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Abstract. In this paper, we present some ideas about possible directions
of a new interpretation of the Okapi BM25 ranking formula. In particular,
we have focused on a full bayesian approach for deriving a smoothed
formula that takes into account a-priori knowledge on the probability of
terms. In fact, most of the efforts in improving the BM25 were done in
capturing the language model (frequencies, length, etc.) but missed the
fact that the constant equal to 0.5 used as a correction factor can be one
of the parameters that can be modelled in a better way. This approach
has been tested on a visual data mining tool and the initial results are
encouraging.

1 Introduction

The relevance weighting model, also known as RSJ by the name of its creators
(Roberston and Sparck-Jones), has been one of the most influential model in the
history of Information Retrieval [1]. It is a probabilistic model of retrieval that
tries to answer the following question:

What is the probability that this document is relevant to this query?

‘Query’ is a particular instance of an information need, and ‘document’ a partic-
ular content description. The purpose of this question is to rank the documents
in order of their probability of relevance according the Probability Ranking Prin-
ciple [2]:

If retrieved documents are ordered by decreasing probability of relevance
on the data available, then the system’s effectiveness is the best to be
gotten for the data.

The probability of relevance is achieved by assigning weights to terms, the RSJ
weight hereafter named as wi, according to the following formula:

wi = log
pi

(1− p1)

(1− qi)
qi

, (1)

where pi is the probability that the document contains the term ti given that
the document is relevant, and qi is the probability that the document contains
the term ti given that the document is not relevant. If the estimates of these



probabilities are computed by means of a maximum likelihood estimation, we
obtain the following results:

pi =
ri
R

(2)

qi =
ni − ri
N −R

(3)

where ri is the number of relevant documents that contain term ti, ni the number
of documents that contain term ti, R and N the number of relevant documents
and the total number of documents, respectively. However, this estimation leads
to arithmetical anomalies; for example, if a term is not present in the set of
relevant documents, its probability pi is equal to zero and the logarithm of zero
will return a minus infinity. In order to avoid this situation, a kind of smoothing
is applied to the probabilities. By substituting Equation 2 and 3 in Equation 1
and adding a constant to smooth probabilities, we obtain:

wi = log
ri + 0.5

(R− ri + 0.5)

(N −R− ni + ri + 0.5)

ni − ri + 0.5
, (4)

which is the actual RSJ score for a term. The choice of the constant 0.5 may
resemble some Bayesian justification related to the binary independence model.1

This idea is wrong, as Robertson and Sparck Jones explained in [3], and the real
justification can be traced back to the work of Cox [4].

The Okapi BM25 weighting schema takes a step further and introduces the
property of eliteness [5]:

Assume that each term represent a concept, and that a given document
is about that concept or not. A term is ‘elite’ in the document or not.

BM25 estimates the full eliteness weight for a term from the RSJ score, then
approximates the term frequency behaviour with a single global parameter con-
trolling the rate of approach. Finally, it makes a correction for document length.
For a full explanation of how to interpret eliteness and integrate it into the BM25
formula read [6–9]. The resulting formula is summarised in the following way:

w′i = f(tfi) · wi (5)

where wi is the RSJ weight, and f(tfi) is a function of the frequency of the term
ti parametrized by global parameters.

In this paper, we concentrate on the RSJ weight and in particular to a full
Bayesian approach for smoothing the probabilities and on a visual data analysis
to assess the effectiveness of these new smoothed probabilities. In Section 2, we
present the Bayesian framework, then in Section 3 we describe the visualisation
approach; in Section 4, we describe the initial experiments on this approach.
Some final remarks are given in Section 5.

1 In this model; documents are represented as binary vectors: a term may be either
present or not in a document and have a ‘natural’ a priori probability of 0.5.



2 Bayesian Framework

In Bayesian inference, a problem is described by a mathematical model M with
parameters θ and, when we have observed some data D, we use Bayes’ rule to
determine our beliefs across different parameter values θ [10]:

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
, (6)

the posterior distribution of our belief on θ is equal to a likelihood function
P (D|θ,M), the mathematical model of our problem, multiplied by a prior dis-
tribution P (θ|M), our belief in the values of the parameters of the model, and
normalized by the probability of the data P (D|M). We control the prior by
choosing its distributional form along with its parameters, usually called hyper-
parameters. Since the product between P (D|θ,M) and P (θ|M) can be hard
to calculate, one solution is to find a “conjugate” prior of the likelihood func-
tion [10].

In the case of a likelihood function which belongs to the exponential family,
there always exists a conjugate prior. Näıve Bayes (NB) models have a likeli-
hood of this type and, since the RSJ weight is related to the Binary Indepen-
dence Model which is a multi-variate Bernoulli NB model, we can easily derive
a formula to estimate the parameter θ. The multi-variate Bernoulli NB model
represents a document d as a vector of V (number of words in the vocabulary)
Bernoulli random variables d = (t1, ..., ti, ..., tV ) such that:

ti ∼ Bern(θti) . (7)

We can write the probability of a document by using the NB assumption as:

P (d|θ) =

V∏
k=1

ti =

V∏
k=1

θxk
i (1− θi)1−xk , (8)

where xi is a binary value that is equal either to 1 when the term ti is present
in the document or to 0 otherwise. With a Maximum Likelihood estimation, we
would end up with the result shown in Equation 2 and 3; instead, we want to
integrate the conjugate prior which in this case of a Bernoulli random variable
is the beta function:

betai = θα−1i (1− θi)β−1 , (9)

where i refers to the ith random variable ti. Therefore, the new estimate of the
probability of a term ti that takes into account the prior knowledge is given
by the posterior mean of Eq. 6 (see [10] for the details of this result). For the
relevant documents we obtain:

θ̂ti|rel =
ri + α

R+ α+ β
= p̂i , (10)

where p̂i is the new estimate of the probability pi. Accordingly, the probability
of a term in the non-relevant documents is:

θ̂ti|rel =
ni − ri + α

N −R+ α+ β
= q̂i . (11)



With this formula, we can recall different smoothing approaches; for example,
with α = 0 and β = 0 we obtain the Maximum Likelihood Estimation, with
α = 1, β = 1 the Laplace smoothing. We can even recall the RSJ score by
assigning α = 0.5 and β = 0.5.

3 Probabilistic Visual Data Mining

Now that we have new estimates for the probabilities pi and qi, we need a way
to assess how the parameters α and β influence the effectiveness of the retrieval
system. In [11, 12], we presented a visual data mining tool for analyzing the
behavior of various smoothing methods, to suggest possible directions for finding
the most suitable smoothing parameters and to shed the light into new methods
of automatic hyper-parameters estimation. Here, we use the same approach for
analyzing a simplified version of the BM25 (that is Equation 5 ignoring the term
frequency function).

In order to explain the visual approach, we present the problem of retrieval
in terms of a classification problem: classify the documents as relevant or non
relevant. Given a document d and a query q, we consider d relevant if:

P (rel|d, q) > P (rel|d, q) , (12)

that is when the probability of being relevant is higher compared to the proba-
bility of not being relevant. By using Bayes rule, we can invert the problem and
decide that d is relevant when:

P (d|rel, q)P (rel|q) > P (d|rel, q)P (rel|q) . (13)

Note that we are exactly in the same situation of Equation (2.2) of [9] where:

P (rel|d, q) ∝ P (d|rel, q)P (rel|q)
P (d|rel, q)P (rel|q)

. (14)

In fact, if we divide both members of Equation 13 by P (d|rel, q)P (rel|q) (we
assume that this quantity is strictly greater than zero), we obtain:

P (d|rel, q)P (rel|q)
P (d|rel, q)P (rel|q)

> 1 , (15)

where the ranking of the documents is given by the value of the ratio on the left
(as in the BM25); moreover, we can classify a document as ‘relevant’ if this ratio
is greater than one.

The main idea of the two-dimensional visualization of probabilistic model
is to maintain the two probabilities separated and use the two numbers as two
coordinates, X and Y, on the cartesian plane:

P (d|rel, q)P (rel|q)︸ ︷︷ ︸
X

> P (d|rel, q)P (rel|q)︸ ︷︷ ︸
Y

. (16)



If we take the logs, a monotonic transformation that maintains the order, and if
we model the document as a multivariate binomial (as in the Binary Indepen-
dence Model [1]), we obtain for the coordinate X:∑

i∈V
xi log

(
p̂i

1− p̂i

)
+
∑
i∈V

log(1− p̂i)︸ ︷︷ ︸
P (d|rel,q)

+ log(P (rel|q))︸ ︷︷ ︸
P (rel|q)

. (17)

Since we are using the Bayesian estimate p̂i, we can modulate it by adjusting
the hyper parameters α and β of Equation 10. If we want to consider the terms
that appear in the query, the first sum is computed over the terms i ∈ q, which
corresponds to Equation (2.6) of [9].

We intentionally maintained explicit the two addends that are independent
of the document, respectively

∑
i∈V log(1 − p̂i) and log(P (rel|q)). These two

addends do not influence the ordering among documents (it is a constant factor
independent of the document) but they can (and they actually do) affect the
classification performance. If we rewrite the complete inequality and substitute
these addends with constants we obtain: 2

∑
i∈q

xi log

(
p̂i

1− p̂i

)
+ c1 >

∑
i∈q

xi log

(
q̂i

1− q̂i

)
+ c2 (18)

∑
i∈q

xi log

(
p̂i

1− p̂i

)
−
∑
i∈q

xi log

(
q̂i

1− q̂i

)
> c2 − c1 (19)

∑
i∈q

xi log

(
p̂i

1− p̂i
1− q̂i
q̂i

)
︸ ︷︷ ︸

RSJ

> c2 − c1 (20)

that is exactly the same formulation of the RSJ weight with new estimates for pi
and qi, plus some indication about whether we classify a document as relevant
or not.

3.1 A simple example

Let us consider a collection of 1,000 documents, suppose that we have a query
with two terms, q = {t1, t2}, and the following estimates:

p̂1 =
3 + α

10 + α+ β
, q̂1 =

17 + α

990 + α+ β
,

p̂2 =
2 + α

10 + α+ β
, q̂2 =

15 + α

990 + α+ β
,

which means that we have

2 Note that we need to investigate how this reformulation is related to Cooper’s linked
dependence assumption [13].



– 10 relevant document (R = 10) for this query;
– 20 documents that contain term t1 (n1 = 20) and three of them are known

to be relevant (r1 = 3);
– 17 documents that contain term t2 (n2 = 17) and two of them are known to

be relevant (r2 = 2).

For the log odds, we have:

φ1 = log

(
p̂1

1− p̂1

)
= log

(
3 + α

7 + β

)
, ψ1 = log

(
q̂1

1− q̂1

)
= log

(
17 + α

973 + β

)
,

φ2 = log

(
p̂2

1− p̂2

)
= log

(
2 + α

8 + β

)
, ψ2 = log

(
q̂2

1− q̂2

)
= log

(
15 + α

975 + β

)
.

Suppose that we want to rank two document d1 and d2, where d1 contains both
terms t1 and t2, while d2 contains only term t1. Let us draw the points in the
two-dimensional space, we assume the two constants c1 and c2 equal to zero:

Xd1 = x1,d1 ∗ φ1 + x2,d1 ∗ φ2 = 1 ∗ φ1 + 1 ∗ φ2 ' −2.86,

Yd1 = x1,d1 ∗ ψ1 + x2,d1 ∗ ψ2 = 1 ∗ ψ1 + 1 ∗ ψ2 ' −11.77,

Xd2 = x1,d2 ∗ φ1 + x2,d2 ∗ φ2 = 1 ∗ φ1 + 0 ∗ φ2 ' −1.10,

Yd2 = x1,d2 ∗ ψ1 + x2,d2 ∗ ψ2 = 1 ∗ ψ1 + 0 ∗ ψ2 ' −5.80

where xi,dj = 1 if term ti occurs in document dj , xi,dj = 0 otherwise.
In Figure 1, the two points (Xd1 , Yd1) and (Xd2 , Yd2) are shown. The line

is a graphical help to indicate which point is ranked first: the closer the point,
the higher the document in the rank. The justification of this statement is not
presented in this paper for space reasons, refer to [14] for further details. What
is important here is the possibility to assess the influence of the parameter α and
β on the RSJ score. The objective is to study whether these two parameters can
drastically change the ranking of the documents or not. In graphical terms, if we
can “rotate” the points such that the closest to the line becomes the furthest.

Moreover, there are some considerations we want to address:

– when the number of terms in the query is small, it is very difficult to note
any change in the ranking list. Remember that with ‘n’ query terms, we can
only have 2n points (or RSJ scores). In the event of a query constituted of a
single term, all the documents that contain that query term collapse in one
point.

– the Okapi BM25 weight ‘scatters’ the documents that are collapsed in one
point in the space by multiplying the RSJ score with a scaling factor f(tfi)
proportional to the frequency of the term in the document. Therefore, we
expect this Bayesian approach to be more effective on the BM25 rather than
on the simple RSJ score.

3.2 Visualization Tool

The visualisation tool was designed and developed in R [15]. It consists of three
panels:
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Fig. 1: Example for the documents d1 and d2 represented respectively by the
points (Xd1 , Yd1) and (Xd2 , Yd2).

– View Panel : this displays the two-dimensional plot of the dataset according
to the choices of the user.

– Interaction Panel : this allows for the interaction between the user and the
parameters of the probabilistic models.

– Performance Panel : this displays the performance measures of the model.

Figure 2 shows the main window with the three panels. In the centre-right,
there is the main view panel, the actual two-dimensional view of the documents
as points, blue and red for relevant and non-relevant, respectively. The green
line represents the ranking line, the closer the point the higher the rank in the
retrieval list. At the top and on the left, there is the interaction panel where
the user can choose different options: the type of the model (Bernoulli in our
case), the type of smoothing (conjugate prior), the value of the parameters α
and β. The bottom of the window is dedicated to the performance in terms of
classification (not used in this experiment).



Fig. 2: Two-dimensional visualization tool: Main window.

4 Preliminary Experiments

Preliminary experiments were carried out on some topics of the TREC2001 Ad-
hoc Web Track test collection.3 The content of each document was processed
during indexing except for the text contained inside the <script></script>

and the <style></style> tags. When parsing, the title of the document was
extracted and considered as the beginning of the document content. Stop words
were removed during indexing.4 For each topic we considered the set of docu-
ments in the pool, therefore those for which explicit assessment are available.

We considered two different experimental settings: (i) query-term based rep-
resentation and (ii) collection vocabulary-based representation of the documents.
In the former case, each document was represented by means of the descriptor
extracted from the title of the TREC topics, used as queries: therefore V con-
sisted of query terms; in the latter case V consisted of the entire collection
vocabulary — both settings did not consider stopwords as part of V .

3 http://trec.nist.gov/data/t10.web.html
4 The stop words list is that available at the url

http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words



Fig. 3: Query 528: changed parameter alpha. Documents are stretched along the
x-axis and rotate anti-clockwise.

In this paper, we report the experiments on topic 528. We selected this query
because it contains five terms and it is easier to show the effect of the hyper-
parameters. In Figure 2, the cloud of points generated by the two-dimensional
approach is shown. Parameters α and β are set to the standard RSJ score con-
stant 0.5. The line corresponds to the decision line of a classifier, and it also
correspond to the ‘ranking’ line: imagine this line spanning the plane from right
to left, each time the line touches a document, the document is added to the list
of retrieved documents.

In Figure 3, the hyper-parameter α was increased and β was left equal to
0.5. When we increase α, the probability p̂i tends to one, and the effect, in terms
of the two dimensional plot, is that points rotate anti-clockwise. In Figure 4,
the opposite effect is obtained by increasing β and leaving α equal to 0.5. In
both situations, the list of ranked documents was significantly different from the
original list produced by using the classical RSJ score.



Fig. 4: Query 528: changed parameter beta. Documents are stretched along the
x-axis and rotate clockwise.

5 Conclusions

This paper presents a new direction for the study of the Okapi BM25 model. In
particular, we have focused on a full Bayesian approach for deriving a smoothed
formula that takes into account our a-priori knowledge on the probability of
terms. In fact, we think that many of the efforts in improving the BM25 were
done mostly in capturing the language model (frequencies, length, etc.) but
missed the fact that the 0.5 correction factor could be one of the parameters
that can be modelled in a better way.

By starting from a slightly different approach, the classification of documents
into relevant and non relevant classes, we derived the exact same formula of the
RSJ weight but with more degrees of interaction. The two-dimensional visual-
ization approach helped in understanding why some of the constants factors can
be taken into account for the case of the classification and, more important, how
the hyper-parameters can be tuned to obtain a better ranking.

After this preliminary experiment, we can draw some considerations: for the
first time, it was possible to visualize the cluster of points that are generated by
the RSJ scores; it was clear that very short queries tend to create a very small



number of points making it hard to perform a good retrieval; hyper-parameters
do make a difference in both classification and retrieval.

There are still many open research questions we want to investigate in the
future:

– so far, we have assumed that all the beta priors associated to each term
use exactly the same values for hyper-parameters α and β. A more selective
approach may be more effective;

– the coordinate of the points in the two-dimensional plot take into account
the two constants of Equation 17. In particular, the addend

∑
i∈V log(1− p̂i)

may be the cause of the ‘rotation’ of the points, hence the radical change of
the ranking list;

– The current approach assumes that the value of R and ri are known for
each term in the query: indeed these values are adopted to estimate the
coordinates of each document. A further research question is the effect of
estimation based on feedback data on the capability of the probabilistic
visual data mining approach adopted in this paper.
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