Title: "Glueing CASE Tools Together in a
Heterogeneous CASE Environment"

Authors: Petra Luchner
Giinter R, Koch
Franz Engelmann
Affiliation: 2i Industrial Informatics GmbH

Haierweg 20e

D-7800 Freiburg i.Br.
Telefon 07 61/4 22 57
Teletex 76 14 57 IND INF
Telefax 07 61 /47 43 12

Freiburg, den 20. April 1989 GK/DK/mo
File: CASE89

Abstract

The integration of different existing tools, each of them not covering the whole life cycle, to a
SEE (Software Engineering Environment) is an actual task.

There are two main mechanisms of integration.

The first one is the vertical integration, that means, that a common user interface and a
common data base are available for the tools to be assembled into a CASE Environment.

The second one is the horizontal integration concerning the interface between tools for
exchanging information. Here the semantics of the information is the mainly important part.

Either the interface can be an exclusive mutual link between two tools, which is an optimized
but specific solution, or different tools can be connected by a Common Data Model for
Integration, which is a general but very complex solution.

i
S

Transforming
LARS Requirements Specifications
into High Level Target Languages

Structure of the report

1. Discussion of the leading idea
1.1 The rationales for developing a specific transformator within SARS

1.2 References to earlier academic work

2. An Expert System Approach For Transformations
2.1 The rules
2.2 The Inference Machine

2.3 The Explanator

3. AnExample: A LARS-to-ADA Transformation
3.1 The Development Process
3.2 The Similarities of Concepts in LARS and ADA
3.3 The Transformation
4. An Experiment Within ToolUse:
Transforming LARS Into The Target Language OBER
4.1 OBER and ROMI
4.2 Some Sample Rules For Transforming LARS Into OBER
4.3 First Experiences With SARTRE

5. The Architecture Of A SARS/SARTRE System

1.1

Discussion of the leading idea

The rationales for developing a specific SARS- transformator system

Collecting and incrementally improving the very first descriptions of a future software system is a
process which in practice suffers from the following deficiencies:

The contractor providing the requirements has only poor and uncomplete ideas on the system
he wants to be developed

The provided specifications are never complete and stable. Many changements and additions
permanently are made during the whole system design cycle.

The contractor and the future users tend to refer as much as they are able to already existing
and known solutions, i.e. they prefer to reuse former solutions. (This is also a goal any
system designer should try to achieve as far as possible).

Most of the contractors as well as the designers of systems have some divergent knowledge
on methods and tools for specifying and designing software, i.e. they have some
understanding on how to model and how to design a system and they tend to impose their own
constraints on methods, models and tools.

By consequence, the models and languages as well as the associated tools for describing (i.e.
modelling) requirements show some relevant differences to classical and purely formal
descriptions of the required functionality of a software system under design. The resulting
description after a requirements specification may be

incomplete by intention or by lack of information to be acquired in time.

unstructured in a sense that the collected information does not yet show, how the future
system will look like

incoherent as many different types of suppliers of requirements information are involved.

The language LARS and the associated tools in the SARS system [SARS] have been designed for
meeting the needs on the one hand to collect and complete requirements definitions "smoothly”
and incrementally and on the other hand to transform them into formal descriptions as extensive
as possible. Thus LARS [LARS] and its associated method for writing LARS-specs will lead to
some (hopefully) complete and consistent functional description of a system. However, this
description by no means has an optimal structure in terms of an elegantly designed software
system. The goal of requirements definition is not to design a system but to collect as many
information on it as is available at the very early stage in the development life cycle.

Many requirement specification systems as e.g. EPOS [EPOS] claim, that the earliest description
by means of homomorphic transformations can be mapped into a system design. Those concept-
by-concept mappings propagate all the early fixed non-optimal structures into a design thus
causing trouble in later phases, where e.g. performance deficiencies are detected to be originated
by earlier design errors.

The position of the authors of this paper is, that requirements definition and software design are
two activities, which are completely distinct and which have to be performed seperately. This
means, that of course a requirements specification has to be transformed into a design description,
however, this may not be a homomorphic mapping. Moreover, during the design an optimal
model of the future system has to be elaborated, i.e. the design derived from the original
requirements specs can be considered to be an optimisation process towards a system description
done by means of a target language as e.g. a design language or a Very High Level Language like
ADA., ' :

The fundamental idea behind the SARTRE transformation tool described in section 2 is
illustrated by fig. 1:

Optimizing transformation by forming ADTs on the target side:

Fig.l: Traditional top-down decomposition approach:

/.

N

s

Y

W il

ADT2

1.2

Whereas on the level of requirements specifications in LARS "classical" functions will be
specified, a modern software design will be constructed by means of Abstract Date Types (ADTs)
[Fell83]. In order to provide a design in the ADT style, LARS specs have to be analyzed such that
data are collected e.g. into sets or classes and their associated operations have to be added to
them, in order to provide complete ADTs. Le. the design leads to a structure, which is completely
different from the original description, which is considered to be a heteromorphic optimisation
process. By consequence the mapping from the requirements description into the design
description can not only be performed by formal transformations but also heuristical information
will be needed to drive this optimisation process. A rule based approach therefore seems to be
most appropriate.

References to earlier academic work

The discussion conducted under section 1 is not new in the academic world. Especially the
mapping of stimulus-response modelled functions into an imperative language like ADA has been
one subject of the PhD thesis of G. Persch on Transformational Development of Software
[Per86]. Persch denotes any description of software under design as a document and he develops
a very similar view on the design process as we discuss it here:

The different documents are formulated in languages which are designed for the phases, like
stimulus-response-nets for requirements specification, algebraic specifications for system
specification and Ada for implementation. The process of software development has to start from
an idea of a software system and to generate the documents for the different phases [Leh83]. In
the ideal case the documents of subsequent phases are transformations (in a very general sense) of
the first documents in order to get more detailled, deterministic and executable descriptions of the
software system [Bau81]. This transformational approach of software development has only been
used informally in the past. New developments [Bro83], [Bal82] try to apply this approach with
explicit support and sometimes in a rigorous way. Therefore we have to provide three
prerequisits:

- Formal definitions of languages to express the documents of the transformations

- Definition of a transformation calculus which allows the formulation of transformation rules
and derivations

- Development of support systems to automize transformations

The CIP-System [Par83] is a transformational system based on an algebraic wide-spectrum
language. From a theoretical point the CIP-System has been a first step to provide the basis for
the transformational approach. The implemented system however is rather restricted. It requires
deterministic transformation rules and does not support automatic rule selection. Hence the
programmer has to guide the transformations on a very low level.

(=)

2.1

The GIST-System [Bal82], [Fic85] is a transformational development system for a special
specification language GIST. GIST is a very high level operational language with non-
deterministic constructs (demons). Target language of the transformations is a special
implementation language. The system is tailored to these languages. It provides a high degree of
automation in respect to the rule selection but it is not based on a formal calculus.

An essential aspect of improved software development is the introduction of formal desription in
the first phases (requirement specifications). This has been delayed because such documents
could not be further processed. A formal requirements specification is only useful if it can be
validated and if it is the basis for further developments. With transformation systems it is possible
to transform formal requirements specifications into system designs and finally implementations.
They also provide means to formulate specifications languages which are tailored to the
application field. Such languages represent implicit knowledge about the applications which is
then expressed explicitly with the help of the transformation system in the system design.

An Expert System Approach For Transformations
A transformation system to be used in a rule based transformational development environment is

favourably constructed like an expert system. It consists of three subsystems, the rules, the
inference machine, and the explanator.

The Rules
In general transformation rules have the form (cf.[Bau81]):

Input Pattern - Condition -> Output Pattern
with the semantics, that a structure which matches the input pattern is transformed to the output
pattern if the conditions hold. The pattern and the condition share some variables which are
instantiated during the match of the input structure. This general scheme is extended for our
system by the following:

- Rule names are assigned to groups of rules. This introduces some kind of modularisation for
rules and allows to reference rules.

- Rule names can have parameters to formulate meta rules which control the application of
rules. By this mechanism rules can also be combined to larger rule sets.

- The parameters in rule names also allow to transport information from a global context to the
place of application where it can be used in conditions and other applications.

- The patterns allow variables for function symbols and for parameter lists of functions.
- Output patterns can contain rule applications with the semantics of substituting them by one

of the results of the invoked transformation. By such means a transformation rule can call
subrules which are then composed to reach the required transformation.

The documents to be processed are represented as term data structure which corresponds directly
to a abstract syntax representations of programs in compilers. This abstract syntax representation

has to be provided by the database. The patterns in the transformation rules are formed in
correspondence to it.

2.2

/0

In our Prolog implementation of the transformation system, rules have the form:

rule rule_name: input_pattern => output_pattern cond
condition

Within the output_pattern and the conditions rule invocations are written as rule_name : input,

~ patterns for functionals are written as variable#arguments. Rule, names are, texms with, vagiahles..

Variables are marked by their beginning big letter. Conditions are conjunctions, disjunctions and
negations of predicates.

Example: Rules for Expression Simplification
rule simple_exp: Exp => inner(simple): Exp.

rule simple : plus(X,0) => X.

rule simple : times(X,1) => X.

rule simple : OP#[C1,C2] => C3

cond constant(C1) and constant(C2) and eval(OP,C1 C2) C3.

rule inner(R):F#[X] => R:F#[inner(R):X].
rule inner(R):F#{X,Y] => R:Fi#[inner(R):X,inner(R): Y].
rule inner(R):X => X cond atom(X).

The example consists of one top rule simple_exp which has two subrule bases simple and inner.
The simple rules describe the different simplifications, whereas inner describes the strategy to
apply these simplifications. Hence, inner can be seen as meta rule.

The third simple rule describes that any dyadic expression with constant arguments can be
substituted by its result. Therefore we use a pattern for any dyadic expression with the operator
OP. The inner rules have as parameter the name R of a rule base which is to be applied first to the
innermost subexpressicn and then to enclosing expressions. Additionally we see how the output
of inner is composed of the results of the invocations of inner to the subexpressions and the
invocation of R to this composition,

The Inference Machine

The inference machine of an expert system has the task to apply the set of rules to the data. Hence
it has to solve the following problems:

Pattern Matching-
Pattern matching is done by an extension of unification for first order logic (e.g. an
extension of pattern matching in Prolog). The extension handles variables for function
symbols and for lists of parameters.

Condition Evaluation-
If the input pattern matches the data the conditions have to be evaluated with the
bindings done for the variables. Evaluation of conditions is handled like transformations
to the boolean values. If they succeed the logical connectives are evaluated. Some of the
conditions may require more sophisticated evaluation for example by a theorem prover.
Additionally some of the conditions should be handled interactively, i.e. the
programmer is asked for a decision.

2.3

Order of evaluation-
Most of the order of evaluation is already formulated by meta rules, which describe the
rules to be applied to some data. However, there can be several rules (with the same
name) which can be applied. In this case a trial-and-error evaluation proceeds, i.e. the
rules are applied in some order until one succeds.

Blind alleys-
If no more rule is applicable for a rule invocation, this can result from a wrong rule
applied earlier. In this case the inference machine backtracks to a position where
another rule can be applied. A transformation only succeeds if all rule invocations
(which can invoke further rules) are successful. Hence the transformation is goal-
oriented. It backtracks from blind alleys automatically.

Termination-
A transformation can invoke rules for ever especially if there are commutativity and
associativity rules. With the help of meta rules such rules be reformulated in a safe way,
e.g. by applying commutativity only once to a term.

Example: Evaluation of expression simplification
simple_exp:times(a,1)
=> inner(simple):times(a,1)
=> simple:times#[inner(simple):a,inner(simple):1]
=> simple:times(a,1)
=>a

In the current implementation of the transformation system, the transformation rules are mapped
to Prolog clauses and a standard Prolog interpreter builds the inference machine. Because of the
efficient implementation of Prolog interpreters this implementation is useful. In the future a rule
compiler (which is a set of transformation rules for transformation rules) will be added which
translates complete rule bases to programs which are called at the rule invocation.

The Explanator

The Explanator has the task to inform the programmer of the applied transformations. This is
seperated into two cases:

Success -
If a transformation succeeds all the rules which have been applied are recorded in a
history list. This list can be extended by the alternatives which are still possible. The list
can be prepared for the user by suppression of the non interesting rules.

Failure -
If a rule invocation fails or the system can not prove a condition (or its contrary), the
status has to be displayed in a way that the programmer can interact.

In the current Prolog implementation of the transformation system all applied rules are recorded
and can be given during the transformation as a trace or afterwards as a history list. If during the
evaluation of conditions undefined predicates are found, the system gives status information to
the user like rule names and current part of the document and requires interactive use of the
programmer.

3.1

3.2

An Example: A LARS-to-ADA Transformation

The Development Process

Stimulus-response-nets (SR-nets) as used in the SARS system are an established method for
requirements definitions for process control systems [AIf80]. We use the language LARS [LARS]
for the requirements specification. LARS is a modified variant of RSL which is used in SREM.
For LARS exist a graphical editor and an analyzer, which allow a user-friendly preparation of
requirements specifications. LARS specifications consist of three parts: a guard, which controls
all the activities of the system, the SR-nets, which describe what action (response) is to be
performed for a given event (stimulus), and the interfaces, which describe the interfaces to the
technical process to be controlled. Data and its operations are described in natural language in
LARS. Non-functional requirements like time constraint are already fixed in the LARS
document.

The formalization of the data and its operations has to be done in the system specification phase
by algebraic specifications [Gog84]. Data is described by abstract data types which consist of a
signature and axioms in the form of conditional equations. The abstract data types include
exceptions which can be raised in error situations and which can be handled by other operations.
The first complete formal system specification is a mixture of LARS and algebraic specification.
This document is the strating point for the transformation during the prototyping phase and the
implementation phase.

During the prototyping phase the specification is transformed into an ADA program. Prototyping
is applied very early to validate the system specification. The use of ADA as prototyping
language and implementation has the advantage of having only one language in both phases and
allows to reuse existing software within prototypes. The goal of the prototyping phase is an ADA
program, which has the functional behaviour of the final system and which already handles the
interfaces. It can be processed by an ADA compiler and ADA related tools [Per85].

The implementation phase concerns mostly with efficiency, user interfaces and embedding in the
technical process. The implementation can have a different system structure than the prototype. It
has to observe especially all non-functional requirements.

The similarity of concepts in LARS and ADA

LARS originally had been developed in the late seventies. The rationales of the language as to its
richness in concepts are:

- It shall conform to the needs of engineers with scarce to no knowledge in computer science

- It shall be appropriate not only for functional specs but also for describing attributes and
especially time conditions time constraints.

- The application areas for which LARS is suited are those of embedded real time systems, i.e.
where computer and their software are one component of an overall system. Typical
applications are:

» control-systems within C/M
* telecommunication functions
* microelectronic components

- Many aspects and many specification paradigms shall be covered by LARS. Thus LARS is
constituted by three sublanguages for describing INTERFACEs, Interconnections (GUARDS)
and Functions (NETs and DATA desriptions).

- As LARS has to cover a variety of aspects and concepts, its richness is comparable to ADA.
The following table gives an idea on the similarities and thus the potential mappings between
LARS and ADA. However, this is only for demonstrating homomorphismic transformation.
As mentioned in section one, the design of software systems seen as a process of optimizing
transformations requires more sophisticated mappings.

GUARD = Task

NET - Task with START-Entry
INTERFACE - Task

Activation-Part - Select-Statement

START Net - Call Entry of the Net-Task
Terminate EVENT - Entry of the Guard-Task
Net-STRUCTURE - Taskbody starting with

the ACCEPT of the Start-Entry

TERMINATE Net = Call Entry of the Guard-Task
ALPHA - Procedures, Functions
Interface EVENT - Interrupt-Entry

LARS-Data structures ADA-Data structures

Table 1: Mapping between LARS and ADA I

|3

3.3 The Transformation

The author now describes the general proceeding in the transformation and also shows some
typical examples of transformation steps.

The generated prototype has to reflect the four parts of the LARS specification. The guard as
central control of the system is transformed to an ADA task which waits for events from the
interfaces, activates the SR-nets, and outputs data to the interfaces. The interfaces become entries
of the guard task. The SR-nets which are parallel activities of the guard are transformed into
tasks. Such a SR-net conceptually can be active several times in parallel. It can have local data
which should be kept between several calls. Hence we have three possibilities for the
transformation of SR-nets:

Case(1) a task object with permanent local data.

Case(2) a task type where each SR-net activiation generates a new task object with
temporary local data.

Case(3) a task type within a package where each SR-net activiation generates a new task

object with the global data in the package.

The decision for one of the alternatives requires the knowledge of the existence of permanent data
and parallel activations. The first fact can be derived by data flow analysis from the specification
the second one is requested from the programmer.

Example: Rules for the Transformation of SR-Nets

rule net (GUARD) :net (ID,GLOBALS, LOCALS,ALPHAS) %case(l)
=> [task (ID,entry(‘'start?))
rtask_body (ID,
decls:LOCALS,
net body (GUARD) : ALPHAS)]
cond sequential_activation (GUARD,ID),

rule net (GUARD) :net (ID,GLOBALS, LOCALS,ALPHAS) %case(2)
=> [task_type(ID,entry(‘start‘))
stask_body (ID,
decls:LOCALS,
net_body (GUARD) : ALPHAS)]
cond not permanent_data (ALPHAS) .

rule net (GUARD) :net (ID,GLOBALS, LOCALS,ALPHAS) %case(3)
=>[package (ID,
[task_type (ID,entry(‘start’))
|decls: LOCALS])
,package_body (ID,
tagk_body(ID,...})]
cond permanent_data (ALPHAS) .

4.1

[6

The abstract data types are mapped into ADA (generic) packages. The signature can be
transformed one-to-one into a package declaration. The axioms are mapped to function bodies
which operate on the term algebra for the abstract data type. If we separate the operations into
constructors and defined operations, the constructors build the term data structure and the defined
operations manipulate this data structure as defined by the axioms[Per84]. By this technique the
prototype implementation of the data types is automized.

In the implementation phase further transformations are applied to improve the abstract data type
implementations. First rule bases for special data type implementations are evaluated. For
example if there exist rule bases to implement sets by linked lists, by hash tables or by bit strings
under certain conditions the system tries to cvaluate which rule base is applicable for this
specification. Further improvements can be done by evaluating whether there exists only one
object of a type at a time. In this case the data is made local to the package and the functions are
simplified by deleting the type from the parameter list.

Further transformations try to integrate parts of the system into one module with the help of
global analysis. We describe two techniques, the combine and the pipe technique.

Combine [Dar81] expands several functions at their calling place and tries to combine them to a
new function which avoids temporary data structures. A typical example is a function f1, which
produces a sequence, and a function f2 which consumes this sequence. The combined function
produces only one element and consumes it directly.

The pipe technique is an extension of the UNIX pipe mechanism. If some task t1 produces a
sequence of elements which is consumed in the same order by some other task t2, then with the
help of a buffer task tb, the construction of the sequence can be avoided. If t1 has produced an
element it is given to tb, and if t2 will accept the next element tb gives it to t2. The evaluation of
the applicability of these transformations is done on the specification level because the control
and data flow analysis is much easier to handle there.

An Experiment Within ToolUse:
Transforming LARS Into The Target Language OBER

OBER and ROMI

When different tools are to be combined, the problem on the semantics of the objects to be treated
by the tools arises, as the tools have to understand on what objects they operate.

In order to generalize the description of objects to be manipulated such that different tools will
have the same interpretation of the objects under work, an object model has been developed
within one of the so called heterogeneous tool envircnments deveioped in W.Germany under the
prcject name RASOP. The model is called RASOP CBJECT Model (ROM). It is described in
more detail in [ROM]. Fig. 2 shows one part of the overall ROM-model.

For the fermal description of the model itself the languages OBER (Qbject-Based Language for
Engineering Requirements) has been defined within the RASOP project [OBER].

The OEER describod objects are kepi for administraticn in an object base, to which the tools can
communicate by the means of the RASOP Object Manipulation Interface called ROMI [ROMI].

[+

Imports_dat

administratable_object = >
. - datastream
system - ’ geciaces dal
ralined_by
consists of l '
= declares_dac o e A
Y) } ,— > declaration_object l
component i T : : : -
. ; = tyne]
| conslists_of = —t—
. Structure_node : Tt e A ? Y
unit —>™ | constant |
| X Is_of_type
Implemented_by -
Y .- - =) variable >--
compilation: urit , . ey
i has_testspec [declares s of|type
has_testsped) |_>.. function
: YY
has_body . N
testspcmm:
C v i - has_testspec Is_ot_type

Fig.2: Part of the overall ROM-model

OBER is a language the definition of which was influenzed by Chens Entity-Relationship-Model

for modelling complex data structures as well as by the language SMALLTALK-80, from which

the class-concept and the message concept was taken over. The OBER language has the |
following fundamental features:

- Concept of aspects:
one tool only "sees" these classes and relations, which is necessary for its function. Thus an
object may look different for dlfferent tools.

- Description of objects'
Objects with the same characteristics are defined to be of the same class. The atiributes of an
object (i.e. as well of the class) define, from which atomer elements the cbjects were
constructed. An attribute may also have semantic characteristics as e.g. a key attribute, a
value, access rights etc.
Building classes can be made hierarchically thus defining unherit2nce featurcs.

- Description of relationships: o
Relationships may be defined between objects as well as between classes. Two basic types of

relations are defined in OBER
a) the structure-relationship defining the "is-part-of" relation between objects,
b) the partner relationship defining relationships between independant objects.

4.2

|4

Relationships may be defined as a multi tuple and the number of their instantiations (cardinality)
may be restricted.

The ROMI (RASOP Object Manipulation Interface) is a programming interface implemented by
procedures and declarations in C by which the creation, manipulation and deletion of objects may
be performed by the tools within a RASOP environment.

" The operations made possible with ROMI are based on concepts in OBER, with the tool specific

aspect only being available to a spzcific tool. A tool may access an object via the selection of its
attributes or its relations. ;

The ROMI functions are interpreted, i.e. no precompiling is required.

For the safety of the objects to be administrated, all changing accesses are implemented as long
transactions. Thus the object administration guvarantees that deadlm‘ke may not occur, long
working pauses lead to suspension of transaction and a tool may "tave over" a transaction started
by another tool.

Within the RASOP-project, the SARS tool SARTRE has to manage a transformation from LARS
into LARS-specific OBER-descriptions i.e. into objects which are transferable via the ROMI
interface.

Some Sample Rules For Transferming LARS Inte OBER

This chapter describes a short abstract of the SARTRE transformation rules which have been
developed to build a part of the ROM-classes out of a LARS-specification.

In this early realisation phase of SARTRE it was an important goal to get some experiences with
the underlying system. Therefore this rule-set has to be considered as a first transformational
approach, infact not an optimized one, but can be accepted as a basis for stepwise improvements.

The first rule transforms the LARS-guard, the component, which describes the connections
between the LARS-interfaces and the lLARS-nets and which describes the data structures used by
different LARS-nets. ;

For better understanding the original SARTRE-Syntax is not used in this abstract but a similar
one, already used for the LARS-ADA transformation by G. Persch[Per86].

" transfo_guard:© ¢

guard ID; activation ACTIONS; common GLOBALS
' % Syntax of thc LARb guard il

-> unit ID

has - body ACTIONS il
% The ACTIONS evaluate vaiues of irie LARo interfaces
% and activate the LARS-nets or send information to :
% the user.

imports - dec fum,nom(nel 1d AC’I‘IONS)
% LARS-nets are transformed into functions."
% To be able to call them out of this guard-
% unit, theu‘ names must be 1mported

1mports dcc fiinctions i input_interface_ fct g

imports_dec_functions output_interface_fct

% Evaluating the (LARS-) interfaces and sending

% information to the user is done by calling

% functions. These fuictibns are declared in the

% transformation goal of the LARS-interfaces. The

* % fanction | names must be :mponed e
end;

unit global data <" bl
declarcs dec vanables GLOBALS

% This unit-declares the global data structures -
% which are used by different other units.
end; .

The second rule transforms a LARS-net into a function within a unit. This means that each
LARS-net builds a unit with exactly one function. This way of modularisation is thought to be
one of the parts which can be improved in further work.

4.3

10

transfo_net:

net ID; structure NODES common GLOBALS; private
LOCALS;
% Syntax of the LARS-net

-> if: exchange_by_parameters: GLOBALS
then:
unit ID
declares_dec function ID

has_body (LOCALS, NODES)
% The body of the function contains the
% declarations of the I6cal data and the
% structure of the NODES.

is_of_type (terminate, NODES)
% The type of the function is the enumeration
% of the% possible terminate stati of the function
% (corresponding to the termmate nodcs of the
% LARS-net).

has_sequence_of formal_pﬁrametérs GLOBALS
% Data exchanged with other functions-are
% transfered by formnal_parameters

end; =%) o

Data, which are used in different functions and which the user do.not want to be transfered by
parameters, can be 1mported in the carresponding (net-)funcnon

First Experiences With SARTRE

The experiences with SARTRE we can refer are based on. a trancformation of a LARS-text into
PASCAL-source code.

SARTRE is based on MProlog (the architecture is shown in Fig.3). MProlog and the TREX-rules
were installed on a IBM-AT compatible Hardware. It turned out that, because of storage
requirements we have to use a workstation-like Hardware for transforming larger texts.
Furthermore the Prolog programrmng environment (PDSS) is not very comfortable to use (e.g.
debugging aids, editor facilities etc.). - :

The experiences we gained until today are in this way that the givcn syntax of the TREX-rules is
a useful feature for transforming one language into another. -

We have no experiences how useful interactions between the user and the system can be
integrated. That is due to further implementations.

B A Ty

—_
~

Intervention \

RS
source
document

7777, implembnied i
70

.
’

PROLOG v

T TN AT
)
fra 4 P /(/// f

7
-

,///////:5 3 1 7 / :
Ui

document

o o,

/ based|on the ’f//////////// él___ -

.//7’
,%/
i/

/,

Fig.3: Architecture of SARTRE

5. The architecture of a SARS/SAR'T'KE system -

The authors intend to enrich their already existing SARS-system by tools for
- Supporting the optimal LARS-to-Target Language transforzﬁation.
- giving guidance in collecting and completing requirements specifications,
- mair‘aining a library of reusable modules-on target lovel.
The key role for such a system is played by SARTRE which will be parameterized for different target

languages like PASCAL, C, MODULAII, ADA, PEARL and interr=diate languages like OBER in its
special use for describing ROM (see section 4.2).

An architectural chast of the goal of the SARS/SARTRE development is given by Fig.4 below.

SARS-
User "
Interface

l

. |
User guidance for |
writing and analvzing- l
SARS-specs ("Method Advisor™) |
L

Maintenance of
Module Library

U U

SARS- il

s

specification
editing .

aualyoing i

tools
'\/i|

Specification in LARS

SARTRE-
User
Interface

iy

SARTRE- transformations,
supported by

-- mechanic rules

-- human decision interaction

L

Specification in
Target Language

Targ:t
Module
Library

Fig.4: Architecture of the SARS/SARTR™ s:’stem

L5

References o

A

Alf80 M. Alford: SREM at the age of Four, Proc. 4th COMPSAC,
Chicago, IEEE 1980

Bal82 R. Balzer, N. Goldman, D. Wile: Operational
Specification as the basjs f~r rapid rrotatyning.
Proc. ACM SIGSOFT Workshop on ! . 2
Columbia 1982

Bau81 F.L. Bauer, K. Woessnes: Algorithr’ Ui Lapguass @d
Program Development, Springer Verlag on

Bro83 M. Broy: Algebraic Methods fer.Program Construction- sy ARy o
The Project CIP, Proc. Workghop Program Trans- -
formations, Springer Verlag 1984

Chen76 P. Chen: The Entity/Relationship Approach to Da\m
Modelling

Dar81 J. Darlington, R.M. Burstall: A System which Auto-
matically Imiproves Programs, Proc, ILj;, {7 'm,r"recjc' 198L,
North Holland , #ol

Epp83 W. Epple, M. Hagemang, M. ”"'umn, G. Kogh: SAR R qverrm,)
zur anwendungsorientiertin Anfo"dcruna“rnc"' ' : '
University of Karlsruhe, Inst. f. Informam i i,
Report 1983

EPOS Beschreibung des Spezifikationssystems EPOS, Fa. GPP,
Miinchen, W. Germany

1 4
ML
ish 11T
r
A TET0 1 e iy

Fell83 M. Felleisen: Algebraische Spezifikationen als
Erginzung des Software-Entwicklungskonzeptes in SARS.
Thesis of the University of Karlsruhe, Institute
fiir Informati'- ITI, 1983

Fic83 S.F. Fickas: Automating the Transformational Develop-
ment of Software,USC-ISI/RR-83-108, Ph.D. Dissertation,
Marina del Rey, 1983

Gog84 J.A. Goguen: Parameterized Programming, IEEE Software
Engineering September 1984, 5/10

LARS LARS - Sprachbeschreibung, September 1987
2i Industrial Informatics, Freiburg, W.-Germany

Leh83 M.M. Lehmann, V. Stenning, W.M. Turski: Another look
at Software Design Methodology,Imperial College London, Report DoC 83/13

15

OBER OBER-Object-Based Language for Engineering
Requirements, Version 1.0 from Oktober 1986
Not available in public

Par83 H. Partsch: The CIP Transformation System, Proc. Work-
shop Program Transformations, Springer Verlag F8-1984

Per84 G. Persch: Des. '~ and Si-'-"*'li:’ g Ada softwaz,
Proc. IFIP WG 2.4} Cduietodll Noiti. ioiland 1984

Per85 G. Persch et al: Karlsruhe Ada Systern - User Manual,
Gesellschaft fiir Mauic.... ..« Didleaver. . weitang mbl,
Report 1985 :

Per86 Ein Transformationssystein .t Frogiaznentwicdung,
PhD Thesis at the Unuveisity of Kaclsrui.o,
Faculty of Computer Science, 1986

ROM ROM - RASOP Object 1 fodei.
Version 1.0 from February 1987
Not available in public

ROMI ROMI "~ "7 " ' L uidapwesauon [niciiace. Version ..o
from June 198/. Not available in public

SARS = ™ ™ 7 ‘DUNgE wiiu Methodédbeschieivun.
e . o . b
sfoimatics, Frabug
wo'\-lvl

