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Abstract

Summative assessment of student abilities
typically comes at the end of the instructional
period, too late for educators to use the infor-
mation for planning instruction. This paper
explores the possibility of using Hierarchi-
cal Linear Models to forecast students end of
year performance. Because these models are
closely related to partially observed Markov
decision processes (POMDPs), these should
support extensions to instructional planning
to meet educational goals. Despite the new
notation, the POMDP models are subject
to a familiar problem from the educational
context: scale identifiability. This paper de-
scribes how this problem manifests itself and
looks at one potential solution.

1 INTRODUCTION

There is a long tradition in education of separating
instruction and assessment: summative assessment
of what a student learns comes at the end of the
unit/semester/year. As limited time is allocated for
assessment, such assessments are typically limited in
their reliability (accuracy of measurement) and con-
tent validity (coverage of the targeted knowledge, skills
and ability). Because summative assessment comes
at the end of instructions, instructors are not able to
make changes to their instructions to maximize stu-
dent learning (Almond, 2010).

Bennett (2007) suggested breaking the summative as-
sessment into four or six periodic assessments. First,
spreading the cost (student time taken away from di-
rect instruction) over multiple measurement occasions
allows for longer testing providing both greater content
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coverage and reliability. Moreover, a proper model
for student growth allows forecasting of the students
eventual status at the end of the year. Consequently,
teachers and administrators can form plans for stu-
dents which maximize learning outcomes and identify
students for whom the goals are unreachable for spe-
cial instruction. In this sense, the periodic assessments
play a role somewhere between traditional summative
assessment and formative assessment — assessing stu-
dent learning for the purpose of improving instruc-
tion (Black & Wiliam, 1998; Wiggins, 1998; Pelligrino,
Glaser, & Chudowsky, 2001).

Almond (2007) noted that the forecasting could be
done using a partially observed Markov decision pro-
cess (POMDP; Boutilier, Dean, & Hanks, 1999): the
latent variables describing student proficiency form an
unobserved Markov process, and the periodic assess-
ments provide observable evidence about the state of
those latent variables. The instructional activities cho-
sen between time points are the measurement space,
and in fact, the students response to instruction often
provides important clues about their proficiency and
specific learning problems (Marcotte & Hintze, 2009).
Almond (2009) notes the similarity between POMDPs
and other frameworks more commonly used in educa-
tion, such as latent growth modeling (Singer & Willett,
2003) and hierarchical linear modeling (HLM; Rauden-
bush & Byrk, 2002). The principle difference is one of
emphasis: in the POMDP framework, the emphasis is
usually on estimating the individuals latent state for
the purpose of planning. In the HLM and multilevel
growth model, the emphasis is usually on estimating
the effectiveness of various activities. This paper looks
at the problem of forecasting using HLM models both
directly and through conversion to POMDP parame-
terizations.

The purpose of our study is to try to fit a POMDP-
based latent growth model using Bayesian methods to
a set of data documenting the development of Reading
skills in a number of Kindergarten students. Once the



model is successfully fit, we will use it to predict the
end-of-year status of the students.

2 THE DATA

This study uses longitudinal data about reading de-
velopment originally collected by the Florida Center
for Reading Research (Al Otaiba et al., 2011). The
reading skills for this initial cohort of students was
measured three times (Fall, Winter and Spring) dur-
ing Kindergarten, and follow-up measurements were
taken at the end of 1st, 2nd and 3rd grade. There
were 247 students in the initial sample, but only 224
were still in the area at the end of the first year.

During Kindergarten, children rapidly develop in
Reading and pre-Reading skills (e.g., oral vocabu-
lary and letter identification). Consequently, not all
measures are appropriate for all time points. Conse-
quently, different measures were collected at different
time points. Table 1 shows the measures that were
collected during Kindergarten:

Table 1: Measures Collected By Occasion

Measure Fall Winter Spring
LW X X X
PV X X X
ISF X X
PSF X X
NWF X X
LNF X X X

The measures are taken from the Woodcock-Johnson
III Cognitive Test (WJ-III; Woodcock, McGrew, &
Mather, 2001) and the Dynamic Indicators of Basic
Early Literacy Skills (DIBELS; Good & Kaminkski,
2002). The measures used were:

LW – Letter-Word Identification (WJ-III)

PV – Picture Vocabulary (WJ-III)

LNF – Letter Naming Fluency (DIBELS)

ISF – Initial Sound Fluency (DIBELS)

PSF – Phoneme Segmentation Fluency (DIBELS)

NWF – Nonsense Word Fluency (DIBELS)

The Woodcock-Johnson measures are available in sev-
eral forms. We used the “W” scale (which is scaled
to an item response theory model), as it showed more
variation than the scale scores.

Additionally, teacher and school identifiers are avail-
able for each child. For this cohort teachers were not

given special instructions nor a prescribed curriculum,
although most of them used the same curriculum.

3 THE POMDP FRAMEWORK

Almond (2007) provides a generalized model for how
a POMDP can represent measurement of a developing
proficiency across multiple time points (Figure 1).
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Figure 1: Measurement across time as POMDP

In this figure, the nodes marked S represent the la-
tent student proficiency as it evolves over time. At
each time slice, there is generally some kind of mea-
surement of student progress represented by the ob-
servable outcomes O. Note that these may be differ-
ent for different time slices (c.f., Table 1). Following
the terminology of evidence-centered assessment de-
sign (ECD; Mislevy, Steinberg, & Almond, 2003) we
call this an evidence model. In general, both the profi-
ciency variables at Measurement Occasion m, Sm, and
the observable outcome variables on that occasion, Om

are multivariate.

Extending the ECD terminology, Almond (2007) calls
the model for the Sm’s, the proficiency growth model.
Following the normal logic of POMDPs this is ex-
pressed with two parts: the first is the initial profi-
ciency model, which gives the population distribution
for proficiency at the first measurement occasion. The
second is an action model, which gives a probability
distribution for change in proficiency over time that
depends on the instructional activity chosen between
measurement occasions.

3.1 PROFICIENCY GROWTH MODEL

For the data from the Al Otaiba et al. (2011) study, the
latent proficiency is obviously Reading. The question
immediately arises as to how many dimensions to use
to represent the reading construct. As the students are
entering the study in Kindergarten, components of the
reading skill, such as oral vocabulary and phonemic
awareness are less tightly correlated than they are with
older children. (In the fall of the Kindergarten year the
correlation between the LW and PV scores in the Al
Otaiba et al. study was r = .46, n = 247, while in
the spring it had increased to r = .56, n = 224.) As



a starting point, we will fit a unidimensional model
of Reading, representing it with a single continuous
variable: Rnm the reading ability of Individual n on
Measurement Occasion m.

3.1.1 Model for Growth

In the first cohort of the Al Otaiba et al. (2011) study,
teachers were not given specific instructions about cur-
riculum or activity between the time points. We there-
fore do not have a dependency on activity to mea-
sure here. However we do expect there to be some
classroom-to-classroom differences, so we will make
the growth parameters dependent on the classroom
(The teacher effect is part of the classroom effect,
however aspects of the peer group and environment
are captured as well). Let c(n) be the classroom to
which Student n belongs. Note also that classrooms
are nested within schools, so school effects are consid-
ered part of the general classroom effect.

Following this logic, for Measurement Occasion m > 1,
define:

Rnm = Rn(m−1) + (γc(n)m + γ0m)∆Tnm + ηnm
(1)

ηnm ∼ N (0, σc(n)m
√

∆Tnm)

Here ∆Tnm is the time between Measurement Occa-
sions m and m − 1 for individual n. Here γ0m is an
average growth rate, and γcm is a classroom specific
growth rate. Note that the residual standard devia-
tion depends on both a classroom specific rate, σcm,
and the time elapsed between measurements. This is
consistent with the model that student ability is grow-
ing according to a nonstationairy Wiener (Brownian
motion) process.

3.1.2 Model For Initial Proficiency

Children entering Kindergarten have very diverse lan-
guage and early literacy backgrounds. There are con-
siderable differences in the amount of experience with
print material the child experiences at home, breadth
and depth of vocabulary used with the child, as well
as a wide variety of preschool experiences. As a child’s
preschool and early home experiences are at least par-
tially dependent on their parents’ social and economic
status, and within-school socio-economic status tends
to be more homogeneous than across school status, we
model the initial status as dependent on the school.
Let s(n) be the school attended (during Kindergarten)
for Student n.

There is also a considerable variation in the age at
entry. In the Al Otaiba et al. (2011) study, 95% of the
children were between the ages of 5 years 2 months

and 6 years 4 months at the time of the first testing
(with a few students 7 years or older). This represents
a considerable variation in maturity, and potentially
in initial ability.

We define the following model for Measurement Occa-
sion 1:

Rn1 ∼ N (µs(n), υs(n)) (2)

3.2 EVIDENCE MODELS

Because we are assuming that Reading proficiency is
unidimensional, we do not need to specify which of the
measures in Table 1 are relevant to which proficiencies.
Thus, the evidence model is a collection of simple re-
gressions, for each observation Ynmi for Individual n
at Measurement Occasion m on Instrument i, we have:

Ynmi = ai + biRnm + εnmi (3)

εnmi ∼ N (0, ωi) (4)

Note that the slope parameter bi actually encodes a
relative importance for the various measures.

One advantage of this structure is that we we do not
need to explicitly specify the data collection structure
(Table 1). Instead, we can simply set the values of
measures not recorded in each wave to missing values.

Because each of the instruments are well established
(Woodcock et al., 2001; Good & Kaminkski, 2002),
we know some of their critical psychometric proper-
ties. In particular, the reliability of Instrument i, ρi
is documented in the handbooks for the measures. In
classical test theory, the reliability is the squared cor-
relation between the true score of an examinee and the
observed score. With a bit of algebra, this definition
is is equivalent to:

ρi = 1− Varn(εnmi)

Varn(Ynmi)
. (5)

Here the notation Varn(·) indicates that the variance
is taken over individuals (with measurement occasion
and instrument held constant). Solving Equation 5
for Varn(εnmi) yields an estimate for ω2

i for each mea-
surement occasion. We took the median of the three
estimates as our base estimate for ω2

i , ω̃i.

One drawback of the classical test theory concept of re-
liability is that it is dependent on the population being
measured. Thus, as the sample in the Al Otaiba et al.
(2011) is slightly different from the norming samples
used in the development of the WJ-III and DIBELS
measures, we expect our observed reliability will dif-
fer slightly from the published values. What we do is
set up priors for ωi using ω̃i as the prior mean. In
particular,

1/ω2
i ∼ Gamma(α, αω̃2

i ) , (6)



where Gamma(α, β) is a gamma distribution with
shape parameter α and rate parameter β. We note
that any gamma distribution with β = αω̃2

i will have
the proper mean. The shape parameter α is then effec-
tively a tuning parameter giving the strength the prior
distribution, or equivalently the relative weight of the
published reliabilities and the observed error distribu-
tion. We initially chose a value of α = 100 weights the
prior knowledge as equivalent to 100 observations, but
later increased it to 1000 when we were experiencing
convergence problems.

3.3 SCALE IDENTIFICATION

A problem that frequently arises in educational models
using latent variables is the identifiability of the scale.
In particular, suppose we replaced Rnmi with R′nmi =
Rnmi + c for an arbitrary constant c, and replaced ai
with a′i = ai−bic. The likelihood of the observed data
Ynmi (implicit in Equation 3) would be identical. A
similar problem arises if we replace Rnmi with R′′nmi =
cRnmi and bi with b′′i = bi/c. Additional constraints
must be added to the model to identify the scale and
location of the latent variable R.

A frequently used convention in psychometrics is to
identify the scale and location of the latent variable
by assuming that the population mean and variance
for the latent variable is 0 and 1 (i.e., that the latent
variable has an approximately unit normal distribu-
tion). In this case we can identify the scale for Rn1 by
constraining

∑
s µs = 0 and 1

S

∑
s υs = 1, where S is

the total number of schools in the study.

Because this is a temporal model, there exists another
complication. We need to identify the scale of Rnm for
m > 1. In particular, the mean and variance of the
innovations γ0m and σtm can cause similar identifia-
bility to the scale and location for Rnm that the initial
mean and variance caused for Rnm. In this case we
apply a different solution. We assume that the prop-
erties of the instruments, and their relationships to the
latent reading proficiency do not vary across time (at
least for the time points they are in use). Note that
in Equation 3, the slope, bi and intercept, ai do not
vary across time. This establishes a common scale for
all time points.

Our initial thinking was that this would be enough
to identify the model. Unfortunately, because of
the structural missing data additional constraints are
needed. These are described below.

Bafumi, Gelman, Park, and Kaplan (2005) present a
different approach to enforcing identifiability. They let
the model be unidentified while fitting the data, but
then transform the estimates when evaluating the data

(i.e., they enforce the constraint by manipulating the
samples in R and coda R Development Core Team,
2007; Plummer, Best, Cowles, & Vines, 2006 rather
than in BUGS or JAGS). For example, rather than
constraining

∑
µs = 0, they would estimate µs freely,

but post hoc would adjust the sample from the rth cy-

cle, µ
(r)′

s = µ
(r)
s −

∑
µ
(r)
s , making appropriate adjust-

ments to the other parameters. They claim that the
resulting model mixes better, however, there is some
difficulty in figuring out how the post hoc adjustments
will affect other parameters in the model.

4 PROBLEMS WITH MODEL
FITTING

We attempted to fit the model described in the pre-
vious section with MCMC using JAGS (Plummer,
2012).1 After some initial difficulties we removed the
teacher and school effects (intending to add them again
after we fit the simpler model). This also allowed us
to restrict the prior distribution for Rn1 to be a unit
normal distribution (zero mean, variance one). This
is a common identifiability constraint imposed in psy-
chometric models.

4.1 FIVE MEASURE MODEL

Our initial experiments involved five of the six mea-
sures (the PSF measure was left out due to a mis-
take in the model setup). We ran three Markov chains
using random starting positions and found that the
models did not converge. Or more properly, the ev-
idence model parameters (ai, bi, and ωi) for the DI-
BELS NWF (nonsense word fluency) measure did not
converge. Table 2 shows the posterior mean of the evi-
dence model parameters for the five measures (because
the MCMC chain did not reach the stationary state,
this may not be the true posterior).

Note in Table 2 that the estimated residual variance
is extremely low, indicating a nearly perfect correla-
tion between the latent Reading variable and the NWF
measure. In this case, the MCMC chain looks like it is
somehow using that measure to identify the scale of the
latent variable. Furthermore, the slope for that vari-
ables is twice as high as the slope for other variables in

1Actually, we did some of our early model fitting using
WinBUGS (D. J. Lunn, Thomas, Best, & Spiegelhalter,
2000). Some of the identification problems we were having
in WinBUGS we are not having in JAGS. JAGS may be
using slightly better samplers which may take care of issues
that occur when the predictor variables in regressions are
not centered (Plummer, 2012). Similar improvements may
have been made in OpenBUGS (D. Lunn, Spiegelhalter,
Thomas, & Best, 2009), the successor to WinBUGS, but
we have not tested this model using OpenBUGS.



Table 2: Evidence Model Parameters, 5 Measure
Model

LW PV LNF ISF NWF
a 105.37 99.90 25.76 13.97 -4.27*
b 0.15 0.05 0.49 0.32 0.87*
ω 6.15 4.92 6.31 4.38 0.09

* indicates parameter did not converge

the model. Table 3 shows some of the difficulty. The
NWF measure is the only one showing a large increase
between the Winter and Spring testing periods. So
naturally, there is a tendency to track that measure.

Table 3: Mean Scores on Each Measure at Each Ad-
ministration

LW PV LNF ISF NWF
Fall 108.5 100.6 27.3 14.2
Winter 110.8 102.3 42.9 25.5 27.9
Spring 111.2 101.7 51.3 43.2

Trace plots of the evidence models show the problem.
Figure 2 shows an example of extremely slow mixing,
that is characteristic of identifiability problems. De-
pending on the values of the other variables in the sys-
tem (particularly the latent reading variables) higher
or lower slopes may be sensible. Looking at the trace
plots of Rnm for several students show similar poor
mixing for m > 1. We would expect similar problems
with the trace plots for γ0m, but the mixing looks good
on those chains.
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Figure 2: Trace plots of evidence model parameters
for measure NWF

It is likely that the problem is some complex interac-
tion between using γ0m and the b’s to identify mean
growth, or the a’s which define the starting point for
growth. Note that the problematic measure, NWF,
was not measured at the first time point. Thus the
constraint on the distribution of Rn0 will not define its
scale in the second or third measurement occasions.

4.2 THREE MEASURE MODEL

As the problematic measure may be the ones which
were not recored at all three time points, we ran the
model again, dropping the ISF and NWF measures
(the ones not observed at the first or third measure-
ment occasion). The new model also did not converge,
although the focus of the problem has now moved from
the NWF measure to the LNF measure.

Table 4 shows the new estimates from the unconverged
posterior. Again, the variance for the measure that did
not converge is substantially smaller than that of the
other measures, and the slope is substantially higher.
Again the trace plots (Figure 3) show poor mixing,
as do similar plots for the Rnm measures for m > 1.
There is also an indication of a trend that indicates
that the chains have not covered the whole of the pos-
terior distribution.

Table 4: Evidence Model Parameters, 3 Measure
Model

LW PV LNF
a 103.74 98.95 23.02*
b 1.59 0.64 4.55*
ω 5.55 4.78 0.11

* indicates parameter did not converge

4.3 MISSING IDENTIFICATION
CONSTRAINT

Looking back to the problems in the model fit in Sec-
tion 4.1, note that the lack of fit could be explained by
the interaction between a5 (the intercept for the NWF
measure) and γ1 (the average proficiency change be-
tween the first and second time points). As NWF is
not measured in the first time point, any arbitrary
change between the first and second time point can
be created by changing a5, b5 and γ1. The other
four measures were all collected in the fall, so in these
cases, ai should have been fixed by the constraint that
E[Rn1] = 0.

What is required is a method for fixing the value of
ai for measures that were not collected at the initial
time point. One possible way to do this would be to
simply set ai = 0. This is not unreasonable, if all of
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Figure 3: Trace plots of evidence model parameters
for measure LNF, Three Measure Model

the variables are on a standardized scale: it implies
that the average trajectory of the average student will
pass through the average of the scores.

This required that the scores all be on the same scale
(especially problematic with the WJ-III and DIBELS
scores based on different development and norming
sample. Fortunately, for these data all six measures
were collected in the winter time period. Subtract-
ing the mean of the Winter scores and dividing by the
standard deviation for each measure produced stan-
dardized scores. This standardization together with
the constraint ai = 0 caused the models to converge.

4.4 SIX MEASURE MODEL

Using the standardized data and the additional con-
straint of a1 = 0, we again fit the model using MCMC.
This time, we got convergence on all of the evidence
model parameters (Figure 4).

Table 5 shows the mean of the latent Reading variable
for the first five students in the sample. This appears
to be well behaved with all of the students showing
growth across the three time points.

Table 5: Mean values for Reading for first five stu-
dents, Six Measure model with ai = 0

S1 S2 S3 S4 S5
F -0.394 -0.351 -0.375 -1.556 -0.773

W 0.029 0.104 0.031 -1.278 -0.415
S 0.864 1.016 0.852 -0.514 0.419
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Figure 4: Trace plots of evidence model parameters
for measure NWF, Six Measure Model with ai = 0

5 FUTURE DIRECTIONS AND
CHALLENGES

The key to getting this model to converge was the
standardization of the measure scales. Fortunately,
this data set had a time period where all six measures
were applied to the same population. Consequently,
standardizing the scales at this time point put the mea-
sures on a comparable scale, which then made the fixed
intercept constraint meaningful.

It is difficult to see how this generalizes to cases in
which there is not a single time point in which all mea-
sures are collected. This is a problem with the cohort
examined in this study when we look at the data gath-
ered in first and second grades. As the students read-
ing abilities develop, new and more difficult measures
of reading become appropriate. Linking these back
to the old scale is a difficult problem. This problem
is well known in the educational literature under the
name “vertical scaling” (von Davier, Carstensen and
von Davier, 2006, provide a review of the literature).

Now that the model without teacher or school effects
converges, the next step is to add those back into the
model. Also, we should use cross-validation to evalu-
ate how well the model predicts students scores. The
Al Otaiba et al. (2011) data set has long term follow-up
for a substantial portion of the students, so we can see
how well the model can predict First and Second grade
reading scores as well. Finally, we can look at the
rules for classification in to special instruction, to see
whether integrating the data across multiple measures



provides a better picture of the student than looking
at one measure alone.
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