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Abstract

In an increasingly interconnected world infor-
mation comes from various sources, usually
with distinct, sometimes inconsistent seman-
tics. Transforming raw data into high-level
information fusion (HLIF) products, such as
situation displays, automated decision sup-
port, and predictive analysis, relies heavily
on human cognition. There is a clear lack of
automated solutions for HLIF, making such
systems prone to scalability issues. In this
paper, we propose to address this issue with
the use of highly expressive Bayesian mod-
els, which can provide a tighter link between
information coming from low-level sources
and the high-level information fusion sys-
tems, and allow for greater automation of the
overall process. We illustrate our ideas with
a naval HLIF system, and show the results of
a preliminary set of experiments.

1 INTRODUCTION

Information fusion is defined as:
“. . . the synergistic integration of informa-

tion from di↵erent sources about the behav-
ior of a particular system, to support deci-
sions and actions relating to the system.”1

A distinction is commonly made between low-level and
high-level fusion. Low-level fusion combines sensor re-
ports to identify, classify, or track individual objects.
High-level fusion combines information about multiple
objects, as well as contextual information, to charac-
terize a complex situation, draw inferences about the
intentions of actors, and support process refinement.

In current information fusion systems, lower-level data
fusion is typically accomplished by stove-piped sys-
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tems that feed information directly to human users.
Subsequent generation of high-level information fu-
sion (HLIF) products, such as situation displays, auto-
mated decision support, and predictive analysis, relies
heavily on human cognition. The tacit underlying as-
sumption is that humans are still the most e�cient
resource for translating low-level fusion products into
decision-relevant knowledge. While the current ap-
proach works well for many purposes, it cannot scale
as the data influx grows. Automated assistance for
HLIF tasks is urgently needed to mitigate cognitive
overload and achieve the necessary throughput.

Stove-piped systems can be extremely e�cient at ex-
ploiting a specific technology applied to a limited and
well defined set of problems. Air Tra�c Control Sys-
tems, for instance, employ radar technology in a very
e↵ective way to provide reliable situation awareness
for radar controllers via sophisticated low-level infor-
mation fusion (LLIF) techniques. The synthetic radar
screen shown to tra�c controllers in a sector of an Area
Control Center (ACC) fuses multiple radar tracks.
Data association algorithms infer whether geographi-
cally close signals captured by various radars are com-
ing from a single or multiple aircraft. Despite the
sophistication of its low-level fusion components, the
ATC system relies heavily on humans for HLIF prod-
ucts. For instance, controllers rely on their own under-
standing of the overall picture to decide how to drive
their tracks; area coordinators rely on their knowledge
to decide whether the outbound tra�c to a given air-
port should be redirected due to an upcoming storm;
and so on.

The ATC system is a good example of a highly so-
phisticated stove-piped system that relies on human
cognition for its major purpose: to ensure that thou-
sands of airplanes in the US can share the airspace
in a safe and e↵ective way. As the volume of air-
planes increases, more humans are needed to perform
HLIF tasks. After a point, the overhead of transferring
between ever-smaller control sectors becomes a major



scalability issue. That is, cognitive limitations (each
human can control only airplanes at once) together
with the added complexity of adding extra cognitive
units (a.k.a. tra�c controllers) become a major obsta-
cle to growth. This scalability problem is common to
HLIF systems in other domains as well.

In this paper, we propose to address the issue with
the use of highly expressive Bayesian models. Such
systems provide a tighter link between low-level and
high-level information fusion systems. Because they
are su�ciently expressive to reason about high-level
information, they provide a coherent framework for
expressing and reasoning with uncertain information
that spans low and high level systems.

This paper describes our approach by way of a case
study in information fusion for Maritime Domain
Awareness. Section 2 motivates the use of explicit
probabilistic semantics and explains the main concepts
behind our approach. Section 3 introduces the Mar-
itime Domain Ontology we used in our experiments.
The experiments are described in Section 4. Section 5
concludes with a discussion.

2 Semantics in HLIF

Humans are more e↵ective than computers at gather-
ing various pieces of information and correlating them
into a coherent picture, but still have a high error rate.
For example, an intelligence analyst can correlate im-
ages and videos of a road with observers reports that
a convoy has passed in the early afternoon, and con-
clude that this was the same convoy that participated
in a terrorist attack 10 miles down that road. These
conclusions are based on an implicit understanding of
how trucks and cars are represented in each type of
media (video, imagery, human reports), as well as the
temporal and spatial relationships between cars, roads,
convoys, etc. For a computer program to perform the
same inferences from the same set of sources, it must
possess the same kind of knowledge. Conveying such
knowledge to a computer program requires a means to
make the humans tacit knowledge explicit and formal,
so it can be retrieved and used when needed.

Ontologies are the current paradigm for specifying do-
main knowledge in an explicit and formal way. One of
the most cited definitions of ontologies is the specifica-
tion of a conceptualization. [1] To perform automated
fusion in the above example, concepts such as cars,
roads, convoys, people, etc., as well as their relation-
ships, must be formalized in a way that computers can
store, retrieve, and use. Not surprisingly, ontologies
have been widely considered in the domain of informa-
tion fusion as a means to enable automated systems to
perform HLIF tasks (e.g. [2, 3, 4]).

Most languages for expressing ontologies, such as the
most popular variant of the W3C Recommendation
OWL [5], are based on Description Logic [6]. Other
ontology languages such as KIF2 and the ISO Stan-
dard Common Logic3 , are based on first-order logic.
Classical logic has no standard means to represent un-
certainty. This is a major drawback for HLIF sys-
tems, which must operate in environments in which
uncertainty is pervasive. Inputs from LLIF systems
come with uncertainty, as do the high-level domain re-
lationships that analysts use to draw inferences about
a complex situation.

Although LLIF algorithms often have a basis in prob-
ability theory, it is common to report results accord-
ing to a threshold rule without any confidence qual-
ifier. This is often justified by cognitive limitations
of human decision makers. As an example, suppose a
video analysis report assigns 86% probability of person
Joe being inside a car driving towards place A. If the
threshold for the input source was 85%, a LLIF sys-
tem might simply report the statement without quali-
fication, and a HLIF system might treat this as a true
statement. Such threshold rules lose uncertainty infor-
mation. Other information sources, each with its own
internal processing and threshold rules, might provide
additional reports about Joe, A, and other aspects of
the situation relevant to inferences about Joes destina-
tion. Without uncertainty qualifiers, it is di�cult for
the HLIF system to draw sound inferences about Joes
destination. Other limitations of HLIF with respect
to the handling of uncertainty are discussed within the
context of the International Society of Information Fu-
sions working group on Evaluation of Technologies for
Uncertainty Reasoning (ETURWG)4 [7, 8].

Representing uncertainty with ontologies is an active
area of research, especially in the area of the Seman-
tic Web (e.g., [9, 10]). HLIF requires reasoning with
uncertain information about complex situations with
many interacting objects, actors, events and processes.
Automating HLIF therefore requires expressive rep-
resentation formalisms that can handle uncertainty.
Probabilistic ontologies [11, 12], extend traditional on-
tologies to capture both domain semantics and associ-
ated uncertainty about the domain. The probabilistic
ontology language PR-OWL [12] is based on multi-
entity Bayesian Networks [13].

2.1 Multi-Entity Bayesian Networks

MEBNs represent the world as a collection of inter-
related entities and their respective attributes. Knowl-
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edge about attributes of entities and their relation-
ships is represented as a collection of repeatable pat-
terns, known as MEBN Fragments (MFrags). A set
of MFrags that collectively satisfies constraints ensur-
ing a unique joint probability distribution is a MEBN
Theory (MTheory).

An MFrag is a parametrized fragment of a directed
graphical probability model. It represents probabilis-
tic relationships among uncertain attributes of and re-
lationships among domain entities. MFrags are tem-
plates that can be instantiated to form a joint prob-
ability distribution involving many random variables.
Such a ground network is called a situation-specific
Bayesian network (SSBN).

MEBN provides a compact way to represent re-
peated structures in a Bayesian Network. There is
no fixed limit on the number of random variable
instances, which can be dynamically generated as
needed. The ability to form a consistent composition
of parametrized model fragments makes MEBN well
suited for knowledge fusion applications [14]. MEBN
inference can be performed by instantiating relevant
MFrags and assembling them into SSBNs to reason
about a given situation. As evidence arrives, it is
fused into the SSBN to provide updated hypotheses
with associated levels of confidence. These are very
convenient features for representing diverse informa-
tion coming from various sensors, which make MEBN
attractive as a logical basis for probabilistic ontologies.

2.2 PR-OWL Probabilistic Ontologies

There are basically three aspects that must be ad-
dressed for a representational and reasoning frame-
work in support of e↵ective higher-level knowledge fu-
sion:

1. A rigorous mathematical foundation,

2. The ability to represent intricate patterns of un-
certainty, and

3. E�cient and scalable support for automated rea-
soning.

Current ontology formalisms deliver a partial answer
to items 1 and 3, but lack a principled, standardized
means to represent uncertainty. This has spurred the
development of palliative solutions in which probabil-
ities are simply inserted in an ontology as annotations
(e.g. marked-up text describing some details related
to a specific object or property). These solutions ad-
dress only part of the information that needs to be
represented, and too much information is lost to the
lack of a good representational scheme that captures
structural constraints and dependencies among proba-
bilities. A true probabilistic ontology must be capable
of properly representing those nuances. More formally:

Definition 1 (from [11]): A probabilistic
ontology (PO) is an explicit, formal knowl-
edge representation that expresses knowledge
about a domain of application. This includes:

• Types of entities that exist in the do-
main;

• Properties of those entities;

• Relationships among entities;

• Processes and events that happen with
those entities;

• Statistical regularities that characterize
the domain;

• Inconclusive, ambiguous, incomplete,
unreliable, and dissonant knowledge re-
lated to entities of the domain; and

• Uncertainty about all the above forms of
knowledge;

where the term entity refers to any concept
(real or fictitious, concrete or abstract) that
can be described and reasoned about within
the domain of application. ⌅

POs provide a principled, structured, sharable formal-
ism for describing knowledge about a domain and the
associated uncertainty and could serve as a formal ba-
sis for representing and propagating fusion results in
a distributed system. They expand the possibilities of
standard ontologies by introducing the requirement of
a proper representation of the statistical regularities
and the uncertain evidence about entities in a domain
of application. POs can be implemented using PR-
OWL5, a Probabilistic Web Ontology Language that
extends OWL with constructs for expressing first-order
Bayesian theories. PR-OWL structures map to MEBN
structures, so PR-OWL provides a means to express
MEBN theories in OWL.

2.3 The UnBBayes MEBN/PR-OWL Plugin

In order to develop and use POs, we have devel-
oped a MEBN/PR-OWL plugin to the graphical
probabilistic package UnBBayes6, an open source,
JavaTM-based application developed at the University
of Brasilia. The plugin provides both a GUI for build-
ing probabilistic ontologies and a reasoner based on the
MEBN/PR-OWL framework [15, 16]. Reasoning in
the UnBBayes MEBN/PR-OWL plugin involves SSBN
construction, which can be seen type of proposition-
alization, and the subsequent inferential process over
the resulting SSBN. Figure 1 shows a screenshot of the
UnBBayes MEBN/PR-OWL plugin.
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Figure 1: The UnBBayes MEBN/PR-OWL plugin

Many HLIF problems involve spatio-temporal enti-
ties, and require reasoning with discrete and continu-
ous, possibly non-Gaussian, variables. To support this
requirement, a capability for hybrid MTheories was
added to the UnBBayes MEBN/PR-OWL plugin. The
plugin can handle MTheories in which continuous vari-
ables can have discrete or continuous parents, but no
discrete variable is allowed to have a continuous par-
ent. To specify hybrid models, constructs were added
to the local distribution scripting language for contin-
uous distributions. The SSBN construction algorithm
for building the ground model is basically unchanged
except that local distributions can be continuous.

For inference in a hybrid SSBN, the plugin implements
the direct message passing (DMP) algorithm [17] to
compute, propagate, and integrate messages. DMP
combines the unscented transformation [18] and the
traditional message-passing algorithm to deal with ar-
bitrary, not necessary linear, functional relationships
between continuous variables in the network. DMP
gives exact results for polytree conditional linear Gaus-
sian (CLG) networks and approximate results for net-
works with loops (via loopy propagation), networks
with non-linear relationships (via the unscented trans-
formation) and networks with non-Gaussian variables

(via mixtures of Gaussians). Mixtures of Gaussian dis-
tributions are used to represent continuous messages.
The number of mixture components can be as large
as the size of the joint state space of all discrete par-
ents. To achieve scalability, the algorithm can restrict
the number of mixture components in the messages to
satisfy a predefined error bound [19].

Specifically, without loss of generality, suppose a typi-
cal hybrid model involving a continuous node X with a
discrete parent node D and a continuous parent node
U. As shown in Figure 2, messages sent between these
nodes are: (1) ⇡ message from D to X, denoted as
⇡X(D); (2) ⇡ message from U toX, denoted as ⇡X(U);
(3) � message from X to D, denoted as �X(D); and
(4) � message from X to U , denoted as �X(U).

Figure 2: Example hybrid model



In general, for a polytree network, any node X d–
separates evidence into {e+, e�}, where e+ and e�

are evidence from the sub-network “above”X and “be-
low” X respectively. The � and ⇡ message maintained
in each node are defined as,

�(X) = P (e�X |X) (1)

and

⇡(X) = P (X| e+X) (2)

With the two messages, it is straightforward to see
that the belief of a node X given all evidence is just
the normalized product of � and ⇡ values, namely,

BEL(X) = P (X|e) = P (X|e+X , e�X)

= ↵�(X)⇡(X) (3)

where ↵ is a normalizing constant. It can be shown
that for a hybrid network, the ⇡ message can be re-
cursively computed as,

⇡(X) =
X

D

Z

U
P (X|D,U)⇡X(D)⇡X(U)dU

=
X

D


⇡X(D)

Z

U
P (X|D,U)⇡X(U)dU

�
(4)

where the integral of P (X|D = d, U)⇡X(U) over U
is equivalent to a functional transformation of ⇡X(U),
which is a continuous message in the form of a Gaus-
sian mixture.

Similarly, the � message for the discrete parents can
be obtained as

�X(D = d) =

Z

X
�(X)

Z

U
P (X|D = d, U)⇡X(U)dUdX

(5)
where

R
U P (X|D = d, U)⇡X(U)dU is a functional

transformation of a distribution over U to X.

On other hand, the � message for continuous parent
U can be computed as

�X(U) =

Z

X
�(X)

X

D

P (X|D,U)⇡X(D)⇡X(D)dX

=
X

D


⇡X(D)

Z

X
�(X)P (X|D,U)dX

�
(6)

Equations (3) to (6) form a baseline for computing
direct messages between mixed variables.

As mentioned earlier, with the unscented transforma-
tion, this method can be modified for arbitrary non-
linear non-Gaussian hybrid models. In addition, the
algorithm is scalable by combining the mixture com-
ponents in the messages with any given error bound

3 Maritime Domain Awareness PO

In 2008, the Department of Defense issued a direc-
tive to establish policy and define responsibilities for
Maritime Domain Awareness (MDA).7 The directive
defines MDA as the “e↵ective understanding of the
global maritime domain and its impact on the secu-
rity, safety, economy, or environment of the United
States.” The ability to automatically integrate in-
formation and recommendations from multiple intel-
ligence sources in a complex and ever-changing envi-
ronment to produce a dynamic, comprehensive, and
accurate battlespace picture is a critical capability for
MDA. This section reports on a prototype probabilis-
tic ontology for maritime domain awareness (MDA-
PO). This model, which is depicted in Figure 3, was
developed as part of the PROGNOS project [20, 21],
with the assistance of two retired Navy o�cers who
served as subject-matter experts.

Figure 4 depicts one of the MFrags of the MDA-PO,
the AggressiveBehavior MFrag. As the name implies,
this is a chunk of knowledge that captures some of
the concepts and relationships that are useful to in-
fer whether a ship is displaying aggressive behavior.
The three di↵erent types of MFrag nodes can be seen:
Context, Input, and Resident nodes.

Resident nodes are the random variables that form
the core subject of an MFrag. The MFrag defines a
local distribution for each resident node as a function
of the parents of the resident node in the fragment
graph. They can be discrete or continuous. There are
three discrete nodes in this MFrag, which are depicted
as yellow rounded rectangles in the picture, and five
continuous nodes, depicted as rounded rectangles with
double lines.

As an example of how the representation works, re-
ports on the propeller turn count of a ship will be an
indicator of whether the ship speed is changing or not.
Also, there will be di↵erent probability distributions
for speedChange(ship) if the ship is behaving aggres-
sively or not (i.e. if the state of node hasAggressive-
Behavior(ship) is true or false).

Input nodes, depicted as gray trapezoids in the figure,
serve as “pointers” referring to resident nodes in other
MFrags. Input nodes influence the local distributions
of resident, but their own distributions are defined in
the MFrags in which they are resident.

In a complete MTheory, every input node must point
to a resident node in some MFrag. For instance, the
hasBombPortPlan(ship) input node influences the dis-
tribution of all the hasAggressiveBehavior(ship) nodes

7
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Figure 3: The MDA-PO

that would be instantiated in an SSBN construction
process.

Context nodes are Boolean (i.e., true/false) random
variables representing conditions that must be satisfied
for the probability distribution of an MFrag to apply.
Like input nodes, context nodes also have distributions
defined in other MFrags.

By allowing uncertainty on context nodes, MEBN can
represent several types of sophisticated uncertainty
patterns, such as relational uncertainty or existence
uncertainty. There is only one context node in the Ag-
gressiveBehavior MFrag, seen in the figure as a green
pentagon.

The MDA-PO is described in detail in [22]. In PROG-
NOS, the MDA-PO was also used to build the model
used to run the test and evaluation process, which we
explain in the next Section.

4 Experimental Results

The main objective of the set of experiments presented
in this paper was to assess the accuracy, scalability,
and overall performance of the SSBN construction and
DMP algorithms combined. As a benchmark, we used
the UnBBayes implementation of the Junction Tree
(JT) algorithm, which is a well-known belief propa-
gation method for Bayesian networks [23] and the fo-



Figure 4: The Aggressive Behavior MFrag

cus of various e↵orts on algorithm optimization (e.g.
[24, 25]).

4.1 Setup and Metrics

Obtaining a real data set for maritime HLIF was not
an option for our team. Therefore, we generated vari-
ous synthetic datasets through an agent-based simula-
tion module, depicted in Figure 5. The module gener-
ates simulated scenarios, including entities (e.g., ships,
people) and their features. The simulated scenarios
serve as the ground truth for evaluating performance.
The simulation module also generates reports of the
kind the eventual operational system is expected to
receive, thus exercising the interfaces and the reason-
ing module in a realistic manner [21].

The simulation is based on maritime activities (regular
and suspicious) with the objective of prevention and
disruption of terrorist attacks, sabotage, espionage, or
subversive acts. Therefore, the agents on the simu-
lation tool simulate commercial, fishing, recreational,
and other types of ships in their normal and suspicious
behaviors. Suspicious behaviors are characterized by
ships that do not follow their regular or most prob-
able routes according to their origin and destination,
by ships that meet in the middle of the ocean for no
apparent reason, etc.

For the experiments, the simulation engine generated
9 types of scenarios with di↵erent combinations of the
number of ships and the associated entities (e.g. or-
ganizations, people, etc.). The maximum size of the
dataset was limited to 10K entities. After generating
each dataset, we added noise as to assess robustness
to model misspecification. The scenario for the ex-
periments emulates a U.S. Navy destroyer conducting
Maritime Security Operations in a relatively busy area.
This is a “needle in a haystack” type of problem, in
which the destroyer has information about dozens of
ships within a certain radius, but can only verify a few

of them. In this case, the HLIF system must integrate
the data coming from the ship sensors with informa-
tion coming from other sources, such as intelligence re-
ports, signals intelligence, HUMINT, and others. We
emulate this in the experiments with “area queries”
in which all ships within a 60NM radius are queried
by the system. More precisely, information on all n
known ships within that radius trigger the instantia-
tion of MFrags storing pertinent knowledge, including
the one containing the shipOfInterest(ship) node. The
system would then query the n shipOfInterest(ship)
nodes that were instantiated.

All experiments were performed in a dedicated com-
puter with an Intel quad-core i7TMprocessor with 8
GB of RAM, and running MS Windows 7TM64bit.

Accuracy is assessed by the quadratic scoring rule [26]:

B(r, i) =
CX

j=1

(yj � rj)
2

where yj = 1 when the jth event is correct and 0 oth-
erwise. C is the number of classes. This is a proper
scoring rule, i.e., the score is minimized when the as-
sessed probability is equal to the actual frequency.

To assess scalability, we measured the computation
time as a function of the generated SSBN size and
the number of ships involved in a query.

4.2 Preliminary Results

The results for accuracy are depicted in Table 1. From
the obtained scores, it is clear that the Hybrid sys-
tem performed better in capturing both the cases in
which the shipOfInterest(ship) node state was true
(⇡ 10.36% better) in the ground truth, as well as those
in which the node state was false (⇡ 14.02% better).

Table 1: Results for Accuracy
Queries on the

“Ship of Interest”
node

Hybrid
System

Discrete
System

Ship of Interest =
true (ground truth)

0.88203 0.79947

Ship of Interest =
false (ground truth)

0.89439 0.78439

These results are consistent with expectations, given
the inherent inaccuracies in discretizing the continuous
random variables in the MDA-PO. The 10 to 14% im-
provement from the hybrid with respect to the discrete
model was consistent all over the 9 datasets. However,
since the datasets were all generated from the same
model, it is di�cult to assess robustness with this run
of experiments. In any case, more complex relation-
ships between nodes are likely to increase the di↵erence



Figure 5: PROGNOS simulation module

in accuracy between the JT and the DMP systems.

Figure 6 below shows the results of the area query ex-
periments. The x-axis conveys the number of nodes
generated by each query, which tends to be correlated
with the number of ships. However, it was not uncom-
mon to see a few ships generating a large network or
vice-versa. The y-axis depicts query time in millisec-
onds.

Figure 6: Area Query Time vs. Network Size

Regarding performance, most of the generated net-
works were between 100 and 500 nodes, and generally
yielded a query time below 2 seconds for DMP and 5
seconds for JT. The maximum query time for JT was
7.3 seconds, while the DMP system worst case was 6.4
seconds for a query. The results also show lower vari-
ance for DMP query times for a given network size.

Figure 7 shows results for query time vs. number of
ships within the 60NM area.

Figure 7: Query Time vs. Number of Ships

This was a di↵erent run of experiments, in which the
focus was on keeping a controlled number of ships
within the query area. This allowed an assessment of
how each system reacted to the controlled increase in
that number. The performance of JT stayed relatively
steady, while the DMP system performed much better
for simpler problems but approached the performance
of JT when the number of ships was above twenty.

These results were also expected, since our implemen-
tation of DMP was not as optimized as the JT imple-
mentation in UnBBayes. More specifically, the DMP
algorithm was initially implemented in MATLABTM,
and the translation to JavaTMwas not tuned for per-
formance. Yet, the graph suggests a linear increase in
the range considered.



5 Discussion

The experiments were meant to simulate an HLIF sys-
tem within a relatively simple scenario. In spite of the
overall size of the experiments and the fact that it was
conducted within a controlled environment, the per-
formance figures are promising. There remain many
ways to improve the e�cacy of the algorithm. As pre-
viously mentioned, the main objective of the testing
and evaluation was to assess the gains in accuracy,
which clearly lived up to our expectations.

The results also show promise for the feasibility of us-
ing probabilistic ontologies as a driver for HLIF sys-
tems. Our future steps towards this goal are to con-
tinue the optimization of the algorithms, and to seek
out new forms of knowledge acquisition techniques.
The latter involves automated learning, which has
been the subject of our latest research e↵orts. We
also plan to address the research on rare events, and
to work with other datasets.
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