involves matching of conceptual structures with Ule field of phenomena for the purpose of description
and prescription (concerning both human beings and computers). It is an inquiry to the extent it involves the
matching of the conceptual structures (interpreting a set of observations Ulrough a theory) WiUl a field of
phenomena to yield a set of target systems and their representations in a host of description languages Ulat can I
be communicated, analyzed, and manipulated by a group of people involved in the development process. It is
a change process to the extent it involves the matching of a conceptual structure WiUl a field of phenomena to
generate a new field of phenomena and communicating, analyzing and manipulating Ulese phenomena UJrough
prescriptive representations. Usually the description (or a systematic pattem followcd by developcrs) of how
thc matching takes place and how the descriptions are derived is called a method.2 When a method is supportcd
by some instrumcnt (a template. a questionnaire. or a computer program) this is called a development tool. 3

Representations of target systems in systems development (both in the descriptive and prescriptive sense) can
be an object of a high variety of activities. Representations can be:

produced, automatically or by hand.

() trallSformed. e.g. from a level of abstraction to anoUler (by people or by computer).

maintained. i.e. when minor changes are made to them by people.

approved or inspected by a group of people.

managed; i.e. named. ordered, accessed. sccured. or subjected to version control,

translated, e.g. from one description language to anoUler.

A systems development process forms thus a sequence of (partly) paralIcI activities whcre each activity takcs
some representations of target systcms as an input and produces new representations of target systems as an

1 We do not want to make here a distinction between 8 method and a tcclmique as is sometimes done. In our opinion, the
concepts of "rnclltoo" • "tcchnique" and "methodology" arc so hopelessly blurred that clear distinctions between tllcm arc very
difficult to make and to discuss them here any further would be beside tJ\C point.

J For example, slnlcturcd analysis involves a conceptual structure (consisting or conceplS like data now, store etc.), a description
language (graphical symbols and syntax) that are "matched" with some application domain (a field of phenomena). The method of
SA involves in what sequence the representations are derived (current physical system model, logical model etc). TIlC tools of SA
would include tcmplates, an editor to write down and edit lexts (minispccs), or a CASE tool to draw SA diagrams and to store them.

4

output.

Improvements in systems development can be achieved in at least three ways:

(I) by deciding on which target systems are selected (for description and prescription) and how Uley are
represented (a question of methods).

(2) by affecting in what sequence and in what organizational form different sorts of activities (i.e. taking
different representations as input and producing different representations as outputs) should be carried
out (me question of phase models and project organization).

(3) and by adopting new facilities into use to carry out such activities (me question of tools).

As Ulese improvements are highly intcrdependent, a more encompassing notion of systems developmelll met/w­
dology (SOM) has emerged. Though no satisfactory and wholly accepted notion of systems development
memodology exisl, we can define a systems development meUlOdology as an orgallized collectioll of cOllcep­
t/wl structures, descriptioll lallguages, activities. prescriptiollS for pallerllS of activities, orgallizatiollal fOT/IIS,
alldfillally facilities that help to carry out activities. The purpose of a SOM is to help Ule development group
to inquire and change some field of phenomena, mat is to perceive, generate, assess, control and carry out
change actions in a set of target systems.

Using me ftameworkjust presented we can more easily grasp Ule concept of a CASE environment. In brief, a
CASE environment "implements" a specific SOM in a computer supported and readable form. A CASE (
environment is a generic facility mat supports several activities mat take target system representations as inputs

and produces oUler types of target system reprensentations as outputs according to a SOM.4 The phrase
"implemellls" a specific SOM is here essential. It implies mat not any type of computer implemented activity
mat deals WiUl target system descriptions forms a CASE environment (consider using a text-processor). More
specific requirements can be derived from me phrase' 'implements a SOM" This will be discussed next.

3. Some steps towards a more precise definition of CASE

Formal definitions of a CASE concept abound in Ule literature (Chikofsky 1988; Bubenko 1988; Penedo et al
1988). We are not striving here for a formal definition. Instead, our model of systems development hclps to
suggest some clear criteria which a CASE cnvironment must satisfy. In oUler words we will providc two
necessary and sufficicnt features, for a "true" CASE system.

First, a CASE environment must implemcnt several conceptual structures.s This requircment is necessary. if (
me cnvironment is to support any memodology (SOM) at all, because all methodologies contain in a more or
less explicit form a multitude of conceptual structures to describe. interpret and prescribe a field of

phenomena.6 This means mat Ule CASE envirorunent should encapsulate some "knowledge" of how descrip-
tion languages are used and how to derive target system representations in Ulem and what criteria detetmine
Uleir validity. This requirement distinguishes CASE environments from drawing programs or text fonnallcrs
Ulat do not have any conceptual structure behind meir use i.e. Uley just help to draw some figures which can

• Note that this is 8 very broad' 'definition" and could include for example reverse engineering and automatic programming.

.s We think that this criterion to support several conceptual structures distinguishes CASE environments from CASE tools that
provide often quite comprehensive support for a particular method.

6 There arc several different ways how conceptual structures in a SOM can be connected. The most usual situation is, that no
conceptual structure is disjoint from the other conceptual structures i.e. that each conceptual structure has at least one common
concept with some other conceptual structure. A more stringent requirement is Lhat all conceptual structures have at least one common
concept. Usually this situation prevails with conceptual structures on the same level of abstraction (cf different steps in SA, which all
use the concept of process). In some other occasion conceptual structures on different levels of abstraction can have one or a set of
common concepts by which they are connected. The concept of concept sharing corresponds in systems development process a
subsetting of target system representations by similarity. Another way to connect conceptual structurc.~ is to provide mapping
mechanisms by which a concept is mapped onto a set (or a powerset of) conceptual structures (cf a mapping of an ERA-schema into
a relational schema). The concept of concept mapping corresponds in a systems development process a transformation by some tool
from one target system rcrcsentation to another target system representation.

5

(

(

not be further interpreted by programs. When this criterion is used it is also questionable, whether a 4GL can
be considered a CASE environment, because their primary focus is instructing (programming) the computer
(though on a quite high level). A stronger requirement is, whether the CASE environment can be customized
to new and different conceptual structures, or variations of one conceptual structure. This makcs CASE
environments modifiable, a feature of CASE shells, as we shall show in section 5.

Secolld, a CASE environment should embrace several levels of abstraction and transitions between them.
Thus, if the CASE environment implements conceptual structures and description languages that all belong to
one level of abstraction, it is not a true CASE environment. In this situation, the environment docs not support
the inquiry and the change process as it moves from one abstraction level to another e.g. from more organiza­
tion oriented conceptual structures to more machine oriented ones. This becomes perhaps more understand­
able, if one thinks that a level of abstraction often coincides with a definite phase of the systems development
process. So, for example, target system descriptions during the requirement specification phase and the source
code (Dart et al. 1987) (descriptions of computer behaviors) both describe the system at distinct Icvels of
abstraction. This requirements threatens the status of integrated programming support environments (IPSE)
qua CASE environments, because they usually help to produce and maintain the source code. However, if an
IPSE does produce or make use of higher-level reprcsentations and provides functions for their maintenance it
should be considered a "true" CASE environment.

All in all, to reiterate the two requirements for a CASE environment are:

(I) it has to embed several conceptual structures and descriptions languages embedded in a SDM, and

(2) it has to support several levels of abstraction at which the development process takes place and sUpp0l1
activities that concern target system representations on tilatlevel.

Clearly, these two criteria form a minimum, and more restrictive conditions can be proposed. However, even
with tilese two conditions several tools marketed as CASE environments can be left outside tile field of CASE.

More restrictive criteria that can be considered are the following:

(I) Does tile environment support only production and maintenance of target system representations thatI
describe or prescribe for human beings i.e. is it a mere analysis and design tool, or docs it also generate
instructions or parts of instructions to the computer i.e. does it involve back-end functions?

(2) Does the environment implement and maintain a model of a necessary pattern of activities to be canied
out during the development process, i.e. does it have a representation of actitivities and tileir relation­
ships (phase model) that can be used to guide and monitor the development process?

(3) Does the environment implement and maintain a model of tile organizational fornl of the development
process i.e. does it model a set of roles and their relationships to activities so tilat it can be used to guide,
coordinate and monitor various activities during the development process?

(4) What sorts of activities related to target system representations does tile environment support in addition
to producing and maintaining them? Does the environment support tranfonnation, translation, and
review activities? How well can it support the management of various versions of representations, define
access controls, and order tilem in different ways?

(5) Does the environment make use of existing descriptions and implementations? Does it have e.g. reverse
engineering or code reuse facilities? (Of course, not only program code but various other fonns of
descriptions can be reused. (E.g. cf. Madhavi et aI., 1985.))

Each of tilese defines a new aspect that must be considered if a CASE environment is to support wholly a
specific SDM.

4. How to classify CASE tools

There are several perspectives which can be used to analyze CASE environments (in other words there are
ailernative conceptual structures to interpret tile field of CASE). These perspcctives suggest ailemative ways
to classify CASE environments as tiley select a different set of properties which can be used as a basis for

6

classification. For example. one can choose a single property or a set of technical features in a CASE environ­
ment. A single property could be the type of description language implemented by the CASE environment
(graphica1/linear). A set of technical features could be operating systems where it can be run. type of the
DBMS embedded in the CASE environment. programming language interfaces. 4 GL interfaces. data dic­
tionaries supported etc. Although these classifications are useful (e.g. Dart et al. 1987). especially when
acquiring a CASE environment, their problem is that they lack a more profound theoretical foundation and
produce quite haphazard classifications. Moreover. a great number of single properties and features can be
enumerated leading to a cumbersome and unstructured taxonomy which often obscures the essential differ­
ences between various CASE environments.

We believe that a more fruitful way is to view CASE enviromnents as to form an integral part within a larger
infonnation systems development environment. In this approach a CASE environment is not conceived solely
as a technical object with clearly identifiable technical features. Instead. we focus on the functions and role of
a CASE environment in systems development. i.e. how it helps to represent target systems and to communi­
cate these representations to various stakeholders during the development process and how it helps to carry out
various inquiring activities. The "help" implies here that the environment makes system development activi­
ties easier to carry out and/or that their outcomes have higher quality (less errors, more efficient prescriptions.
easier to modify the descriptions etc). In addition, a CASE environment can be used to monitor and manage
the development activities and to keep track of the consumption of scarce organizational resources.

Our framework of systems development illustrates that the classification of CASE environments is a multi- (
dimensional problem. It is not possible to divide CASE environments into some distinct (disjoint and exhaus-
tive) classes and say, for example, that there are five kinds of CASE environments. Instead, we are obliged to
think of a rich variety of aspects of information systems development and how they relate to the use of CASE
environments. In the following, four aspects are defined which we believe, are essential in classifying the use
of CASE environments in different systems development situations. These are: a communicational. an organi­
zational, a technical. and a metalogical aspect.

4.1. The communicational aspect
In the communicational aspect the central issue is the exchange of target system represemations among the
developers (including end-users' representatives). The communicational aspect focuses on the type and inten­
sity of communications during systems development i.e. how and what types of target system representations
are shared by the members of the development group (or others concerned). The major purpose in the com­
municational aspect is to understand how the developers can attain a common understanding of the relevant
target systems and their behaviors. To analyze the communicational aspect in more depth three subdimensions
can be applied (fig. 2). These are: supportcd activities, type of users, and mode of communication. Each par­
ticular CASE environment can be situated somewhere in the space fOrmed by these three dimensions.

Supported activities are those systems development activities which are supported by a CASE environment.
The activitics subdimension covers the following issues:

• which activities are supported: creation, transformation, management, review. or translation of represen-
talions; and

• in which phase (activity sequence) of the systems development process.

The type of users subdimension delineates two issues. First, a CASE envirorunent can support communica­
tions between several users simultaenously, or it can be used only by one user. In tile latter situation tile
envirorunent can support merely inquiry tilat relates to an individual analyst's or end-user's activity. Second, a
CASE environment can distinguish between several types of users i.e. different roles adopted during the
development process. Typical roles arc a manager, a project leader, an analyst, and an end-user? If user-to­
user communications arc allowed they can take place wiUlin users acting in the same role or between users
having a different role.

7 We usc here the term "end-user" to differentiate betwccn CASE users and users of lhe information system (end-users).

7

(

(

Type of Users

Supported
)--------t~~

/

Activities

Mode of
Communication

Figure 2. Dimensions of the Communicational Aspect

The mode of commullicatioll subdimension illustrates communication forms and structure. The communica-
tions can in one extreme support several forms of communication ranging from visual forms (pictures etc.) and
textual communication upto oral communications. In the other extreme the communication form is fixed only
to one (usually textual communication). Another aspect is that communication can be highly structured or it
can have a more free-form structure. An example of highly-structured communications are communications
through a common description (data) base where the communication takes place through updating and query-
ing a shared description base. An example of free-form communication is the electronic mail. Semi-formal
communications that are situated in-between these two extremes are also possible (such as prestructured proto'l
cols for a set of dialogues).

4.2. The organizational aspect
In the organizational aspect, the central focus is in cOll/rol. TIle aspect delineates those qualities of CASE
environments by which it is possible to manage and control systems development process. Since the use of a
CASE environment always takes place in an organization, Ole nature of Ole CASE environment (whether it is
imended for one or multiple users) has litOe influence on Olis aspect. Three subdimensions under OIC organiza­
tional aspect can be noted (figure 3).

The first dimension, cOll/rollperjormallce. defines the primary organizational strategy to use a CASE environ­
ment: to which amount it is used to control the development process, and to which extent it is applied to carry
out Ole actual systems development activities. TIlis distinction is clearly visible for exanlple in tools Olat help
to carry out analysis and design tasks, and those that are used for project managcmcnt purposes.

The second dimension, compellillg/volitiollal. tells how a CASE environment guides analysts' or oOler
developers' work. A CASE environment can force a devcloper to act stricOy in a predefined way or it can givc
him morc freedom so Olat he or she can use methods being supported in ways he or she sccs as best fitting to
the situation. For example, some environments state a strict sequence of stcps in which the targct system
representation is to be derived (considcr some SA-based tools), or the represcntation order is totally free (e.g.
PSL/PSA).

The third dimension, lJierarclJicall/ateral, defincs how the use of a CASE environmcm is organizcd. If Ole
organizational environmcnt is hicrarchical. a set of rolcs is assumcd which have clcarly dcfined command,
authority, and reporting relationships. In this situation the communication flows either upwards or downwards
in a hierarchy. Typical examples of hierarchical communication modcls arc projcct managcmcnt models.
which can state sevcral hierarchicallaycrs of control. In a latcral organizational situation OIC flow of communi­
cation is horizomal, and oftcn volitional and it docs not prcsuppose a hicrarchical comnHlIld structurc.

8

Compelling!
Volitional

Control/
Perfonnance

Hierarchical/
Lateral

Figure 3. Dimensions of the Organizational Aspect

4.3. The technical aspect (
The technical aspect suggests in all likelihood the most straightforward and common way to classify CASE
environments. This aspect focuses on features that affect how systems developmelll is carried alit and what
activities must necessarily take place. The subdimensions under the technical aspect are the following: design
principles, the level of abstraction, the application area, and the interface (fig. 4).

The first dimension, the design principles focuses on generic stucturing mechanisms to relate conceptual struc­
tures in different methods together. Usually each CASE environment applies some generic design principle to
connect different target system representations and to ease the move from one to another. Examples of typical
design principles are data-centered or process-centered design principles. Some CASE environments can even
support several desing principles simultaneously, or mix them.

The level of abstraction concerns UlOse abstraction levels Umt are being supported in Ule CASE environment.
The scope of abstraction in a CASE environment may range from overall design (a high-level abstraction) to
machine-oriented design (a low-level abstraction). Several levels are supposed to be covered by a CASE
environment (cf. LockemaIUl & Mayr 1986).

Level of
Abstraction

\

Interface
Design

Design
Principle

Application
Area

Figure 4. Dimensions of the Technical Aspect

9

(

(

The applicatioll area discloses the types of target systems for which the CASE environment can be used.
Examples of application areas are embedded systems, officc systems, expert systems etc. Each application
usually requires some specialized conceptual structures to be adopted that help inquiry and problem-solving
acitivities in that specific field of phenomena. Examples of such specific conceptual structures are dynamie
aspects, concurrency and communication mechanisms in embedded systems, different types of data, excep­
tions, and distributed nature of applications in office systems and so forth.

The illteiface desigll determines the visible features of the CASE environment. The subdimensions of Ule inter­
face design are: interaction mode (interactive, batch), interaction style (command language, menu-driven,
icon-based), and functionality (facilities for query and report generation, programming tools) (cf. Dart et aI.
1987).

It is clear that the technical aspects of a CASE environment are closely related to thosc conceptual structures
and description languages that have been chosen as a basis to develop Ule CASE environment. This leads us to
the next aspect which is mainly interested in how CASE environments and conceptual structures can be fitted
together i.e. the metalogical aspect.

4.4. The metalogical aspect
One can consider the metalogical aspect as a meta-aspect for all the previous aspects, i.e. Umse aspects that
affect how the CASE environment is used in system development situations, which activities are being sup­
ported, how the development group is organized and so forth. 'TIle metalogical aspect Ums concems the
"second order" analysis, design and change of system development situations by "programming" the CASE
environment. The metalogical aspect focuses on how a CASE environmcnt and a chosen particular conceptual
structure can be made logically consistent so that Ule CASE environment can serve to develop target system
representations, analyze and communicate them in some preconceived manner that corresponds to the chosen
conceptual structure. In general, the metalogical aspect defines how easily a CASE environment can be cus­
tomized along the three aspects (and their subdimensions) so Ulat it can better satisfy the developer's desires
and needs. If a CASE environment can be extensively customized in all three aspects the developers can by
themselves locate the CASE cnvironment in all three oUler dimensions. If Um modification is possible in
several aspects we can talk about CASE shells i.e. environments that help to customize CASE environments to
support an arbitrary methodology or to add a new mcUlod to the existing collection of methods. Usually these
methods have some common parts in Uleir conceptual structure. A general research question in the metalogical
aspect is what levels of customization are possible and what customization strategies are useful in different
situations? This points out the need to consider in more detail the concept of CASE shells and different levels
of customization achieved by them. This will be clarified in Ule next section.

5. CASE shell environments

A key issue in the metalogical aspect is the ability to create CASE shells 8 i.e. programs, that generate CASE
environments WiUI specific features. We shall now examine Um concept of CASE shells more closely and take
a take fresh look how they are relate to UIC framework we have presented above.

Most currenUy marketed CASE cnvironments support only a rigid set of conceptual structures and therefore do
not qualify as CASE shells. However, it is quite common Ulat they offer some functionality that is typical for
CASE shells. One typieal feature offered is that the notation used to represent Ule chosen target system is cus­
tomizable, so that different symbols are permittcd ("boxological sugar"). In this case the customization con­
cerns only the technical aspect, and thercin only Ule interface dcsign (interaction form). To distinguish CASE
shells more clearly from CASE environments a more Umrough analysis is needed.

STIte term 'CASE shell' was coined by Dubcnko (1988), who intended it to be lIsed in a similar manner as when talking about an
expert system shell. TIlcrcrorc, the term 'shell' here should not be mixed with e.g. an alternative command interpreter. Possible
synonyms would be a 'CASE environment generator' or a 'McLhodology Engineering Envlrorunclll' (d. Kumar & Welke, 1988).

10

5.1. Three dimensions of the concept CASE shell
In principle, we can distinguish thrcc components of a CASE environment that can be changed. These three
comp<ments are: (I) the linguistic componelll, (2) the lunctiollS component, and (3) the mechanism componelll
of Ule CASE environment. The first component defines the concept structures, and Ule description languages
deployed and supported by the environment. The second component determines Ule types of functions and
activities t11at can be accomplished within the CASE environment. TIle third component determines the princi­
pal underlying mechanisms that provide the visible interface and functionality of the environment In each
comp<ment there arc several subcomponents that· can be modified and which determine how powerful the
CASE shell is.

5.1.1. The Linguistic Component of a CASE shell

In general, the linguistic component of a CASE shell defines the scope, depth and variability of the target sys­
tem representations (description languages) that can be produced, maintained and communicated within the
CASE environment. The desciption languages embedded into the CASE environment can be modificd on
several consecutive levels of modifiability:

• notational modifiability facility defincs to what extent the symbols can be modified in the description
language (usage of nick-names, aliases or different graphical elements);

a notational variation facility defines to what extent the environment allows for notational variation
between graphical and lexical languages and supports Ulem boUl simultaneously;

• a notational translation facility defines to what extent Ule environment can translate from one nota·
tional variation to anoUlCr. Two principal situations can be distinguished: from graphical to lexical nota­
tion (the casier one), and from lexical to graphical notation (the difficult one);

• a syntactic extension facility defines to what extent Ule environment supports extending the description
language with new syntactic elements (new object, and attribute types);

a syntactic definition facility defines to what extent the environment can support defining a new descrip­
tion language into the environment (including rules for semantic consistency checking etc.):

• a syntactic translation facility defines to what extent the cnvironment can support in specifying a trans­
lalion mechanism from one description language to another (including heuristics for solution generation,
consistency checking etc.);

a type specification facility defines to what extent the environment can support in specifying new data
types such as figures, voice data etc.

In a "conventional" CASE environment the conceptual structures are fixed and therefore they can at most sup­
port syntactic extension and partial notational variation. lt may, of course, allow some variation in notations.
Obviously, a CASE environment that also serves as a CASE shell must permit to change its underlying con­
ceptual structures. There are different approaches to achieve this. EiUler, the shell docs not convey any fixcd
conceptual structures, but instead provides only a set of primitivc tools from which more elaborated conceptual
structures can be built (i.e. a sct of conceptual constructor operators). In Ulis situation the dClivcd conceptual
structures and description languages in Ule CASE cnvironmcnt are unrelatcd to U1C primitives found on Ule
CASE shelllevcl. Or, there is somc basic sct of conceptual structures, from which Ule various concept struc­
tures are derived (i.e. the conceptual structure being "transfonned" is mapped onto conceptual structures pro­
vided by the CASE shell). In this case the conceptual structures on the level of CASE shell and on the level of
CASE environment are related by subsetting and mapping operators. An example of this approach is SEM that
is based on PSL (Teichroew et al. 1980). If several methods are to bc combined, Ule latter approach may bc
preferable, because Ulere is a common basis for all Ule different description languages. However, if maximal
flexibility is demanded, a shell of Ule form~r kind is likely to be more useful.

5.1.2. The functions of a CASE shell

In general, Ule functions component of a CASE shell defines the scope of computer supported activities dealing
with target system representations and the way how they can bc modified. The support rendered by functions
component can be extended to cover nearly all activities including automatic production of target system

11

(

representations, transformations, maintenance and review, and management of descriptions.

The functions component of a CASE shell'must therefore render several types of modifications into functional­
ity of the CASE environment. At least the following types of modifications can be distinguished:

a query definition facility determines to what extent the environment enables extracting descriptions
from a description base under different conditions and formats;

a report definition facility defines to what extent the environment suppo11S specification and execution
of report specifications that are derived from the description base;

an inference definition facility defines to what extent and what types of inferences the environments
enables to make on extracted descriptions;

a storage definition facility defines to what extent and what types of descriptions (type, fonnat) can be
stored in the description base and how their connections can be implemented and managed;

a usage definition facility defines to what extent and what types of uses of the environment can be
described, supported and coordinated by the environment.

The first four facilities together are instrumental in modifying support provided by the CASE environnlent in
such tasks as consistency checking, verifying correctness of descriptions, or design aid. They are also needed
in specifying customized documentation for different groups of IS uscrs. Finally, they are necessary, if thc
environment is to enforce systematic application of methods i.e. to derive target system representations in a
step-by-step manner, or to transform target system representations from one representation to anotiler using
heuristic or algorithmic techniques. The inference definition facility may also be needed in defining and sup­
porting ways to use the descriptions to derive solutions to encountered design problems (use of heuristics and
knowledge representation schemes).

Storage definition facilities ease modification of such important functions of a CASE environment as version
control and management, requirements tracking mechanisms, or specification of responsible persons to main-
tain and approve target system reprentations (review and control management). I
Usage definition facility can be uscd to configure such features of the CASE environment as access rights,
access control or guidance mechanisms to use the environment in different situations. The usage definition
facility determines also the style and mode of interaction.

5.1.3. The mechanism component of a CASE shell

The mechanism component of a CASE shell is needed to configure the CASE envirorunent using different sys­
tems components including the underlying DBMS, target DBMSs, interfaced data dictionaries, 4GL's, com­
munication protocols etc. The scope of modifiability in this component defines the openness and poI1ability of
the CASE envirorunent. Thus, the mechanism component defines the internal and external interfaces by which
the functions and support of the environment are provided. Several types of mechanisms can be distinguished:

Export/Import definition mechanisms define the extent and ease by which target system representa­
tions can be exported from the environment or imported into the environment. In otiler words, to what
extent can the enviromnent be easily interfaced with otiler components of an IS resource management
environment. Typical components of such an envirorunent are: data dictionaries (e.g. IRDS), data base
management systems (e.g. SQL), otiler CASE enviromnents, text processing systems (ODA, DCA, Ven­
tura), application generators, or source code control systems.

Data Management Definition Mechanisms define tile extent and ease by which the target systems
represcntations can be stored and managed in different data base management systcms i.e. the portability
of the CASE environment over different DBMS.

Interface Definition Mechanisms define the extent and ease by which the interface dcsign of the
environment can be adopted into different interface standards (prcscntation Managcr, X-Windows, tenni­
nal compatibility);

Data Communication Definition Mechanisms define tile extent to which the environment supports
various data communication protocols (TCP/IP, OSI, XAOO) etc.

12

Operating System Interface Mechanisms define UlC extent to which Ule environment can be run under
diffcrent operating systems (OS/2, UNIX).

5.2. The metalogical Design of CASE environments
The distinguished UJreC components of a CASE shell make possible a metalogical design of a rich variety of
CASE environments. Depending on the degree of modifiability provided by the CASE shell, different aspects
of CASE environments can be changed, and "programmed" To obtain a more refined picture of the depth and
scope of Ule "programmability" of CASE environments we shall analyze in more detail Ule degree of
modifiability of CASE shells. Results of this analysis are depicted in tables I, 2, and 3. The tables show how
a subcomponent of a CASE shell (rows) can be used to "design" different aspects of a CASE envil'Onment
and its usc (columns). Table I illustrates the relationship for the linguistic component, table 2 for Ule functions
componcnt, and table 3 for the mechanisms component, respectively.

When we study the tables we can note the following. The level of modifiability provided by existing CASE
environments such as notational variation, and notational modifiability are not powerful enough to allow for
real "design" of the CASE environment. The possibility to extend the description languages used, and espe­
cially facilities to define new languages, and to specify translations from one language to another are here
essential. Only these components can help to generate a sufficienUy flexible envirorunent, i.e. to change
design principles, to cover several (or new) levels of abstraction, to adopt Ule environment to new application
areas, and Ulereby also to affect Ule interface of the CASE environment; all requirements Ulat are needed to
have a complete development environment modifiability (cf Sorenson et al. 1988).

When we study the functions component, we can see Utat the modifiability of Ule structure component must be
supplemented with a powerful and flexible CASE "programming" environment. This environment must offer
query and report specification facilities. Moreover, the inference facility must implement in addition to com­
mon arithunetic operators also logical inference and other inference mechanisms (rule-based environments)

Aspect Communicational Organizational Technical

Supported Type of Mode of ControV CompeUing! Hierarchicall Design Level of Application Interface

Activities Uscrs Communication Pcrfonnance Volitional Lateral Principle Abslradion Are. Design

Language

Notational - - + - - - - - + +
Modifiability

Notational
+ - + - - - - - + +

Variation

Notational
+ - + - - - - - + +

Translation

Syntactic
+ + + + + + +- - -

Extension

Syntactic
+ + + + + + + + +-

Dcfinilion

Syntactic
+ + + + - + + + + +

Translation

Type
+ - + - - - - + +-

Specification

Table I. CASE environment modifiability by language

13

(

(

Aspect Communicational Organizational Technical

Supponed Type of Mode of ControV Compelling! HierarchicaV Design Level of Application Interface

Activities Users Communication Perfonnance Volitional Lateral Principle Abstraction Area Design

Functions

Query
+ + + + + + +- - -

Definition

Report
+ + + + + + - + +-

Definition

Inference
+ + - + + - + + + +

Definition

Storage
+ + + + + +- - - -

Definition

Unge
+ + + + + + + - + +

Definition

Table 2. CASE environment modifiability by functions

employed in knowledge based systems. Only in this way can the scope of supported activities be extended to
include new organizational aspects, and to encapsulate technical aspects such as more effective design princi­
ples for adoption to different application areas. Finally, only in this way can the interface design be flexibly
configured and designed.

The mechanism aspect is obviously the least important in generating a rich variety of different types of CASE
environments. Its key purpose is to serve as a platform for portability and openness (which are important
technical and economic concerns). For example the data communication protocols supported by the CASE
environment can be decisive in defining the scope and type of communications that can take place through the
CASE enviromnent.

6. Research Implications

The framework presented above poses several interesting research questions. Here we shall discuss some of
Ulem in a preliminary fashion. A more detailed analysis of Ule research implications must be done in papers to
come. The following two research issues will be treated: Ule currelll focus in the CASE research, and Ule role
of CASE shells in the CASE research.

6.1. The focus of the CASE research
In our opinion, currelll CASE research is often too narrowly focused. Many of the current research projects
concentrate on a single technical feature of the CASE environments such as a desirable architecture, user inter­
face, application of knowledge representation techniques, object-based management techniques and so forth.
What we lack is a UlOrough understanding of how these well motivated teclmical advances can improve the
state of art in systems development. To achieve Ulis we need more Uleoretical and empirical studies on the
nature of systems development and how CASE enviromnents can affect it. In Ulis paper we have made some
initial steps in Utis direction by showing that CASE environments arc to be looked upon from a wider perspec­
tive which includes:

Organizational aspects i.e. organizational fornls recognized and supported by the CASE environment;

14

Aspect Communicational Organizational Technical

Supponed Type of Modeol ConlroV Compelling! HierarchicaV Design Level of Application Interface

Activities Users Communication Performance Volitional Lateral Principle Abslraction Area Design

Mechanism

E"pol1/ + + - + + + - + + -
Import

DM +- - - - - - - - -
Definition

Inted'ace
+ ++ - - - - - - +

Definition

Data
+ + ++ + - - - - +

Communication

Opc..ting - - - - - - - - + -
System

Table 3. CASE environment modifiability by mechanism

Communicational aspects i.e. type and intensity of interactions that are needed in systems development
among different developers and how these are changed and supported by the CASE envirolllllent;

Technical aspects i.e. what target system representations, in what role
(descriptive/prescriptive/instructive), and on what levels of abstraction are supported; and what is the
ease and type of use offered by the environment for these descriptions.

A ease in point is that the introduction of CASE envirolllllents will have a substantial effect in all three aspects,
whereas the research in the past has mainly focused on the last one. Examples of effects that may result from
introducing a CASE environment are:

new organizational forms and strategies for systems development including building up a new distri­
buted physical envirolllllent for system development, enhanced use of physical capabilities such as
video-technologies, decision rooms etc (Ule organizational aspect); (

new modes and types of interactions for systems development which include automatic dialogue proto-
cols for review, aceeptanee and decision-making, enhanced communication capabilities within Ihe
development group (semi-structured e-mail), or ease of communicating through a shared description base
(the communicational aspect);

new target system representations and their manipulation to enhance creative and skillful systems
development. This includes the ease of deriving new versions of target system descriptions, the ease of
their verification and validitation, and tutorial support in using various meUlOds (the technical aspect).

Very little is known of Ulese effects and Uley have been scarcely studied. The most researched area seems
currently to be Ule lasl one, though mOSI of the results obtained are not outcomes of a substantial and sys­
tematic scientific study (cf. Chikofsky 1988; Chikofsky & Rubenstcin 1988). Therefore more systematic stu­
dies are needed before a more solid understanding has been obtained how CASE environments will change
systems development in all three areas.

6.2. The Role of CASE shells
CASE environments offer a promise for "programming" the system development process in a truly different
way than achieved by proposing a methodology that does not have any computer support. As not all systems
development is similar, Ulere is a continual need for adjusunent and "reprogramming" the CASE

15

(

(

(

environment. Therefore, the concept of a CASE shell seems to be very central in adjusting and "reprogram­
ming" Ule systems development process. The discussion of the different components of a CASE shell pro­
vides a starting point to examine in more detail the scope and depth of "reprogramming" offered by various
environments. Several observations can be made:

an extensive modifiability of description languages is needed if one wants to affect in a deep sense the
technical, organizational and communicational aspects of the CASE environment.

the CASE shell must provide means to change the functionality of the CASE environment i.e. it
must offer high-level constructs to program the CASE environment.

Thus, the functionality and the linguistic power of CASE shells are essential if any deeper variability in CASE
environments is hoped for. We believe also, that this is what we urgenUy need, as Ule majority of Ule methods
Ulat are supported by CASE environments have been inherited from the 70's (including structured methods,
ERA-modelling etc.). Yet, their usability and support in developing new types of applications (e.g. office
infoffilation systems) may be inadequate. This necessitates that new methods should be easy to integrate into
the existing environments and it should also be easy to build tools to support their use. (See e.g. Kwnar &
Welke, 1988.) This has several implications for CASE research:

how to design and configure CASE environments? This will become an important practical issue which
needs to be explored in more depUI.

what meUlOds and tools are needed to map conceptual structures and description languages into CASE
shells to generate varying CASE environments?

how interactions between CASE environments and the system development process must be taken into
account in Ule mapping process? In oUler words, we must explore in more detail how the functions and
description languages offered by the environment affect organizational and communicational aspects of
Ule CASE.

what functions and mappings can be offered at a certain cost i.e. what is Ule value obtained from using
Ule CASE environment (in a specific way) when compared to its costs (such as usage cost, training cost,
implementation cost)?

how various CASE environments can be used, and how they should be used? What aspects and factors
affect how they in fact are used? Are Ulere any innovative and new ways to use CASE environments that
have not yet been explored?

Several of these research issues are being currenUy studied and explored. A research project SYTI (an acro­
nym from a Finnish phrase of "system development support environments") (Lyytinen 1988) focuses on the
/irst issue r&ised. We believe that this is me most critical issue and it offers many untackJed problems that
must be solved before tile otller issues can be touched upon (cf Welke 1988; Sorenson et al. 1988). These
include: tile power of tile' 'metamodelling" techniques needed to model all aspects of the conceptual structures
and description languages, as well as tIleir use, tile integration of various description languages and their
management into a single environment, and Ule type and functionality of tile CASE shells currenUy offered to
support "metamodelling" and environment generation.

Acknowledgements

Thanks to Heinz Klein, Pasi Kuvaja and (especially) John Venable for useful comments on the /irst version of
this paper.

References

Bubcnko, Janis A., Selecting a strategy for computer-aided software engineering (CASE), SYSLAB
University of Stockllolm, Stockholm (June 1988).

Chikofsky, Elliot J., "Software Technology People," IEEE Software, pp. 8-10 (March 1988).

16

Chikofsky, Elliot I. and Rubenstein, Burt L., "CASE: Reliability Engineering for Infonnation Systems,"
IEEE Software, pp. 11-16 (March 1988).

Dart, Susan A., Ellison, Robert 1., Feiler, Peter H., and Habennann, A. Nico, .. Software development
environmcnts," IEEE Computer, pp. 18-28 (November 1987).

Kumar, Kuldeep and Welke, Richard I., "Methodology Engineering: A Proposal for Situation Spesific
Methodology Construction," in Proceedillgs 0/ CASE Studies 1988, Meta Systems, Ann Arbor (1988).
Meta Ref. #C8811

Lockemann, Peter C. and Mayr, Heinrich C., "Infonnation System Design: Techniques and Software
Support," pp. 617-634 in Ill/ormatioll Processillg 86, cd. H.-I. Kugler,North-Holland, Amsterdam
(1986).

Lyytinen, Kalle, "A Taxonomic Perspective of Infonnation Systems Development: Thoretical Constructs
and recommendations," pp. 3-41 in Critical Issues ill/ll/ormatioll Systems Research, ed. R. I. Boland Ir.
and R. A. Hirschheim,Iohn Wiley & Sons Ltd. (1987).

Lyytinen, KalIe, SITI-Project: Research Plall, University of IyvMskylM, Department of Computer Sci­
ence, IyvMskylM, Finland (Spring 1988).

Madhavi, Nazim H., Leoutsarakos, Nikos, and Voulioris, Dimitri, "Software Construction Using Typed
Fragments," pp. 163-178 in Formal Methods alld Software Developmelll, Proceedillgs 0/ the Illterlla­
tiollal Joillt Coll/erellce 011 Theory alld Practice 0/ Software Developmelll (TAPSOFT) Berlill, March
1985, ed. G. Goos and 1. Hartmanis,SPRINGER, Berlin (1985).

Pencdo, Maria H. and Riddle, William E., "Software Engineering Envirorunent Architectures," IEEE
Transactions 011 Software Ellgilleerillg 14(6) pp. 689-696 (June 1988).

Sorenson, Paul G., Tremblay, Jean-Paul, and McAllister, Andrew J., "The Metaview System for Many
Specification Environments," IEEE Software, pp. 30-38 (March 1988).

Teichroew, Daniel, Macasovic, Petar, Hershey,IIl, Ernest A., and Yamamoto, Yuzo, "Application of the
entity-relationship approach to infonnation processing systems modeling," pp. 15-38 in Elltity­
Relatiollship Approach to Systems Allalysis alld Desigll, ed. P. P. Chen,North-Holland (1980).

Venable, John R. and Truex,IIl, Duane P., ,. An Approach for Tool Integration in a CASE Environnlent,"
in Proceedlllgs o/CASE SWdies 1988, Meta Systems, Ann Arbor (1988). Meta Ref. #C8812

Welke, Richard J., Metabase: A Plat/orm/or the Next Gellcratioll 0/ Mcta Systcms Products, Meta Sys­
tems Ltd., Ann Arbor, Michigan (1988).

17

(

