
Towards Purpose-Driven Virtual Machines

Naod Duga Jebessa Guido van ’t Noordende Cees de Laat

University of Amsterdam
Science Park 904, 1098XH Amsterdam, The Netherlands

{jebessa,noordende,delaat}@uva.nl

Abstract

Virtual machines (VMs) are often generic though they are meant to
serve a specific purpose. The redundancy of generic VMs may incur
costs in security (due to bigger attack surface and a larger trusted com-
puting base) and performance (due to extra VM image size as well as
overheads in CPU and memory). We are working on techniques to build
minimal, application-specific and secure virtual machines from declar-
ative descriptions. An application running in a VM has dependencies
on other applications, libraries, kernel features and (virtual) hardware.
We model such a dependency as a graph. The VM is treated as an op-
timized system built specifically to satisfy this dependency out of a set
of interdependent components such as packages and kernels from OS
distributions. Such distributions and installations based on them are
inherently complex networks that could benefit from a formal, rigorous
treatment in order to perform security and performance optimization.
In this paper, we describe our motivation and vision for this project,
outline our approach, briefly report on current status, discuss challenges
and research problems that we intend to work on in the future.

1 Introduction

The virtual machine concept is one of the key enablers of clouds, and has found applications in mobility, security,
fault tolerance, grids, testing, and development. VMs are often used to run a set of applications and as such
can be thought of as having a specific purpose. Nonetheless, VMs are commonly instantiated from ready-made,
generic images or are composed from off-the-shelf components like applications, libraries, operating systems,
and device drivers meant for physical machines. For example, a VM image with a general purpose kernel with
millions of lines of code (LOC) in its trusted compute base (TCB) can result in an unnecessarily large attack
surface. There are vulnerable libraries, applications, protocol stacks and service configurations that could be
omitted or otherwise optimized without breaking the functionality of the application in question.
VMs are prone to misconfiguration by users who have to work with generic images that are not optimized, either
due to lack of expertise or simply because it is easier to just use an existing, general purpose image. This may
incur costs in terms of performance, due to extra VM image size, overheads in CPU and memory usage, as well
as security, due to bigger attack surface and a larger TCB. Moreover, users are faced with VM sprawl as images
are created, deployed, changed, snapshotted, cloned and archived, making lifecycle management difficult. Many
of these problems can be attributed to the black-box nature of VM images.
We are advocating declarative descriptions of virtual machines so we can build an optimal virtual machine on

Copyright c⃝ by the paper’s authors. Copying permitted only for private and academic purposes.

In: M. Heisel, E. Marchetti (eds.): Proceedings of ESSoS-DS 2013, Paris, France, 27-Feb-2013, published at http://ceur-ws.org



Figure 1: Outputs D, C, M & T after each of the 4 stages in the VM building pipeline

demand from existing components. Doing so should allow us to do fine grained and automated optimization.
Moreover, it would be easier to reason over the security or other properties of the system using a semantically
rich model, than over an unstructured virtual machine image.

2 Approach

We use graph models for OS distributions and virtual machines built from them. The purpose of the VM
is declared using a domain-specific language (DSL [17, 23]). The declarative description is then used as an
input to a pipeline used to build an optimized VM. The problem is partitioned into two major subproblems.
The first subproblem, corresponding to the two stages in our four stage pipeline (see D and C in figure 1),
focuses on descriptions and as such involves language and semantics related issues as well as ways to capture
user/application requirements. The second subproblem is about translating the descriptions to concrete systems
that meet constraints derived from the second stage. For brevity, we have shown the outputs of each stage while
arrows represent intermediate blocks.

2.1 Operating Systems as Complex Networks

It is possible to model an operating system distribution as a graph of interdependent components. An operating
system OSi can have v versions, each comprising a set P of packages with a dependency graph Gp and a kernel
whose features [4, 7] can be represented as a dependency graph Gk. It is worth noting that there is an implicit
dependency between Gp and Gk as applications and libraries expect a kernel to interact with and because many
distributions treat the kernel itself as a package.
Because we can annotate the graph model with external information about, say, security-related statistics on
packages, we will be able to employ security-aware constraints in our optimization pipeline. This pipeline is part
of a toolchain for building virtual machines that we are developing.
An ongoing work is to use ideas from network science and complexity [1, 2] to understand the structure and
dynamics of OS distributions and installations [5]. As an example, we created an annotated semantic graph
of Debian Squeeze that comes with a Linux 2.6 kernel for i386. This graph has approximately 40 thousand
nodes and 170 thousand edges. Figure 2 shows a visualization of the graph. One can imagine how challenging
it is to manipulate this model and gain insight from it. However, we simplify the problem by focusing on the
dependency graph of a small set of applications on a specific OS, as shown in figures 3 and 4.

2.2 Declarative Descriptions and Constraints

The VM is declaratively described in a domain-specific language (DSL). The description specifies minimal re-
quirements from the VM such as set of packages, kernel features and system configurations for software, (virtual)
hardware, networks, and so on. This description is then analyzed to fill in details and create a constraint for
optimization, as shown in figure 1. The DSL should be expressive enough and should allow explicit declarations



Figure 2: An OS as a complex network

Figure 3: Minimized network for a specific application.
The center node is libc, the C runtime library for Unix-
like systems.

through conjunction, negation, and disjunction. For example, a description may have a list of requirements
that must be satisfied (conjunction), unneeded functionality (negation), and alternatives for a certain feature
(disjunction). Implicit requirements in the VM will be incorporated as default constraints upon analysis. For
example, if the declarative description does not state what version of an OS to use, a default version may be
selected. Declarative descriptions and constraints have several advantages. They can be versioned to allow
rollback; can be based on existing templates; and can be reasoned about (say, to map a declaration/constraint
to an already built VM).

2.3 Optimization and Reasoning About VM Security

We look at the VM as the minimal composition from a set of interdependent components in package dependency
graphs Gpi and kernel feature graphs Gkj that satisfies the constraint set forth by the declarative description.
Dependency resolution is an NP-complete problem [3]. The fact that we add constraints might lead to declarations
with constraints that are not satisfied. From the package dependency graph point of view (see figure 4 for a specific
application1), the problem is finding an optimal installation that satisfies constraints pertaining to packages [8].
For the kernel, this translates to (de)selecting features based on constraints on the kernel, specifically device
drivers, file systems and protocol stacks [4, 7].
Let us consider the case where there is a security advisory for a network exploitable vulnerability in package X

version a.b.c for a specific OS. A query to the declarative description and the blueprint of the VM would show
if we have that specific version in the virtual machine. This could be automated and can be an integral part of
a simplified security lifecycle management pipeline.
A practical problem with this approach is that security advisories (like CVE/DSA2) are not semantically rich
enough. We see promising research with practical significance in employing semantic technologies to describe,
consume and process security-related information.

2.4 Building Virtual Machines

Having installed an optimized package set on top of a possibly optimized kernel, a VM image can be configured
with cryptographic keys, users, passwords and the like along with extra dependencies like memory, processor,
storage and network settings to a specific target hypervisor.
We are building a proof-of-concept setup to validate the ideas presented so far. There are at least four engineering
challenges. First, there are quite a few hypervisors to target, each with a somewhat different view of a guest

1http://fsl.fmrib.ox.ac.uk
2http://cve.mitre.org/, http://www.debian.org/security/



Figure 4: Partial dependency graph for a specific application

VM. To this end, we plan to have a modular and extensible VM building pipeline. The design of the hypervisor
might also constrain how we optimize the VM and it is worth considering hypervisor-VM optimization in this
regard, e.g. with respect to drivers.
Second, there are a range of VM image formats and containers to target. The qcow2 format used by
KVM/QEMU, for instance, is quite different from formats like Xen raw disk, AMI (Amazon, with separate
kernel and ramdisk), Microsoft Hyper-V’s vhd, VirtualBox vdi, and vmdk (VMware). However, a modular design
should allow us to build a VM and target it to different formats. This is possible because most formats are more
or less indifferent to how we optimize the internal subsystems of the VM and because there are readily available
conversion tools.
Third, there are a plethora of operating systems that we can build virtual machines from. Modeling each OS as
an annotated dependency graph is a difficult endeavor. Hence, we plan to work on a set of representative OS
distributions. Even though our approach is ideal for the Unix philosophy and package-based source/binary OS
distributions, it should be possible to extend the idea to other platforms, as the formalism we are developing is
fairly generic.
Last but not least, there is the issue of efficient VM building. One might consider having a ready made ’base’
VM setup for commonly used virtual machines and configure a candidate based on the constraints set forth by
the declarative description. This approach may be useful when the time to build and deploy is of significant
importance, as building a custom kernel takes several minutes and package installation and configuration takes
significant time as well.

3 Research Challenges and Future Work

1. How do we manage complexity and heterogeneity? : One challenge is coming up with a fairly generic abstrac-
tion that can be used to model a VM based on any one of a range of OS distributions; built for one or more
hypervisors and processor architectures; and can be targeted at one or more cloud stacks. We believe that
dependency graphs and complex networks are a viable foundation to start with, together with an informa-
tion model for each component from which the VM is composed from. In such an approach, we treat the
VM as a layered stack of dependencies in hardware, hypervisor, kernel features, libraries, applications and
configurations. Such a graph model allows us to separate theoretical problems from implementation issues.
The model would benefit from existing research in complex networks [1], graph theory [2, 12, 21], boolean
satisfiability and dependency resolution [3, 19, 13, 14]. We could leverage existing tools and demonstrate
our ideas through a proof of concept pipeline instead of a complete implementation that supports all major
operating systems and hypervisors.

2. How do we describe the specific purpose of a VM? : People often use natural languages to describe what a
specific machine is for, be it physical or virtual, even though the machine is, in principle, general-purpose.



The design of a declarative language for VM description calls for a tradeoff between simplicity and ex-
pressiveness. The first challenge arises from the fact that a user cannot be expected to explicitly declare
everything. So the language [20, 23] should have constructs to support implicit declarations. Second, the
expressive power of the language dictates much of what is done after processing a description. For example,
a very fine-grained description (e.g. with conjunctive normal form constraints) may be difficult to satisfy,
due to a limited search space and making the optimization problem at hand difficult (as in too many vari-
ables and constraints) and time-consuming (translating the solution to a concrete VM). A coarse-grained
description, on the other hand, may introduce indeterminism, sub-optimal or too-optimized solutions, and
an increased search space.

3. How do we fill the semantic gap in security? : To our surprise, much of the available security-related infor-
mation (e.g. from CVE or specific vendors) is not structured enough to be used by automated tools. In our
particular case, for example, it is not easy to gather vulnerability information so as to measure or evaluate
the security of a VM instance due the ambiguity, incompleteness and a non-standard vocabulary, to mention
a few, of security advisories. Along with our work in measuring security of a VM and on attack surface eval-
uation metrics, we plan to suggest a semantically rich, machine-readable format to describe vulnerabilities
and develop a logic formalism for attack scenarios, specially for use by OS distributions like Debian.

4. What is this all for? : In cloud parlance, our idea is conceptually equivalent to offering a PaaS on demand,
targeted at an existing IaaS. A good example might be creating a VM cluster for a DNA processing applica-
tion that expects a certain runtime environment, including an OS installation and all required dependencies.
Hence, our project essentially maps high-level application requirements to low-level infrastructure details.
Moreover, some application scenarios are security and privacy sensitive. Hence, we are advocating a disci-
plined way of building VMs with the hypothesis that a pipeline that translates declarative descriptions to
concrete VMs would allow for ’white-box machines’ (whose internal manifest is clearly known), hence allow-
ing us to reason about certain attributes of such a VM like its trusted compute base (TCB) size, the size
of its attack surface, the possibility of exploitation given an attack scenario, or trustworthiness in general.
While security is the main goal of our work, the approach could have advantages in smaller VMs that could
perform well [18] and are easy to maintain, allowing users and frontend tools to automatically build virtual
machines. As future work, we plan to build demos and explore use cases and usability as the feedback from
such endeavors will allow us to refine our approach to the problem.

5. Validation and Evaluation Techniques: We are working on the assumption that optimized, purpose-driven
VMs are likely to be more secure and could possibly perform better. In addition, our approach of employing
a declarative VM description language might improve usability, flexibility and maintainability. All the above
hypotheses need to be tested. The security of a VM is not straightforward to quantify due to the absence
of an evaluation metric. However, having the knowledge of the VM internals should allow us to propose
novel metrics that we can use to compare the security of optimized VMs with their generic counterparts.
Performance of the VM building pipeline and the built VMs, on the other hand, can readily be evaluated in
terms of time taken to build a VM (compared to manual building and off-the-shelf deployment of an existing
VM image); the CPU and memory usage while the VM is running; and VM image size (which is important
during migration, for example). Usability, flexibility and maintainability could be evaluated through use
cases that make use of our tools, albeit subjectively.

4 Related Work

There are quite a few projects that aim at building VMs [11], image manipulation3, configuration tools & APIs4,
and interaction with hypervisors5, the majority of which are open source. We are aware of at least half a dozen
solutions focusing on VM building, with varying maturity and OS support. Our work differs in two major ways
and is, in essence, orthogonal to most. First, building a VM is only part of what we do and as such it can be
considered as an implementation issue. Second, we are introducing a purpose-driven (declarative) VM-building
paradigm wherein we do fine-grained optimization with implications in security, performance and flexibility, as
opposed to straightforward installation as is often done by existing solutions6.

3http://libguestfs.org/
4http://augeas.net/, http://cfengine.com/
5http://libvirt.org/
6http://wiki.debian.org/VMBuilder, http://virt-manager.org/



Few authors have studied operating system distributions as complex networks [1] and we believe there is more
to be done, specially in the context of security, OS complexity and virtual machines. The authors in [3, 5]
have done detailed studies on formalisms and tools to manage complexity of package-based OS distributions
showing that they exhibit the small world property [2] of many networks. We hope to work towards a graph
theoretic attack surface metric [10] that takes into consideration semantic metadata about components and the
composition thereof, of a virtual machine. This would allow us to evaluate the security advantages of minimal
and application-specific VMs.
In the domain of software engineering, researchers have studied automatic generation [15, 16, 22], predictable
assembly [6], variability and feature models [4, 7, 9] as applied to OS kernels.

5 Conclusion

For many users, a virtual machine is a black box that is difficult to reason about, trust, configure and maintain.
While this is most certainly true for inexperienced users, expert users also find themselves working with pre-
configured or generic VM images, which is anything but transparent. Furthermore, automated infrastructure
provisioning tools are increasingly using virtual machine technology to serve computational needs by deploying
VMs on demand, often from pre-built images. We believe that there is a missing link between the purpose of a
VM on one hand and the way a VM is built on the other. We need a generic and disciplined process to build
our virtual machines.
Our work fits in the wider problem of security and privacy in clouds. One aspect is having trustworthy VM in-
stallations that can be (remotely) attested. The user might want to just declare and expect to get a fairly secure
VM while the cloud provider might expect to have some guarantee that the VM is ’safe’ to deploy. Depending
on the use case, the declarative description and intermediate steps in our pipeline could be used or extended
to incorporate mutual trust, where both parties can verify relevant properties of the virtual machine. Another
aspect is the issue of privacy in clouds which we believe can benefit from a trustworthy execution environment.
If a VM can be attacked and owned, it will be a breach of the necessary condition of confidentiality of the data
it is supposed to process (as part of its purpose), secret keys it has stored, etc.
In this paper, we have described the idea of a purpose-driven virtual machine. Our motivation is the observation
that a VM is often meant to serve a specific purpose and the fact that generic VMs have redundant components
that may be omitted, giving advantages in security and performance. Using declarative descriptions of applica-
tion requirements, we are able to generate virtual machines on demand out of component ecosystems (i.e. OS
distributions) modeled as complex networks. We have discussed our approach and outlined some theoretical and
practical problems that we intend to work on in the future.

Acknowledgment: This research is supported by the Dutch national research program COMMIT
(http://www.commit-nl.nl). We would like to thank the anonymous reviewers whose comments helped improve
the paper.

References

[1] M. Newman, A-L. Barabasi, and D.J. Watts. 2006. The Structure and Dynamics of Networks: (Princeton
Studies in Complexity). Princeton University Press, Princeton, NJ, USA.

[2] J. Kleinberg. 2000. The small-world phenomenon: an algorithm perspective. In Proceedings of the thirty-
second annual ACM symposium on Theory of computing (STOC ’00). ACM, New York, NY, USA, 163-170.

[3] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, and R. Treinen. 2006. Managing
the Complexity of Large Free and Open Source Package-Based Software Distributions. In Proceedings of the
21st IEEE/ACM International Conference on Automated Software Engineering (ASE ’06). IEEE Computer
Society, Washington, DC, USA.

[4] T. Berger, S. She, R. Lotufo, A. Wa̧sowski, and K. Czarnecki. 2010. Variability modeling in the real: a
perspective from the operating systems domain. In Proceedings of the IEEE/ACM international conference
on Automated software engineering (ASE ’10). ACM, New York, NY, USA, 73-82.

[5] P. Abate, R. di Cosmo, J. Boender, and S. Zacchiroli. 2009. Strong dependencies between software com-
ponents. In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM ’09). IEEE Computer Society, Washington, DC, USA, 89-99.



[6] S.A. Hissam, G.A. Moreno, J.A. Stafford, and K.C. Wallnau. 2002. Packaging Predictable Assembly. In
Proceedings of the IFIP/ACM Working Conference on Component Deployment (CD ’02), J.M. Bishop (Ed.).
Springer-Verlag, London, UK, UK, 108-124.

[7] R. di Cosmo and S. Zacchiroli. 2010. Feature diagrams as package dependencies. In Proceedings of the 14th
international conference on Software product lines: going beyond (SPLC’10), J. Bosch and J. Lee (Eds.).
Springer-Verlag, Berlin, Heidelberg, 476-480.

[8] P. Abate, R. di Cosmo, R. Treinen, and S. Zacchiroli. 2013. A modular package manager architecture. Inf.
Softw. Technol. 55, 2 (February 2013), 459-474.

[9] L. Passos, K. Czarnecki, and A. Wa̧sowski. 2012. Towards a catalog of variability evolution patterns: the Linux
kernel case. In Proceedings of the 4th International Workshop on Feature-Oriented Software Development
(FOSD ’12), Ina Schaefer and Thomas Thm (Eds.). ACM, New York, NY, USA, 62-69.

[10] P.K. Manadhata and J.M. Wing. 2011. An Attack Surface Metric. IEEE Trans. Softw. Eng. 37, 3 (May
2011), 371-386.

[11] I. Krsul, A. Ganguly, J. Zhang, J.A. B. Fortes, and R.J. Figueiredo. 2004. VMPlants: Providing and Man-
aging Virtual Machine Execution Environments for Grid Computing. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing (SC ’04). IEEE Computer Society, Washington, DC, USA, 7-.

[12] M. Newman. 2010. Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA.

[13] G. Jenson, J. Dietrich, and H.W. Guesgen. 2010. An empirical study of the component dependency resolution
search space. In Proceedings of the 13th international conference on Component-Based Software Engineering
(CBSE’10), L. Grunske, R. Reussner, and F. Plasil (Eds.). Springer-Verlag, Berlin, Heidelberg, 182-199.

[14] L. Bordeaux, Y. Hamadi, and L. Zhang. 2006. Propositional Satisfiability and Constraint Programming: A
comparative survey. ACM Comput. Surv. 38, 4, Article 12 (December 2006).

[15] L. Guthier, S. Yoo, and A. Jerraya. 2001. Automatic generation and targeting of application specific oper-
ating systems and embedded systems software. In Proceedings of the conference on Design, automation and
test in Europe (DATE ’01), W. Nebel and A. Jerraya (Eds.). IEEE Press, Piscataway, NJ, USA, 679-685.

[16] A. Sarmento, L. Kriaa, A. Grasset, M-W. Youssef, A. Bouchhima, F. Rousseau, W. Cesario, and A.A.
Jerraya. 2005. Service dependency graph: an efficient model for hardware/software interfaces modeling and
generation for SoC design. In Proceedings of the 3rd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis (CODES+ISSS ’05). ACM, New York, NY, USA, 261-266.

[17] A. van Deursen, P. Klint, and J. Visser. 2000. Domain-specific languages: an annotated bibliography.
SIGPLAN Not. 35, 6 (June 2000), 26-36.

[18] N.D. Jebessa, G. van ’t Noordende, C. de Laat. 2012. Optimizing Security for Virtual Machine Applications.
In HPDC 2012. The 21st International ACM Symposium on High-Performance Parallel and Distributed
Computing (Poster Abstract). (July 2012)

[19] T. Zimmermann, and N. Nagappan. 2007. Predicting subsystem failures using dependency graph complexi-
ties. In Software Reliability 2007. ISSRE’07. The 18th IEEE International Symposium on, pp. 227-236. IEEE,
2007.

[20] R.J. Stainton. 1996. Philosophical perspectives on language. Peterborough, Ont., Broadview Press.

[21] S.E. Schaeffer. 2007. Survey: Graph clustering. Comput. Sci. Rev. 1, 1 (August 2007), 27-64.

[22] K. Czarnecki and U.W. Eisenecker. 2000. Generative Programming: Methods, Tools, and Applications.
ACM Press/Addison-Wesley Publ. Co., New York, NY, USA.

[23] M. Mernik, J. Heering, and A.M. Sloane. 2005. When and how to develop domain-specific languages. ACM
Comput. Surv. 37, 4 (December 2005), 316-344.


