
(

(

Abstract

A Case Study in Object-Oriented

Knowledge-Base Design

using the KIWI system

Els Laenens
John Snijders
Francois Staes

Philips KIWIS team. PASS·AlT.

Building HCMS, P.O. BOX 218, S600 MD Eindhoven, The Netherlands

Dirk Vermeir

Dept. of Math. and Computer Science. University of Antwerp, UJ.A.

Universiteitsplein I, 82610 Wilrijk, Belgium

•

The KIWI system aims at intelligent interaction with large knowledge bases and databases. Its

knowledge representation/manipulation fonnalism supports conceptual modeling in a unified way

and is realized by OOPS+, an object-oriented database programming language. Optimization stra·

tegies for deductive query processing are applied to' handle large amounts of knowledge and data.

Moreover, a customizable window-interface (NAU), which is fully integrated with OOPS+, makes

the system suitable for fast prototyping. This paper presents the KIWI system through the design

process of a case study.

1. Introduction

Today, knowledge-based system technology lacks the means to provide efficient and robust
knowledge bases, while database system technology lacks knowledge representation and reasoning
capabilities 1 . The ultimate goal, a full integration of knowledge bases and databases, is not yet
feasible. Much more experiment and experience is needed to specify both a complete set of
requirements for such systems, and requirements that are mutually independent. We therefore can
state that there is a need for flexible integration of data and knowledge from both databases and
knowledge bases.

The KIWI system2,3 supports a user-friendly and knowledgeable environment where the user can
develop knowledge-based applications that may make use of data from a number of external data
bases. It has been designed and developed, by a consortium of industrial and research organiza
tions, within the framework of ESPRIT.

The KIWI system uses a particular knowledge representation formalism, called OOpS+4,5 , to
represent in a uniform way both the schema and the data of the underlying databases. This formal
ism is also used to enrich the semantics of the databases by representing extra knowledge that is
then stored locally, thus providing an integrated description of the complete knowledge-based sys- (
tern. While basically object-oriented, OOPS+ integrates database concepts as well as classical
knowledge-representation techniques such as rule-based inference and demons. In addition, the
language supports types as first-class objects, inheritance, imperative function definition, and query
facilities based on logic programming.

The logic programming language supported by the database environment of the KIWI system is a
simple extension of DATALOG which is based on the pure semantics of definite Horn clause
queries. In order to improve the efficiency of query evaluation, advanced optimization techniques
for the fixpoint computation or bottom-up evaluation are essential. The KIWI system incorporates
among others magic counting methods6 with very good results.

The user-interface to the KIWI system, called NAU: Not yet Another User-interface, combines
ease of use with a powerful customization facility which greatly simplifies the development of (
end-user applications7 . This is achieved by using the underlying object-oriented language
(OOPS+) features to define a consistent and orthogonal set of graphical object classes that can be
used to attach a taylor-made external representation of (a view on) objects and/or classes. In addi-
tion, using the same tools, it becomes a simple matter to define general purpose browsing and (
manipulation tools which otherwise would have to be developed separately.

The case study is an illustrative fragment of a genealogical information base. The information
base represents the royal houses of Europe. In particular, it presents their families: persons, their
parents, children,- weddings, etc. The genealogical tree is hierarchical, but it is a directed acyclic
graph rather than a tree, for X and Y, both great-grandchildren of Z may have a child C. .

The aim of this paper is to present an overview of the KIWI system by means of this case study.
Section 2 discusses the approach to knowledge representation (OOPS+). Section 3 describes the
basic idea of the optimization methods for query processing. Section 4 shows the customizable
window-interface (NAU).

2

2. OOPS+

In this section we discuss some OOPS+ features by using the royal houses case study. For a more
complete description of the OOPS+ language, we refer to other papers4,5 .

The notion of object is considered to be primitive in OOPS+. Because of the existence of complex
objects, a single entity can be modeled as a single object: entity features need not be simple dataI
values, but can be entities of arbitrary complexity. This should be contrasted with the traditional
relational database approach, where an entity is represented as multiple tuples spread amongst
several relations. For example, an object modeling a particular person, might look like this:

karelXVI =
(

name =
title =

sex =
birthDate =
parents =
)

"Karel XVI Gustaaf";
"King of Sweden";
male;
1946;
(gustaaf, sibylla}

This record object or tuple object (referenced by karelXVI) is defined in terms of other already
defined objects sybilla and gustaaf. We say that a record object is an aggregation of its
attributes. Name and birthDate refer to primitive objects "Karel XVI Gustaaf" (a
string object) and 1946 (an integer object) respectively while parents points to a set object.

As in mathematics, sets are defined either by enumerating their members, or by describing the uni·
fying features that determine membership in the set. For instance, a set persons of all
registered persons is a typical example of an enumerated set

persons = (oscarI, oscarIT,gustaafV, victoria,
gustaafVI, karelXVI, sybilla, gustaaf)

while the set of children of gustaafVI in the following example is a described one.

gustaafVI =

(

name =
title =
sex =
birthDate =
deathDate =
parents =
children =
weddings =
)

"Gustaaf VI Adolf";
"King of Sweden";
male;
1882;
1973; ..

(gustaafV, victoria);
(kid I kid:persons and gustaafVI:kid.parents);
{gustaafV*margaretha, gustaafV*louise}

3

Selection of a component of an aggregate object, also called projection, is done using '. '; for
example kid. parents denotes the parents attribute of kid. The ':' denotes the instance of
relation which captures both the notions of having a type and explicit set membership, and conse
quently serves two purposes, type checking and referential integrity. kid: persons stands for
kid is a member of the set persons, i.e. kid must be an existing person. Thus the children
attribute refers to a set of existing persons that have gustaafVI as a parent.

Note that we assume too hastily the existence of a parents attribute for each person (instance of
persons). This inaccuracy can be solved by demanding that all persons conform to a certain
standard (i.e. type checking). From learning about our specific examples, karelXVI and gus
taafVI, we can construct an object which abstracts out what we believe is true about all indivi
dual persons. By specifying the properties shared by karelXVI and gutaafVI, we find the fol
lowing abstraction:

personType =
(

(

name =
title =

sex =
birthDate =

parents =
)

Str;
Str;
{male, female);
Int;
[persons]

This record object (labeled personType) acts as a type for both karelXVI and gustaafVI,
which are in turn instances of the record object. Indeed, a record is an instance of another record
if the instance-of relation holds for common attributes. For example karelXVI : person
Type boils down to

"karel XVI Gustaaf" : Str
"King of Sweden" : Str
male: {male,female}
1946 : Int
{sibylla, gustaaf} : [persons]

where [persons] is a power object denoting the set of all finite sets of instances of persons.
In other words the members of {sibylla, gustaaf} must be instances of persons. Thus,
personType can be looked upon as a specification of conditions for its instances: they need to
have an attribute name referring to a string, an attribute sex referring to either male or
female, etc. Additional attributes such as children are not restricted and can therefore not
affect the instance-of relation. This explains why also gustaafVI : personType. On the
other hand, oscarII is not an instance of personType because his mother is not an existing
person (i.e. not in persons):

4

(

oscarII =

name =
title =
sex =

birthDate =
deathDate =
parents =
)

"oscarIIU;
"King of Sweden and Norway";
male;
1829;
1907;
(josephine, oscarI)

We can now demand that all instances of the set persons should conform to personType:

[personType] persons = (..)

(So, gustaafVI and karelXVI can be members of persons while oscarI I can not.

As genealogical information changes, the information in our knowledge base needs to be updated:
persons get married, get children, die, etc. So deathDate, children and weddings are no
accidental attributes, instead they are of major importance in a genealogical information base.
Therefore, we wish to extend personType in order to get some additional type checks for these
optional attributes:

personType =
(

(

name =
title =
sex =
birthDate =
deathDate =
parents =
children =
weddings =
)

Str;
Str;
{male, female);
Int;
Int;
[persons];
[persons];
[weddingTypel

But there is a problem: karelXVI can no longer be.an instance of persons because according
to the new personType, all persons must have a deathDate, a children and a wed
dings attribute, which is not acceptable.

Thus, it is desirable to be able to put type checking control on these attributes, taking into account
that they might be missing. This is realized by allowing for default attributes in the type
specification. This technique provides us with the notion of inheritance as used in object-oriented
languages such as Smalltalk. Hence the change of the label, personClass instead of person
Type:

5

and self:kid.parents};

personClass =
(

name =
title =
sex =
birthDate
deathDate
parents =
children =

weddings =
age =

Str;
Str;
{male, female};

= Int;
= Int default nil;

[persons];
[persons] default

{kid I kid:persons
[weddingType] default {};
default Int

{

if (self.deathDate==nil) then
return(currentDateoyear-birthDate);

else
return (deathDate-birthDate);

}()

(

(

Since both karelXVI and gustaafVI are instances of personClass (see below), we can
require that the instances of persons should be instances of personClass:

[personClass] persons = {.o}

All instances of personClass inherit the default attributes deathDate, children, wed
dings and age while explicit occurrences of these attributes overwrite these defaults and should
therefore conform to the type Int, [persons land [weddingType] respectively. In other
words, a default value is consulted whenever there is no explicit occurrence of the attribute at
hand. For example, if in an instance of personClass, deathDate is mentioned explicitly it
must conform to type Int, otherwise one can interpret it as being nil (the default). Similar, each
member of gustaafVI 0 weddings should be an instance of weddingType while
karelXVI. weddings refers to the empty set.

The default for the children attribute is a generalized version of gustaafVI 0 chi ldren
where self denotes the owner of the attribute to be computed. Thus, occurrences of self in an
operation definition refer to the object on behalf of which the operation is. being executed rather
than to the object in which the operation is textually defined.

Another powerful facility that exists only rudimentarily in most programming languages is type
coercion or type casting which enforces instance-of conformance by possibly altering some objects.
For instance, we can make oscarII an instance of personClass through casting, (denoted
'<-'):

6

personClass <- oscarII

The casting operation boils down to the attributes:

Str <- "oscarII"
Str <- "King of Sweden and Norway"
{male, female} <- male
Int <- 1829
Int <- 1907
[persons) <- {josephine,oscarI}

(
It is obvious that no actions are needed for T<-I if I: T. Thus there is only one active cast left:
[persons) <- {josephine, oscar} which in turn is equivalent to persons <
josephine (since oscarI persons), the result of which will be the insertion of

(josephine in the set persons after which {josephine, oscarI} [persons] and
consequently also oscarII : personClass.

Besides the object-oriented paradigm, discussed so far, OOPS+ incorporates other powerful pro
gramming paradigms such as logic programming, rule-base programming, access programming and
imperative programming each of them fully integrated with the object-oriented aspects of the
language. A presentation of all of them however, is beyond the scope of this paper. We therefore
describe logic programming which allows for a smooth warming up for the next section.

OOPS+ uses predicates in order provide powerful query facilities. In most object-oriented
languages, it is rather difficult and tedious to reference objects by contents: the programmer has to
'hand code' support for such references explicitly by providing methods. In OOPS+, predicates can
be used to query the object space.

The following defines a predicate grandChild. Recall that in our genealogical knowledge base,
a child of a person p is a member of the set p. children.

grandChild (grandParent=_gp;grandChild=_gc)
_gp.children(self=_child),
_child. children (self=_gc) .

Note that labels are introduced in the predicate head in order to make both the interpretation of the
argument positions and the arity transparent to the user.

gp.children (self= child) makes _child refer to an instance of (Le. a member of) the
set _gp. children. The result of the query

grandChild (grandParent=gustaafVI)

7

will be a set of record objects that satisfy the grandChild predicate, each having two attributes
grandParent and grandChild. For example

{

{grandParent = gustaafVI; grandChild = karelXVI),
{grandParent = gustaafVI; grandChild = margaretha),

)

Let us now try to solve the following query: find all persons of the same generation as
karelXVI.

Two persons are of the same generation if they are siblings:

siblings {siblingl=_x;sibling2=_y)
_x.parents(self=_aParent),
_y.parents(self=_aParent) .

sameGeneration(personl=_x;person2=_y)
siblings (siblingl=_x;sibling2=_y) .

or if their parents are of the same generation:

sameGeneration(personl=_x;person2=_y)
_x.parents(self=_aParentOfX) ,
sameGeneration{personl=_aParentOfX;person2=_aParentOfY),
_y.parents{self=_aParentOfY) •

The answer to the query is then given by

sameGeneration(personl=karelXVI) .person2

where the projection yields a new set object containing exactly the persons that are of the genera
tion of karelXVI:

{solution.person2 I solution:sameGeneration{personl=karelXVI)

Note that predicates can refer to both objects with instances (like x. parents in sameGen
eration) and other predicates (like sibling in sameGeneration). More general, in this
context, an object with instances can be regarded as a predicate with extension the set of its
instances. On the other hand, it is possible to look upon predicates as virtual classes where the

8

(

(

instances or a subset of the instances is only created when needed (and later destroyed when not
referenced).

3. Deductive query optimization

In this section, we illustrate that the bottom-up evaluation of queries needs to be augmented with
some optimization strategies in order to be of practical use.

Let us rewrite the sameOeneration (sO) predicate in a less verbose way in order not to overload the
discussion below.

sG(X;Y) '- sibling(X;Y).
sG(X;Y) '- parent (X;Xl), sG(Xl;Yl), parent(Y;Yl).

This is a linear recursive Datalog program consisting of two rules. Let sibling and parent be
base predicates; sG is a derived predicate. Consider the set of facts as shown in the next figure.
The dashed lines denote sibling facts (e.g. sibling (sofia;adolf)) while the solid lines
represent parent facts (e.g. parent (frederik; gustaafVI)).

karerxv oskarlI
~•....•....

louise gilstaajV

gustaajVI

sofia adolf................

willemIV

charlotte

robert

felix

margaretha

frederik jan

The bottom-up evaluation of the query sG (X; Y) goes as follows. Let sgSet be a set that keeps
track of the tuples for which the derived predicate sG holds. This set is initialized to the empty set
and its members are generated by repeatedly applying the rules for sG to both the (s ibling and
parent) facts, and the tuples in sgSet:

begin
initialize sgSet to empty;
for each (X;Y) in sibling do

add (X;Y) to sgSet;

repeat
for each (X;Xl) in parent, (Xl;Yl) in sgSet, (Y;Yl) in parent

do add (X;Y) to sgSet;
until no new tuples are generated;

end

Thus; for our configuration, sgSet is constructed in four steps and contains the answers to the
query sG (X; Y) :

9

sgSet

first iteration second iteration third iteration

first rule second_rule second rule second rule

X y X Y X y X Y

sofia adolf gustaafV willemIV gustaafVI charlotte frederik jan

adolf sofia wUlemIV gustaafV charlotte gustaafVI jan frederik

karelXV oskarII louise gustaafV

oskarII karelXV gustaafV louise

robert margaretha

margaretha robert

As another example, consider the query sG (frederik;Y) of which the first argument is bOllnd
to frederik. The bottom-up evaluation of this query is exactly the same, and the answer is
given by

{Y I (frederik;Y) is in sgSet}

i.e. the singleton set {j an }.

Note that in this case, the algorithm is rather inefficient since we ask for the same generation of
frederik and we compute the same generation of all persons. In other words, we consult more
facts than actually needed. The problem is that the bottom-up evaluation was done without taking
into account the additional binding information.

(

(

Since we know the answer set {j an}
set of relevant facts for this
sG (frederik; jan):

to the query
query by

10

sG (frederik;Y), we can also compute the
making the derivations starting from

sG(frederik;jan) =>

parent(frederik;gustaafVI)

sG(gustaaNI;charlotte) =>

parent(gustaafVI;gustaafV)

sG(gustaafV;willemIV) =>

parent(gustaafV;sofia)

sG(sofia;adolf) =>

sibling(sofia ;adoll)

parent(willemIV;adoll)

parent(charlotte;willemIV)

parent(jan;charlotte)

The set of relevant facts consists of the facts that appear in these derivations. It is indeed a subset
of the set of consulted facts. Thus, whenever a query contains bound arguments, the bottom-up
method tends to become inefficient because ·the set of facts consulted during evaluation may be
much larger than the set of facts that are relevant to the query.

So why not using the set of relevant facts instead of all facts? Observe that we need the answer to
the query in order to derive the set of relevant facts, therefore it is not feasible to use this set in
the query evaluation (since the latter would already be done).

A usual approach in a query optimization strategy is to attempt to rewrite the program so that
bindings in the query can be used to restrict the set of facts to which the rules will be applied. For
instance, for the query sG (frederik;Y), we want to use the binding (frederik) in the deter
mination 'of a set of facts, which should be a subset of all facts, containing all relevant facts for the
query and which will then be used in the query evaluation.

The following shows how the magic sets optimization strategy deals with this idea. The method
uses some auxiliary predicates, called magic predicates, that compute sets, called magic sets. The
rules for these magic predicates are derived from the original rules taking into account the query
bindings and propagating the binding information down to the facts. These magic predicates are
put in the bodies of the original predicates so that the latter will fire only for members of the
magic sets.

For example, for the query sG (frederik;Y) the magic predicate for sG is:

magic.sG(frederik) .

magic.sG(Xl) magic.sG(X), parent (X;Xl) .

while the original rules for sG are modified as follows:

11

sG (X; Y) .

sG (X; Y)

magic.sG(X) ,

magic.sG(X) ,

sibling (X;Y) •

parent (X;X1), sG (X1;Yl), parent (Y;Y1) •

The magic set computed by magic; sG is the set of ancestors of frederik. In the bottom-up
evaluation of the modified sG predicate, the fact sibling (X; Y) will only be used if X is in
the magic set. A similar thing holds for the first occurrence of parent in the recursive rule.

There is a wide variety of optimization methods each trying to compromise the tightness of the set
of potentially relevant facts and the overhead caused by its computation. The two extremes are
obviously the set of all facts, for which no computation is needed, and the set of relevant facts,
which is the tightest possible and also the most expensive one.

The database environment of the KIWI system uses a combination of different optimization stra
tegies, some of which are based on the idea underlying the magic sets method: the minimagic
method, the cOllnting method, the magic coullting method, etc.6,8,9. Applying these techniques,
Datalog programs are compiled into efficient code: safe and efficient prolog programs where the
bpttom-up computation is enforced. Such a compiled query runs up to 20 times faster than the
direct prolog execution of the original query.

4. NAU

Currently, there exist three user-interfaces to the KIWI system, each aimed at a different kind of
user. The naive user interface offers simple browser functions. The knowledge engineer's inter
face (KEI) has been developed in an attempt to provide a user-interface that is in full harmony
with the OOPS+ language and provides facilities for browsing, updating, and activating functions
in the knowledge base. Thus this interface supports a full view on the knowledge representation
formalism in a window-based format. Finally, it was realized that none of the above interfaces is
likely to be acceptable to an end-user if he wants to do more than the most trivial operations. So
an application would still need to develop its own interface. To facilitate this, an experimental
applications user-interface (NAU, "Not Yet Another User interface") has been developed.

NAU extends the underlying object-oriented language (OOPS+) with a limited number of
predefined interface objects and types (classes) that have an interpretation in terms of the I/O facil
ities (mouse, windows, etc.).

Using these interface objects, it becomes straightforward to define a customized representation of
an object (or a class of objects), which also includes dialogue features that define the possible
interaction with an object through buttons, edit windows etc.

This is further facilitated by using other object-oriented features of the underlying language such as
polymorphism and default values (inheritance). This allows e.g. to limit the number of functions
that belong to the interface to just a few, which benefits the readability and correctness of the
application.

These interface tools have now been tested for a number of applications and the results indicate
that programmer productivity is greatly increased and it becomes possible to develop prototype
knowledge-base applications with attractive user interfaces in a very short time.

12

(

(

Typically, applications developed using this interface can be regarded as customized browsers. In
addition to the usual browsing activities, a number of predefined transactions that constitute the
application are associated as methods with the proper objects. They can be called directly from the
browser by activating the corresponding visualization, e.g. a button.

In order to facilitate the incremental development of such a customized interface to a knowledge
base, we have provided a default browser (mostly written in OOPS+) that associates a standard
visualization with each object. It is then possible to customize the presentation of the objects that
are more relevant to the application. Due to inheritance, the browser run-time system will use the
customized visualization whenever it exists and otherwise default to the standard one.

In the rest of this section we will show some customization facilities.

There are a number of different kinds of windows supported by NAU. Some information, such as
the size, which is common to all kinds is stored in a frame, Le. a window without contents. The
type FRAME is defined in OOPS+ as follows:

FRAME = (label = Str default nil;
size = COORDINATE default nil;
location = LOCATION default (X = 0; Y = down);
action = EVENT -> nil default .. ;);

The meaning of the various attributes is as follows: if label is not nil then the window will
be displayed with a labeled border. If size is not specified (as a width and/or .height), the
window will fit its contents. Specifying the size may cause a scrollbar to be automatically added
whenever the size of the contents would exceed the given size. The location attribute may be used
to specify the position of the window frame within an encompassing superwindow. Besides an
absolute location (X= .. ; Y= ..) , it is also possible to specify a location relative to both the pre
vious window in a layout sequence (down, up, left, right) or to the encompassing superwindow
(top, center, bottom, etc.).

The action function specifies what happens upon the occurrence of an event that is to be handled
by the window. Relevant information about this event will be stored in an EVENT object that is

(passed to the action function.

A complete window consists of a frame and a specification of its contents. Below is a summary of
the kinds of windows that are available in NAU.

• A form window serves as a container of other windows. It has a layout attribute that con
sists of a sequence of windows, any of which may again be forms. Upon display, the form
is filled with the subwindows as specified in the layout attribute.

• Text windows for displaying text.

• Edi t windows that allow update of text.

• Pictures that display raster images.

• Buttons which are typically associated with actions that perform some application func
tion.

13

• Tables that provide automatic alignment and reslZlng (both horizontally and vertically)
between rows of subwindows. Note that there is no restriction on the kind of subwindows
that are supported by tables.

• Cho ice windows which allow an event that corresponds to the selection from a collection
of alternatives.

For example, let us consider the opening window for our case study

t>

(Belgium) (England) (Sweden)

This window uses the default attributes of FRAME and has two subwindows: a picture window,
and a table window which in tum has subwindows (text-windows):

WINDOW welcomeWindow =

(txt = "Holland";
action=display(window=hollandWindow))

(size = (width = 20);
rows = < <

BUTTON <-

(

layout = <
PICTURE <- (pic = welcome.pic),
TABLE <-

BUTTON <- (txt="England";
action=display(window=englandWindow»

> »
»

14

(

where welcome. pic denotes a picture; display is a function with one argument labeled
window, and < > denotes the sequence constructor in OOPS+.

Whenever a button or a text is selected, the associated function (act ion) gets activated. For
instance, selecting 'England' in the opening window yields:

~yaf J{ouse of
'Engfantf

~ W
Pfiifip

which is specified in OOPS+ as follows:

WINDOW englandWindow =
(

label = nil;

font = zapfChancery;
layout = <

TEXT <- (txt="Royal house of @ England";
location = (X=center));

TABLE <- (location = (X=center);
rows = < <

PICTURE <- (pic=queen.pic),
PICTURE <- (pic=king.pic)
>,
<
BUTTON <- (txt = "Elizabeth II";

action=display(window=
personWindow(person=elizabeth»)),

BUTTON <- .(txt = "Philip";
action=display(window=

personWindow(person=philip))),
> >),

15

TABLE <- (location = (X=center);
rows = < <

PICTURE <- (pic=prince.pic),

>,
<
BUTTON <- (txt = "Charles";
action=display(window=personWindow(person=charles}),

> >)
> }

Note that in this example, all of the actions associated with buttons call the function display
with as window argument the result of another function call personWindow (person =
...) . The latter function creates and returns a window that represents a number of features of the
person at hand :

(

personWindow = WINDOW
{

return (
label = 1111;

layout =
<

(

(

then

person.name) ;
person.title};
"Child of " + father (p=person) .name +
" and" + mother (p=person) .name},
"Born in " + person.birthdate),

<- (txt =
<- (txt =
<- (txt =

TEXT <- (txt =
TEXT <- (txt =

(

if person. sex == "male"
return("Father of")

else
return ("Mother of")

} (}(}),

TABLE <- (size = (height = 3),
location = (X = right) ;
rows = .• }

TEXT
TEXT
TEXT

>
)

) (person = personClass);

This function should be called with one argument person that must refer to an instance of per
sonClass.

16

(

(

Thus selecting the ElizabethII button in the previous window will result in :

,£{iza6etn II

Qg.een of (jreat . 'Britain

CniU of%6ert anti ,£{iza6etn

'Bomin 1926

9vfarriea to Pnifip

9vfotner of Cfiarres
, J!nne

. iii J!ntfrew

5. Conclusion

Many interesting results have been achieved in the KIWI project, some of which are outlined in
this paper. The main issues of the project are knowledge representation languages with object
oriented flavor, graphical user interfaces and tight combination of logic programming and data
bases. Prototypes have been developed using C-Ianguage and are running on a Unix workstation.

While KIWI was mainly a research project, its results will now be used and further developed in a
more industrial Esprit IT project, called KIWIS.

6. Acknowledgement

Many thanks to the KIWI team. We enjoyed working with them very much.

This research was supported in part by the EEC Esprit program under contracts PI 117 and P2424
(Esprit II).

References

1. On Knowledge Base Management Systems; Springer-Verlag, 1985.

2. D. Sacca, D. Vermeir, A. D'Atri, J. Snijders, G. Pedersen, and N. Spyratos, "Description of
the overall architecture of the KIWI system," in Proceedings of the Esprit Technical Week,
1985. Elsevier Pub!. Co.

3. The KIWI team, "A System for Managing Data and Knowledge Bases ," in Proceedings of
the Esprit Conference, pp. 826-844, North-Holland, 1988.

4. E. Laenens and D. Vermeir, "An overview of OOPS+, an Object-Oriented Database Pro
gramming Language," Proceedings of the ECOO?' 88 conference, pp. 350-373 , Springer
Verlag, Oslo, August 1988.

5. E. Laenens and D. Vermeir, "A Language for Object Oriented Database Programming,"
Journal of OBJECT-ORIENTED Programming, 1989. to appear

17

6. D. Sacca and C. zaniolo, "Magic Counting Methods," ACM SlGMOD Proceedings, pp. 49
59, 1987.

7. E. Laenens, F. Staes, and D. Venneir, A Customizable Window-lnteiface to Object-Oriented
Databases, 1989. Submitted for pQblication

8. D. Sacca and C. zaniolo, "The Generalized Counting Method for Recursive Logic Queries,"
lCDT '86 Proceedings, 1986.

9. D. Sacca and C. Zaniolo, "Implementation of Recursive Queries for a Data Language based
on Pure Hom Logic," Proc. Fourth Int. Conference on Logic Programming, Melbourne,
Australia, 1987.

18

(

