

A Policy-Based Dialogue System for Physical

Access Control

Mohammad Ababneh

Department of Computer Science

George Mason University

Fairfax, VA, USA

mababneh@gmu.edu

Duminda Wijesekera
Department of Computer Science

George Mason University

Fairfax, VA, USA

dwijesek@gmu.edu

James Bret Michael
Department of Computer Science

Naval Postgraduate School

Arlington, VA, USA

bmichael@nps.edu

 Abstract—We prototype a policy-based dialog system

for providing physical access control to secured facilities and

smart buildings. In our prototype system, physical access

control policies are specified using the eXtensible Access

Control Markup Language. Based on the policy and the

user’s presence information, our dialog system automatically

produces a series of questions and answers that, if correctly

answered, permit the requester to enter the secure facility or

smart building. The novelty of this work is the system’s

ability to generate questions appropriate to the physical

location, time of day, and the requester’s attributes.

Index Terms—Dialogue, Question Answering, Voice

Recognition, VXML, XACML, Access Control Policy,

Security

I. OVERVIEW

 We developed a prototype policy-based system for

guarding entry to physical facilities, such as smart

buildings. The system interacts with potential entrants

using a spoken dialogue. Our physical access control

system uses the OASIS consortium’s eXtensible Access

Control Markup Language (XACML) standard [1] and

the W3C’s Voice eXtensible Markup Language (VXML)

[2] for specifying the dialogue.

 In order to generate dialogues from physical access

control policies specified in XACML, we generate so-

called “VXML Voice forms” from XACML policy rules.

In this paper we describe our initial implementation of the

prototype. Given that emerging mobile applications use

interactive voice commands such as Apple’s Siri,

Google’s Andriod S-Voice, and Microsoft Windows

Speech Recognition, we envision that new applications

would emerge for interactive voice-based access to

resources.

The dialogues we generate are in the form of a

question and an (acceptable) answer. In our prototype,

questions are generated using a grammar for words or

phrases—belonging to a restricted vocabulary—that are

taken from an XACML rule’s subject-attribute values

[3][4]. Answers should conform to a grammar that is

linked to the rule’s data type, and acceptable answers are

those that provide the values that match the values

specified in the XACML policy. The class of grammars

may come from and be checked against a database or

other sources of subject attributes.

For each question, user input is collected and stored in

a variable. These variables are used to generate an

XACML request that is passed to an XACML policy

decision point (PDP). The PDP is responsible for the

decision of either granting or denying access. If access is

granted, the system sends a control-system message to an

actuator that unlocks the entry door to the facility.

We succeeded in generating a question for each rule in

the policy. Our existing implementation uses a small

number of policy rules and their conversion. We are

currently working on scaling this implementation by

addressing the run-time and automatic conversion of a

large number of rules, in addition to developing the

capability to dynamically generate the grammars using

.grxml files [3].

Due to advancements in mobile applications and the

emergence of voice user interfaces (VUI) as well as their

being provided as a service in the cloud, new access

control mechanisms are needed. When completed, our

current architecture and implementation will serve as a

testbed for further research and development.

A. Potential Applications

The following are potential applications for our

system:

 Mobile computing: The adaptation of the voice

technology and VUI in mobile computing (e.g.,

Apple’s Siri, Google’s Android S-Voice,

Microsoft Windows Speech Recognition,

Research in Motion’s BlackBerry) introduces

challenges in using the technology in order to

accomplish more sophisticated tasks such as

access control to either resources and services

locally on the devices or remotely at data centers

via cloud services. We envision this system to be

useful for providing ubiquitous policy-based

automated physical access control from mobile

devices, where hands-free usage is valued or

required.

 Military and first-responder applications: It is

important to provide hands-free user interfaces to

military personnel, especially those participating

in combat operations, as well as first responders

(e.g., firefighters, police, paramedics). These

personnel have to access support facilities (e.g.,

gates at a forward operating bases or police sub-

stations) and equipment (e.g., fire trucks) (see

[5]).

 Information systems: In general this access

control can be used to provide appropriate access

to any information system using a VUI.

 Electronic Commerce and Business: This new

access control approach can be used in

performing transactions in e-commerce

applications accessed via mobile computing

devices.

 Physical Access Control: Access control to

critical facilities can be automated and access can

be granted or denied based on an enterprise’s

policy. Policy languages such as XACML are

standardized to unify policies across enterprises

and reduce administrative load. This is all hands-

free and it only depends on answers to questions

that represent the subject’s attributes. A sample

dialogue for access control is illustrated in Table

1.

1 U Hello

 S Welcome, Please Say who you are?

2 U I am User01 (Alice)

 S Please say your Password or

enter it using the key pad

3 U Pass01

 S Ok, I got that. Now tell me Why

do you need to access the

building (Role)

4 U Professor

 S What is your office number

5 U 4429

 S In which floor is the dean’s

meeting room

6 U 5th

 S What is the time on the clock to

your right

7 U 7:30

 S Are you sure

8 U Yes

 S Is it raining outside?

9 U Yes

 S Is it cold or warm?

10 U Cold

 S Is the temperature below 40

degrees?

11 U No

 S Can you estimate the range that

the temperature might be in?

12 U 50 to 60

 S Ok, granted access

 U: User, S: System

TABLE 1. A SAMPLE DIALOGUE FOR ACCESS CONTROL

The original intention of access control policy

languages such as XACML was to deal with systems and

access control enforcement points, but not humans. In our

approach we use XACML to drive human interaction

through dialogues with the system. This new approach

has implications on the way dialogues are generated and

access control decisions are taken. As mentioned above,

many potential applications might take advantage of this

approach. To be applicable, many aspects of human voice

interactions should be studied—more research on this but

it is outside of the scope of the work we report on here.

One important aspect of such an approach is the scale

of implementation, especially in case of physical control.

The user of such a system will likely not use the system if

the system takes a long time to make an access decision

for each individual of a large number of humans waiting

in crowds such as at a sporting event (e.g., a World Cup

football match). The processing time of an access request

initiated by a human entity is going to be different than

the time initiated by an automated process or application.

This is another area of research we have left to future

work.

II. BACKGROUND

In this section we discuss the most relevant standards

and technologies to our research.

A. VoiceXML

VoiceXML (VXML) is the Voice Markup Language

developed and standardized by the W3C’s Voice Browser

Working Group. It is intended for creating audio

dialogues that feature synthesized speech, digitized audio,

recognition of spoken and Dual Tone Multi-Frequency

(DTMF) key inputs, recording of spoken input, telephony,

and mixed initiative conversations. VXML is similar to

HTML in the textual arena in providing an interface

between a user and the Web, using a voice interface. Its

purpose is to bring the advantages of web-based

development and content delivery to interactive voice

response (IVR) applications. All Web technologies are

still relevant in any voice interface, such as services,

markup languages, linking, URIs, caching, standards,

accessibility, and cross-browser [2].

The most important terms in VXML are:

 Form: Forms define an interaction that collects

values for a set of form-item variables. Each field

may specify a grammar that defines the allowable

inputs for that field. If a form-level grammar is

present, it can be used to fill several fields from

one utterance

 Block: An item is a component of a form that

presents information by synthesizing a phrase of

text into speech to the user.

 Field: An item is a component of a form that

gathers input from the user by synthesizing a

textual phrase into speech for the user. The user

must provide a value for the field before

proceeding to the next element in the form.

 Menu: A menu presents the user with a choice of

options and then transitions to another dialog

based on that choice

B. XACML

XACML is an OASIS standard XML-based language

for specifying access control policies [1]. In a typical

XACML usage scenario, a subject that seeks access to a

resource submits a query through an entity called a Policy

Enforcement Point (PEP). The PEP, responsible for

controlling access to the resource, forms a request in the

XACML request language and sends it to the PDP. The

PDP in turn evaluates the request and sends back one of

the following responses: accept, reject, error, or unable to

evaluate, with the PEP allowing or denying access to the

requester accordingly, as shown in Figure 1.

Figure 1 contains the following entities:

 Policy Set: A set of policies.

 Policy: A set of rules, an identifier for the rule-

combining algorithm, and (optionally) a set of

obligations. May be a component of a policy set.

 Rule: A target, an effect, and a condition. A

component of a policy.

 Combination Algorithm: The procedure for

combining the decision and obligations from

multiple policies.

 Subject: An actor whose attributes may be

referenced by a predicate.

 Target: The set of decision requests, identified by

definitions for resource, subject, and action that a

rule, policy, or policy set is intended to evaluate.

 Resource: Data, service or system component.

 Attribute: All entities are identified using

attributes.

Fig. 1. XACML’s Data-Flow Diagram

 Predicate: An evaluable statement about

attributes.

 PEP: Governing entity of a resource.

 PDP: The entity that evaluates access requests.

 PIP: The entity that fetches attribute values for

the PDP..

 PAP: The entity that retains polices.

 Context Handler: The entity that converts

decision requests to XACML requests.

Some of the currently available implementations of

the XACML specification are for example OpenXACML,

enterprise-java-xacml from Google code, HERAS

XACML, JBoss XACML, Sun Microsystem’s XACML,

and WSO2 Identity Server, which is used in this

implementation.

III. IMPLEMENTATION PLATFORMS

In this section we introduce briefly the

implementation platforms of the standards and

technologies used to implement our prototype.

 A. Voxeo for Speech Recognition

Voxeo Prophecy is a standards-based platform for

speech, IVR, and Software Implemented Phone (SIP)

applications for Voice over Internet Protocol (VoIP)

applications [6]. Some of the capabilities integrated into

the platform are: automatic speech recognition, speech

synthesis, and visual programming. Prophecy provides

libraries to create and deploy IVR or VoIP applications,

including VXML and Call Control (CCXML) browsers

with speech recognition and synthesis engines, and a

built-in SIP soft-phone. Prophecy supports ASP, CGI, C#,

Java, PERL, PHP, Python, and Ruby and has a built-in

web server that supports PHP and Java applications. It

complies with VXML and CCXML standards.

B. XACML Implementation – WSO2
 WSO2 Identity Server [7] provides security and

identity management of enterprise web applications,

services, and APIs. WSO2 full implementation supports

identity management, single sign-on, Role-based Access

Control (RBAC), fine-grained access control, LDAP,

OpenID, SAML, Kerberos, OAuth, WS-Trust, and the

XACML 2.0/3.0.

C. Programming and development
In addition to the above two major platforms,

programming languages such as Java, Java Server Pages

(JSP), and Java Script (JS) were used to accomplish the

integration and interoperability work between these

platforms and thus enabled us to develop our prototype.

IV. OUR APPROACH

The core of our work transforms an access control

policy into a voice platform supported voice language.

We use XACML and W3C VXML for these two

purposes.

In order to generate a dialogue between a user and an

access control system to make it possible for the system to

make a decision to whether grant or deny access, the

access control policy is transformed into VXML. The

rules in each policy are read and transformed into

VoiceXML blocks and forms. The entire policy is parsed

using a DOM parser and then each rule element is

converted to a VXML block for the user interface

translating text to speech (TTS), posing the question to

the user, and then waiting for the user’s response through

voice recognition. The details of how TTS and voice

recognition technologies are outside the scope of our

current work; we are implementing these services through

an integrated Voice Application Development

Environment introduced in Section III.A. Figure 2 depicts

the high-level architecture for our prototype system.

Fig. 2. High level Approach Architecture

A more detailed illustration of this policy voice

(VXML) is shown in Figure 3.

Fig. 3. Dialogue-Policy integration

A. A Working Scenario

We used the Voxeo Prophecy IVR platform (see

www.voxeo.com/products/voicexml-ivr-platform.jsp)—

including the webserver, designer, SIP, and application

manager—to develop our application for voice

recognition. We use a scenario to illustrate how the

application works.

Our scenario starts with a XACML policy file, with

the rule shown in Figure 4.

<?xml version="1.0" encoding="UTF-8"?>

<Policy RuleCombiningAlgId="identifier:rule-

combining-algorithm:deny-overrides"

PolicyId="urn:oasis:names:tc:example:SimplePolic

y1"

xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0

:policy:schema:cd:04 http://docs.oasis-

open.org/xacml/access_control-xacml-2.0-policy-

schema-cd:04.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xmlns="urn:oasis:names:tc:xacml:2.0:policy:schem

a:cd:04">

<Description> Med Example Corp access control

policy

</Description>

<Target/>

<Rule Effect="Permit"

RuleId="urn:oasis:names:tc:xacml:2.0:example:Sim

pleRule1">

<Description> Any subject with an e-mail name in

the med.example.com domain can perform any

action on any resource.

</Description>

<Target>

<Subjects>

<Subject>

<SubjectMatch

MatchId="urn:oasis:names:tc:xacml:1.0:function:r

fc822Name-match">

<AttributeValue

DataType="urn:oasis:names:tc:xacml:1.0:data-

file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml
file:///C:/Users/mababneh/Downloads/Policy_1.xml

type:rfc822Name"> @med.example.com

</AttributeValue>

<SubjectAttributeDesignator

DataType="urn:oasis:names:tc:xacml:1.0:data-

type:rfc822Name"

AttributeId="urn:oasis:names:tc:xacml:1.0:subjec

t:subject-id"/>

</SubjectMatch>

</Subject>

</Subjects>

</Target>

</Rule>

</Policy>
Fig. 4. A sample XACML rule

Using JSP, we load the XACML file into a Document

Object Manager (DOM) object. We read the rules inside

the XACML document and link each rule to a VXML

block/form. The JSP script extracts the attribute’s value

from the DOM’s rule element and passes it to the Voxeo

designer application, which converts it to VXML. Figure

5 shows an example of a VXML file.

<?xml version="1.0" encoding="UTF-8"?>

<vxml xmlns="http://www.w3.org/2001/vxml"

 xmlns:xsi="http://www.w3.org/2001/

 XMLSchema-instance"

 xsi:schemaLocation="http://www.w3.org/2001/vxml

 http://www.w3.org/TR/voicexml20/vxml.xsd"

 version="2.0">

 <form>

 <field name="e-mail">

 <prompt>What is your e-mail address?

 </prompt>

 <grammar src="email.grxml"

 type="application/srgs+xml"/>

 </field>

 <block>

<submit next="http://www.example.com/user.asp"/>

 </block>

 </form>

</vxml>
Fig. 5. A sample VXML

In order to create the question, a phrase is inserted

before the attribute value in the form of “What is?” or “Is

your?” followed by the attribute name extracted from the

RuleID of the DOM’s rule element. Our current

implementation supports the yes/no answers to “Is your?”

type of questions. We are in the process of enlarging the

question formation syntax to support other question

formats.

In this way a question will be generated for every rule

in the policy file. The human user then needs to answer

the questions posed by the system.

The next step is to collect attribute “VoiceXML

variable” values generated throughout the dialogue and

use them to generate an XACML request. Figure 6 shows

an example of a request.

<Request>

<Subject>

<Attribute

AttributeId="urn:oasis:names:tc:xacml:1.0:subjec

t:subject-id"

DataType="urn:oasis:names:tc:xacml:1.0:data-

type:rfc822Name">

<AttributeValue>mababneh@@med.example.com

</AttributeValue>

</Attribute>

<Attribute AttributeId="group"

DataType=http://www.w3.org/2001/XMLSchema#string

Issuer="admin@gmu.edu">

<AttributeValue>Developers</AttributeValue>

</Attribute>

</Subject>

<Resource>

<Attribute

AttributeId="urn:oasis:names:tc:xacml:1.0:resour

ce:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#anyUR

I">

<AttributeValue>http://server.example.com/code/d

ocs/developer-guide.html</AttributeValue>

</Attribute>

</Resource>

<Action>

<Attribute

AttributeId="urn:oasis:names:tc:xacml:1.0:action

:action-id"

DataType="http://www.w3.org/2001/XMLSchema#strin

g">

<AttributeValue>read</AttributeValue>

</Attribute>

</Action>

</Request>

Fig. 6. A sample XACML request

The XACML request will be sent to the XACML

implantation of choice. In our case, we have chosen

WSO2 Identity Server version 3.2. It has a distinguished,

modern, and high-performance XACML implementation

with a service-oriented implementation option. The

Voxeo development environment supports both HTTP

requests and web services. Our choice was to enforce the

policy by accepting the XACML request through a web

service interface with the WSO2 XACML PEP. The PDP

will take a decision based on the attribute values collected

from the dialogue and matches of values of subjects and

resources in the XACML implementation (see Figure 1).

The grant or deny decision will then be ready to be

returned back to the application. In our current case, it

should be translated to a physical access decision as to

whether to open a door.

The XACML’s access decision is based on the output

of the policy and rule combining algorithms. Following

the standard, the rule and policy should evaluate to true in

order to grant access; otherwise it would produce

“indeterminate” or “not applicable.” In case there are

multiple applicable rules and policies, the final access

decision is the result of the logical combination of these

algorithms.

http://www.w3.org/2001/XMLSchema#string
http://server.example.com/code/docs/developer-guide.html
http://server.example.com/code/docs/developer-guide.html

Our work, in its final state, will illustrate the use of

XACML to control access to resources through building

dialogues with human users. There are efforts proposing

access control systems through XACML interfacing with

other data models. In the published literature, a majority

of this integration effort is with Web Services [8]. Most of

this harmonizing work relied on the use of the de facto

Simple Object Access Protocol (SOAP) [9] messages in

the Web Services architecture to extract security-related

attributes and use them in XACML for the purpose of

access control [10] [11].

Security Assertion Markup Language (SAML) profile

for XACML is heavily relied on when there is a need to

use additional subject’s attributes that are administered by

other authorities to evaluate access control requests [12].

SAML and other message exchange protocols can be the

means through which XACML can interface with other

data models. Our work is different by trying to let

XACML reach the human user directly and initiating a

dialogue with him, manage the dialogue, and then decide

whether to allow access.

V. NEXT STEPS

Our next steps in this work would be:

 Finishing the XACML implementation

 Being able to generate requests and responses and

execute them

 Determining the best way to use grammars

 Looking into the best way to generating

VoiceXML from XACML: there are options to

evaluate such as DOM and XSLT

Some of the follow-on research items we are pursuing

are:

 Integrating presence information with the dialog

access control system. It is critical for an

automated system to authenticate to the system

the speaker or requester of access to avoid certain

attacks, such as by verifying the physical presence

and human nature of the speaker.

 Making the dialog as short as possible. In a

spoken dialog or question-answer system, it is

different than filling a form using a keyboard and

a mouse. It can take more time to say the voice

block (form) than filling it by hand or via a

keyboard. In some cases, we might need to make

a quick access decision through dialog which

might require thinking of ways to reduce the time

required to collect attributes and make a correct

XACML decision. Maybe asking only the most

difficult or important questions according to their

weight can reduce the number of questions

without affecting the accuracy. An analysis

similar to the one in [13] implementing item

response theory [14] [15] might be helpful to this

work.

 Some policy sets might have a large number of

policies and rules with different combination

algorithms. It would be interesting to see how this

can affect our spoken policy-based access control

(question-answer) system.

 After being able to generate dialogues from

policies, it would be interesting to see if we can

generate rules from dialogues.

 In any dialogue, it is important to guarantee the

privacy of what is spoken. In order to answer a

question the user has to say things that might be

considered to be sensitive (e.g., a unique

government identity card number, such as a social

security number) and the user might be reluctant

to answer the question in public, which might

affect the attributes collected in order to build the

request and thus the decision might not be correct.

VI. CONCLUSION

In this work, we have presented a novel approach to

generate a dialogue for the purpose of physical access

control from a standard access control policy language.

This policy language driven interaction with the user or

authorization requester is generated at runtime and is

implemented in a standard language.

ACKNOWLEDGMENT

This material is based upon work supported by the US

Air Force Office of Scientific Research under grant

FA9550-09-1-0421.

 REFERENCES

[1] OASIS, eXtensible Access Control Markup Language

(XACML), available at URL: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml, last

accessed Aug. 6, 2012.

[2] World Wide Web Consortium, Voice Extensible Markup

Language (VoiceXML)(VXML), available at URL:

http://www.w3.org/Voice/, last accessed Aug. 6, 2012

[3] World Wide Web Consortium, Speech Grammar

Recognition Specification, white paper available at URL:

http://www.w3.org/TR/speech-grammar/, last accessed

Aug. 6, 2012.

[4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata

Theory, Languages, and Computation, Addison-Wesley,

1979.

http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/Voice/
http://www.w3.org/TR/speech-grammar/

[5] Thomas Massie and Duminda Wijesekera, “TVIS: Tactical

Voice Interaction Services for Dismounted Urban

Operations,” in Proceeding of Military Communications

Conference, IEEE, pp. 258-264, San Diego, Calif., Nov.

17-19, 2008.

[6] URL: http://www.Voxeo.com, last accessed Aug. 6, 2012.

[7] URL: http://www.wso2.com, last accessed Aug. 6, 2012.

[8] OASIS, Web Services, available at URL:

https://www.oasis-open.org/standards
[9] W3C, Simple Object Access Protocol (SOAP), available at

URL: http://www.w3.org/TR/soap
[10] Chongshan Ran and Guili Guo, “Security XACML Access

Control Model Based On SOAP Encapsulate,”

International Conference on Computer Science and Service

System, IEEE, pp. 2543-2546, Nanjing, China, 27-29 June

2011.

[11]Ardagna, C.A., De Capitani di Vimercati, S., Paraboschi, S.,

Pedrini, E., Samarati, P., Verdicchio, M. , “Expressive and

Deployable Access Control in Open Web Service

Applications,” IEEE Transactions on Services Computing,

Volume 4, Issue 2, pp. 96-109, April-June 2011.

[12] OASIS, Security Assertion Markup Language (SAML),

SAML 2.0 profile of XACML v2.0, available at URL:

http://docs.oasis-open.org/xacml/2.0/access_control-

xacml-2.0-saml-profile-spec-os.pdf

[13] Ahmed A. L. Faresi and Duminda Wijesekera, “Preemptive

Mechanism to Prevent Health Data Privacy Leakage,” in

Proceedings of International Conference on Management of

Emergent Digital EcoSystems, ACM, pp. 17-24, San

Francisco, Calif., Nov. 21-23, 2011,

[14] F. B. Baker, The basics of item response theory, ERIC

Clearinghouse on Assessment and Evaluation, 2001.

[15] F. B. Baker, Item response theory: Parameter estimation

techniques, vol. 176, CRC, 2004.

AUTHOR BIOGRAPHIES

MOHAMMAD ABABNEH is a doctoral student in the

Information Technology program at George Mason

University.

DUMINDA WIJESEKERA is an Associate Professor of

Computer Science at George Mason University, where he

serves as Program Director of the Doctor of Philosophy

program in Information Security and Assurance. He is a

member of the university’s Center for Security

Information Systems.

JAMES BRET MICHAEL is a Professor of Computer

Science and Electrical and Computer Engineering at the

Naval Postgraduate School, Arlington, Virginia.

http://www.voxeo.com/
http://www.wso2.com/
https://www.oasis-open.org/standards
http://www.w3.org/TR/soap
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ardagna,%20C.A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.De%20Capitani%20di%20Vimercati,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Paraboschi,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Paraboschi,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pedrini,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Samarati,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Verdicchio,%20M..QT.&newsearch=partialPref
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf

