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Abstract—To preserve critical energy control functions while 

under attack, it is necessary to perform comprehensive analysis 

on root causes and impacts of cyber intrusions without sacrificing 

the availability of energy delivery. We propose to design an 

intrinsically resilient energy control system where we extensively 

utilize Semantic Web technologies, which play critical roles in 

knowledge representation and acquisition. While our ultimate 

goal is to ensure availability/resiliency of energy delivery 

functions and the capability to assess root causes and impacts of 

cyber intrusions, the focus of this paper is to demonstrate a proof 

of concept of how Semantic Web technologies can significantly 

contribute to resilient energy control systems. 
Index Terms—cybersecurity, energy control system, ontology, 

knowledge base, semantic annotation, data integration. 

I.  INTRODUCTION 

Our energy infrastructure depends on energy delivery 
systems comprised of complex and geographically dispersed 
network architectures with vast numbers of interconnected 
components. These systems provide critical functions to 
provide information and automated control over a large, 
complex network of processes that collectively ensure reliable 
and safe production and distribution of energy. The energy 
utilities are modernizing these vast networks with millions of 
smart meters, high speed sensors, advanced control systems, 
and a supporting communications infrastructure. This 
additional complexity brings benefits, but also increases the 
risks of cyber attacks that could potentially disrupt our energy 
delivery. These systems must maintain high availability and 
reliability even when under attack. After a security incident has 
been detected, the incident response team needs the ability to 
investigate and determine the root cause, attack methods, 
consequences, affected assets, impacted stakeholders, and other 
information in order to inform an effective response. The 
response team needs this information in the short term in order 
to contain or eradicate the attack, recover compromised 
equipment, and restore normal operation. The team also needs 

to determine counter-measures to prevent recurrence and 
possibly collect evidence to legally prosecute the offenders. 
This analysis and response must be done without interrupting 
the availability of the energy delivery systems. 

To address the aforementioned challenges, this paper 
presents the design and architecture of InTRECS, an 
InTrinsically Resilient Energy Control System. The ultimate 
goal of InTRECS is to provide tools and technologies to ensure 
the availability/resiliency of energy delivery functions, along 
with the capability to assess root causes and impacts of cyber 
intrusions. To meet these goals, InTRECS extensively applies 
Semantic Web technologies, including cybersecurity domain 
ontologies, a comprehensive knowledge base, and semantic 
data annotation & integration techniques. Semantic Web 
technologies are built upon ontologies, which are formal, 
declarative knowledge models and have been shown to play 
critical roles in knowledge representation and acquisition. 

In this paper, we argue that applying Semantic Web 
technologies in InTRECS affords several benefits compared to 
typical approaches that utilize relational databases:  

 While relational databases focus on syntactic 
representation of data and lack the ability to explicitly 
encode semantics, Semantic Web technologies support 
rich semantic encoding, which is critical in automated 
knowledge acquisition. 

 Powerful tools exist for capturing and managing 
ontological knowledge, including an abundance of 
reasoning tools readily supplied for ontological models, 
making it much more convenient to query, manipulate, and 
reason over available data sets. As a result, semantics-
based queries, instead of SQL queries, are made possible. 

 Advances in an energy delivery system (EDS) require 
changes to be made regularly regarding underlying data 
models. In addition, more often than not, it is preferable to 
represent data at different levels and/or with different 
abstractions. There are no straightforward methods for 
performing such updates if relational models are adopted. 

 Semantic Web technologies better enable EDS researchers 
to append additional data into repositories in a more 
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flexible and efficient manner. The formal semantics 
encoded in ontologies makes it possible to reuse data in 
unplanned and unforeseen ways, especially when data 
users are not data producers, which is now very common. 

While our ultimate goal is to ensure availability/resiliency 
of energy delivery functions and the capability to assess root 
causes and impacts of cyber intrusions, the focus of this paper 
is to demonstrate a proof of concept of how Semantic Web 
technologies can significantly contribute to resilient energy 
control systems. The rest of the paper is organized as follows. 
Section II gives a brief review on related research in ontologies 
and semantic annotation & integration, respectively. Section III 
describes the overall architecture of InTRECS, followed by 
methodology details for developing domain ontologies & 
knowledge base and performing data annotation & integration. 
Section IV demonstrates our preliminary experimental results. 
Finally, Section V concludes with future research directions. 

II. RELATED WORK 

A. Ontologies in Energy Delivery Control and Cybersecurity 

Energy delivery control systems comprise complex network 
architectures that may contain hundreds of specialized cyber 
components and may extend across wide geographical regions. 
Cyber attack investigation involves examining large volumes 
of data from heterogeneous sources. Researchers are facing the 
challenge of how to maintain the integrity of data derived from 
diverse sources across distributed geographic areas ([1-7]). 
These research efforts have resulted in various ad-hoc 
proprietary formats for storing and analyzing data and 
maintaining respective metadata. Different parties are likely to 
adopt different formats according to specific needs. Therefore, 
the seamless communication among different parties, along 
with the knowledge sharing and reuse that follow, become a 
non-trivial problem. Turnitsa and Tolk [8] discussed in depth 
multi-resolution, multi-scope, and multi-structure challenges 
during data exchange between different models. 

Semantic Web technologies that are based on domain 
ontologies can render tremendous help. Ontologies are 
declarative knowledge models, defining essential 
characteristics and relationships for specific domains of interest. 
As a semantic foundation, ontologies greatly help domain 
experts to formally define domain knowledge in terms of data 

semantics (intended meanings) rather than data syntax (forms 
in which data are represented). Reasons for developing 
ontologies include, but not limited to: (i) to share domain 
information among people and software; (ii) to enable reuse of 
domain knowledge; (iii) to analyze domain knowledge and 
make it more explicit; and (iv) to separate domain knowledge 
from its implementation. There exist some domain ontologies 
in cybersecurity and related areas, e.g., Intrusion Detection 
System Ontology [1], Network Security Ontology [2], Process 
Control Ontology [4], INSPIRE Ontology [5], and GE SADL 
Host Defense Ontology [7]. These ontologies provide metadata 
and standard terminologies in respective domains. 

B. Semantic Data Annotation & Integration 

Semantic data annotation & integration can bring critical 

impacts and benefits to data analysis and management. 

Semantic annotation (tagging) systems can be divided into 

manual, semi-automatic, and automatic ones [9]. In manual 

tagging systems (Sema-Link [10] for example), users employ 

controlled vocabularies from some ontology to tag documents. 

Such a manual process is time-consuming and requires deep 

domain expertise, in addition to the inconsistency issue. Semi-

automatic tagging systems improve manual tagging systems 

by automatically parsing documents and recommending 
potential tags. Human annotators only need to select tags from 

candidates suggested by the system. Automatic semantic 

tagging systems offer further improvement by parsing and 

tagging documents with ontological concepts and instances in 

a fully automatic way. Zemanta [11] is such an example. By 

suggesting contents from various sources, such as Wikipedia, 

YouTube Flickr, and Facebook, Zemanta disambiguates terms 

and maps them to the Common Tag Ontology [12]. Dang et al. 

have developed one of the largest comprehensive, domain-

independent ontological knowledge base, UNIpedia+ [13], 

which covers around 11 million named English entities. Based 

on UNIpedia+, they further developed an automatic tagging 
system [14] to produce semantically linked tags for given data. 

The information system architecture in the Los Angeles Smart 

Grid project [15] enabled analytical tools and algorithms to 

forecast energy load and identify load curtailment response 

through semantically meaningful data. 

 
Fig. 1.  Overall architecture of InTRECS system. 



III. METHODOLOGY 

A. InTRECS Overall Architecture 

Figure 1 illustrates the overall architecture of InTRECS, 
which is decomposed into six subsystems. 

 Intrusion-Tolerant SCADA (InTRADA) 
We will develop a survivable SCADA system based 
on intrusion-tolerant replication [16]. InTRADA will 
be capable of guaranteeing correct operations and 
excellent performance even when part of the system 
has been compromised and is under the control of an 
intelligent attacker. 

 Cybersecurity Ontologies and Knowledge Base for 
Energy Delivery Systems (CoEDS) 
CoEDS knowledge base (KB) contains domain 
ontologies, a resource description framework (RDF) 
repository, a SPARQL RDF query engine, and an 
inference engine. The KB will provide end users 
with a unified and consistent data layer for analyzing 
data at the semantic level. 

 Semantic Data Integration and Processing (SeDIEP) 
Our focus is to develop an automatic semantic data 
annotation & integration engine for tagging data 
sources based on the metadata defined in CoEDS 
ontologies. An event-processing engine will handle 
dynamic events and generate security alerts. 

 Root Cause and Impact Analysis (RoCIA) 
RoCIA provides the basis to detect cyber incidents 
and investigate the root cause, attack methods, 
consequences, affected assets, impacted stakeholders, 
attackers’ identity, and other metrics to inform an 
effective response. RoCIA will leverage the Cyber 
Security Econometrics System (CSES) and the 
inference and query engines provided within CoEDS 
KB to assist EDS stakeholders in evaluating 
cybersecurity investments and to provide an 
economic impact assessment of on-going cyber 
intrusions. 

 Dashboard Analytics and Situation Awareness 
(DaSA) 
Dashboard analytics includes a user graphical user 
interface (GUI) to support interactions between end 
users and InTRECS. Situational awareness will be 
performed for end users. We will also support 
reasoning through the inference engine in CoEDS. 

 Test and Evaluation (TnE) 
Implemented modules will automatically configure 
the test suite environment to the appropriate start 
state for the test case. A portal will provide the 
information and documentation and will execute the 
test case. We will also develop a test suite in an end-
user setting, including a set of denial of service 
(DOS), reconnaissance, and network packet integrity 
exploits targeting SCADA, remote terminal unit 
(RTU), and network architecture vulnerabilities. 

InTRECS will be constantly active to intrinsically 
provide resiliency, i.e., correct operations and excellent 
performance. At the same time, a DaSA GUI will guide end 
users to generate queries out of data derived from diverse 

sources. Query results, e.g., the root cause, extent, and 
impacts of the cyber intrusion, can then be provided back to 
end users. InTRECS will also push security alerts up to end 
users. Both query results and alerts are regarded as semantic 
decision support to end users because they extensively utilize 
Semantic Web technologies, namely, domain ontologies, 
RDF triples resulting from semantic annotation, and 
inferences & analysis performed at the semantic level. 

B. CoEDS Domain Ontologies and Knowledge Base 

There are four components in CoEDS KB: (i) CoEDS 
domain ontologies, (ii) an RDF repository, (iii) a SPARQL 
RDF query engine, and (iv) an inference engine. Through 
automatic data integration and logic reasoning, CoEDS KB 
will be able to provide a unified and consistent data layer for 
analyzing data at the semantic level. It will thus assist end 
users to effectively obtain real-time decision support, so that 
they can (i) obtain health status updates of SCADA replicas, 
(ii) analyze and better understand the root cause, extent, and 
impacts of an attack, (iii) acquire situational awareness, and 
(iv) recommend courses of action. 

1) Interaction between CoEDS and other InTRECS 

subsystems: CoEDS KB actively exchanges information 

with other subsystems of InTRECS on a regular basis. 

 InTRADA receives system health and status 
information from CoEDS KB, and incorporates such 
knowledge to enhance its fault-detection algorithms. 
This will enable InTRADA to more rapidly 
reconfigure itself in the event of a cyber attack by 
helping it distinguish between performance faults 
caused by a malicious application and by more 
benign issues such as transitory network problems. 
InTRADA sends to CoEDS KB status updates 
regarding the health of the replicas, hence providing 
data for future cyber attack analysis. 

 SeDIEP obtains the data semantics, i.e., ontological 
metadata, from CoEDS KB and utilizes such 
metadata during the automatic semantic annotation. 
Annotated data, including cybersecurity 
econometrics, dynamic events, etc., are stored back 
into CoEDS KB to construct and continuously 
update the central data repository in the KB. 

 CoEDS KB provides RoCIA with topology data as 
well as the data semantics essential for performing 
root cause and impact analysis. RoCIA supplies 
CoEDS KB with root cause and impact analysis data, 
including attack signatures, attack locations, exploits, 
consequences, countermeasures, model parameters, 
network components, security requirements, threats, 
vulnerabilities, and stakeholders. 

 CoEDS KB furnishes DaSA with dynamic events 
and electric grid components and topology data, both 
of which are in an annotated form. DaSA sends back 
situational awareness data to CoEDS KB. In addition, 
the KB also provides the Correlation Layers for 
Information Query and Exploration (CLIQUE) and 
Traffic Circle, two visual analytics tools in DaSA, 
with interoperability for behavior model-based 
anomaly detection. 



2) Motivation for developing CoEDS ontologies: Among 

existing ontologies in cybersecurity and related areas 

(mentioned in Section II), there is not a single one that is 

comprehensive enough to cover a complete set of concepts 

and relationships for the purpose of this research. In 

particular, with regard to the fields of SCADA status, root 

cause analysis, situational awareness, electric grid 

components and topology, cybersecurity econometrics, cost 

benefit analysis, and complex event processing, all 

aforementioned existing ontologies are missing some 

necessary concepts within these critical fields. Even in the 

case that a specific concept of our interest is contained in 

some existing ontology, more often than not, the semantics 

defined in such an ontology need to be extended and 

customized before this concept can be utilized within 

InTRECS system. In brief, Energy Control Systems (ECS) 

end users lack a comprehensive, customized conceptual 

model, which prevents the energy sector from leveraging 

enhanced knowledge acquisition processes brought by 

Semantic Web technologies. Such a situation motivates us 

to develop CoEDS domain ontologies. 

3) Ontology development principles: We have observed 

seven practices suggested by Smith et al. [17]: the ontology 

should (i) be freely available; (ii) be expressed using a 

standard language or syntax; (iii) provide tracking and 

documentation for successive versions; (iv) be orthogonal to 

existing ontologies; (v) include natural language 

specifications of all concepts; (vi) be developed 

collaboratively; and (vii) be used by multiple researchers. In 

particular, we propose a decomposition methodology as the 

strategy for coming up with orthogonal ontologies. Our 

methodology is similar to those used in the database 

normalization theory, third normal form (3NF) for example. 

We first began with concepts from possibly many sub-

domains in one large set, followed by the identification of 

dependencies or overlaps among these concepts, and we 

finally proceeded to decompose all concepts based on their 

identified dependencies. Our preliminary design is to 

develop seven sub-ontologies in CoEDS: SCADA status, 

root cause & impact, situational awareness, grid component 

& topology, cybersecurity econometrics, cost benefit, and 

complex event processing. Consequently, we achieved the 

orthogonality feature, i.e., the non-overlapping feature, for 

CoEDS domain ontologies. 

4) Knowledge-driven ontology development procedure: 

The ontology development was not from scratch. Instead, to 

(i) take advantage of the knowledge already contained in 

existing ontologies and (ii) reduce the possibility of 

redundant efforts, we have reused, extended, and 

customized a set of well-established concepts from existing 

domain ontologies. In addition, popular upper ontologies, 

e.g., the Basic Formal Ontology (BFO), was imported into 

our ontologies. The ontology development was driven by 

domain knowledge and decomposed into five stages, as 

suggested by Uschold and Gruninger [18]: (i) specification 

of content; (ii) informal documentation of concept 

definitions (by domain experts); (iii) logic-based 

formalization of concepts and relationships between 

concepts; (iv) implementation of the ontology in a computer 

language; and (v) evaluation of the ontology, including the 

internal consistency and the ability to answer logical 

queries. As illustrated in Figure 2, these five stages are 

essentially ongoing and iterative because end users’ needs 

will change as their understanding of the domain evolves. In 

this iterative, knowledge-driven approach, both ontology 

engineers and domain experts have been involved, working 

together to capture domain knowledge, develop a 

conceptualization, and implement the conceptual model. 

The ontology construction process has taken place over a 

number of iterations, involving a series of interviews, 

evaluation strategies, and refinements. Standard revision-

control procedures have been utilized. 
 

 

Fig. 2. Knowledge-driven, iterative ontology development. 

5) Ontology format and development tool: There are 

different formats and languages for describing ontologies, 

all of which are popular and based on different logics: Web 

Ontology Language (OWL) [19], Open Biological and 

Biomedical Ontologies (OBO) [20], Knowledge Interchange 

Format (KIF) [21], and Open Knowledge Base Connectivity 

(OKBC) [22]. We have chosen the OWL format 

recommended by the World Wide Web Consortium (W3C). 

OWL is designed for use by applications that need to 

process the content of information instead of just presenting 

information to humans. As a result, OWL facilitates greater 

machine interpretability of Web contents. We have chosen 

Protégé, an open-source ontology editor developed by 



Stanford [23], as our development tool over other available 

tools such as CmapTools and OntoEdit. 

6) CoEDS KB components – RDF Repository, Query 

Engine, and Inference Engine: Based on the formal 

knowledge defined in CoEDS ontologies, heterogeneous 

data sources can be annotated and integrated into a central 

repository. Note that data sources to be integrated include 

structured, semi-structured, or unstructured data, the 

interoperability thus becomes an obstacle during knowledge 

discovery. We adopt RDF, a model for data interchange 

recommended by the W3C, to handle such a challenge. RDF 

specifically supports the evolution of schemas over time 

without requiring all the data consumers to be changed. The 

generic structure of RDF allows structured, semi-structured, 

and unstructured data to be mixed, exposed, and shared 

across different applications, thus helping to handle the data 

interoperability challenge. Following automatic semantic 

data annotation (see Section III.C), RDF triples will be 

indexed and accumulated into a central repository. SPARQL 

Protocol and RDF Query Language (SPARQL) [24] is a 

query language recommended by W3C to retrieve and 

manipulate RDF data. End users of InTRECS system will be 

guided by a GUI to automatically generate RDF queries 

across semantically integrated sources. These queries will 

then be executed by a SPARQL-based query engine. 

The RDF data repository and query answering are not 

enough for an effective and comprehensive knowledge 

acquisition. Suppose that some facts do not exist in any 

original data sources, they will thus not be stored in the RDF 

repository. But such information may be critical to end 

users. To obtain the ability to acquire previously implicit 

knowledge, we will incorporate an inference engine (a.k.a. 

logic reasoner). Compared with traditional relational 

database techniques, inference engines provide a more 

expressive method for querying and reasoning over 

available data sets. Thus, ontology-based (a.k.a. semantics-

based) queries, instead of traditional SQL queries, are 

possible. Ontology-based queries improve traditional 

keyword-based queries in several ways. (i) Both 

synonymous terms (those having same meaning) and 

polysemous terms (those having different meanings) can be 

included to obtain more results that are relevant to the user 

query. (ii) Semantic relationships among terms often reveal 

extra clues hidden in disparate data sources. Such 

relationships can be explicitly discovered to further improve 

the quality of query answering. Consequently, we will be 

able to acquire hidden knowledge and information that was 

originally implicit and unclear, yet critical, to end users. 

With a logic reasoner, CoEDS repository will work as a 

comprehensive knowledge base. 

7) Sesame framework for RDF repository, SPARQL 

RDF query engine, and inference engine: We have 

preliminarily chosen Sesame framework [25] to store and 

manage the RDF repository. Sesame is an open-source Java 

framework for the storage and querying of RDF data. The 

framework is fully extensible and configurable with respect 

to storage mechanisms, inferencers, RDF file formats, query 

result formats, and query languages. In addition, Sesame 

offers a JBDC-like user API, streamlined system APIs, and 

a RESTful HTTP interface supporting the SPARQL 

protocol for RDF. Moreover, Sesame contains a built-in 

inference engine, and various reasoning tasks, e.g., 

subsumption and contradiction reasoning, can be performed. 

C. Semantic Data Annotation and Event Processing 

According to the formal domain knowledge, including a 
global metadata model, defined in CoEDS, heterogeneous 
data sources can be annotated and seamlessly integrated into 
a central RDF data repository, which will serve as a unified 
and consistent data layer for data analytics applications. 
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Fig. 3. Semantic data annotation and event processing (SeDIEP). 

1) System overview: Semantic data annotation and event 

processing (SeDIEP) subsystem manages various data 

sources and automatically annotates and integrates data at 

semantic level. As shown in Figure 3, there are three major 

components in the subsystem: (i) Semantic TagPrint, (ii) 

Semantic Knowledge Management Tool (SKMT), and (iii) 

Event Engine. Semantic TagPrint is an automatic semantic 

tagging engine that annotates structured data and free text 

using ontological entities from CoEDS ontologies. SKMT 

manages heterogeneous data sources for semantic 

annotation and integration. Event engine feeds the semantic 

tagging engine with dynamic events. It also generates alerts 

with the support from CoEDS through modified RDF 

queries and the semantic reasoning. 

Heterogeneous data sources will be annotated and 

seamlessly integrated into a central RDF data repository 

based on CoEDS ontologies. This data repository will serve 

as a unified and consistent data layer for further analyzing 

data at the semantic level. Our core technologies can 

substantially reduce design-to-execution time for application 

domains of data integration, visualization, and analysis.  



• Meaningful data. Our system will annotate terms in text 

with their corresponding concepts in CoEDS ontologies 

by finding their meanings and analyzing their context.  

• Scalability. Indexed data are stored and managed in a 

repository. Collected and initially processed data can be 

incrementally analyzed and indexed. 

• Easy integration. Various data sources can be seamlessly 

integrated along with their semantic indexes. 

2) Deep annotation and integration: Data sources to be 

integrated contain structured, semi-structured, or 

unstructured data. As discussed in the previous section, we 

adopt RDF to handle the data interoperability challenge. 

Semantic data annotation is the process of tagging source 

files with metadata predefined in ontologies such as names, 

entities, attributes, definitions, and descriptions. Herein, we 

use terms of “semantic annotation” and “semantic tagging” 

interchangeably. The annotation provides extra information 

contained in metadata to existing pieces of data. Metadata 

are usually from a set of ontological entities (including 

concepts and instances of concepts) predefined in 

ontologies. For unstructured data such as free text, we will 

use a tagging engine to align them with ontological entities 

and generate semantic annotations. For structured data 

including database data, the annotation will take two 

successive steps: (i) first we will annotate data source 

schemas by aligning their metadata with ontological entities; 

(ii) according to annotated schemas we will then transform 

original data instances into RDF triples. We refer to such 

annotation as “deep” annotation – this term was coined by 

Goble, C. in the Semantic Web Workshop of WWW 02. It is 

necessary to annotate more than just data source schemas 

because there are situations where the opposite “shallow” 

annotation (i.e., annotation on schemas alone) cannot 

provide users with the desired knowledge. Following 

semantic data annotation, RDF triples will be indexed and 

accumulated into a central repository. 

3) Unified view over original data sources and cost-

efficient analysis: All semantic tags will be generated from a 

global metadata model, i.e., CoEDS ontologies, our tool 

thus provides a unified view over original data sources at the 

semantic level. As discussed before, our RDF query and 

reasoning engines will provide users with more meaningful 

and relevant information from semantically annotated and 

integrated data sources. In addition, semantic relationships 

among tags provide us with additional clues and will further 

improve the quality of retrieved results. Given a set of 

candidate results to be returned to users, we will calculate 

the semantic similarity between each result and the user 

query using semantic features such as (i) hypernym, which 

defines the superClassOf relationship and (ii) holonym, 

which defines the partOf relationship. We will then rank 

these results by their respective semantic similarities. 

Consequently, users can be presented with more relevant 

query results. 

4) Semantic event processing: Dynamic events will be 

fed to our Semantic Tag Print, which will annotate these 

events with semantic tags. Then events are represented as 

RDF triples, accompanied with event attributes such as 

timestamps and probabilities. With the support from 

CoEDS, SeDIEP will transform these tagged events into 

SPARQL queries. We will perform event filtering, 

correlation, and aggregation or abstraction using semantic 

matching, rules, and similarity evaluations. Moreover, we 

will detect event patterns on event streams with temporal 

semantic rules. As a result, high-risk vulnerabilities and 

threats can be predicted, and security alerts will then be 

automatically generated and rendered to users when facing 

potential cyber intrusions. 

5) Core Components in SeDIEP: Figure 3 shows three 

major components in SeDIEP to semantically integrate 

various data sources and event streams. 

a) Component one: Semantic TagPrint is an automatic 
semantic tagging engine that annotates structured data and 

free text using ontological entities. Three modules were 

designed for this component. 

 Named Entity Detection: This module extracts 

named entities, noun phrases in general, from the 

input text. We adopt Stanford Parser [26] to detect 

and tokenize sentences, and assign Part-of-Speech 

(PoS) tags to tokens. Entity names will be extracted 

based on PoS tags. 

 Ontology Mapping: This module maps extracted 
entity names to CoEDS concepts and instances with 

two steps: Phrase mapping and Sense mapping. 

Phrase mapping will match the noun phrase of an 

entity name to a predefined concept or instance. 

Sense mapping will utilize a linear-time lexical 

chain algorithm to disambiguate terms that have 

several senses defined in ontologies. 

 Ontology Weighting: This module utilizes statistical 

and ontological features of concepts to weigh 

semantic tags. We then annotate the input text using 

the semantics with higher weights. 

b) Component two: SKMT collects original text and 
sends annotation results to Repository Manager, whose main 

role is to manage RDF repository (store) and to 

communicate with Query Interface. These components 

altogether provide a unified view over original data sources 

at the semantic level. Users will be guided by a GUI to 
automatically generate RDF queries across semantically 

integrated data sources. These queries will then be executed 

by a SPARQL-based RDF query engine. As discussed 

earlier in this subsection, we can calculate the semantic 

similarity between each candidate query result and the user 

query using semantic features such as hypernym and 

holonym. These query results can then be ranked by their 

respective semantic similarities. Consequently, we are able 

to render users more accurate and desired query results. 



c) Component three: Event Engine annotates dynamic 
events and stores them as RDF triples. It will then generate 

SPARQL queries and perform event filtering, correlation, 

and aggregation or abstraction with the semantics defined in 

CoEDS ontologies. 

IV. PRELIMINARY EXPERIMENTAL RESULTS 

In this ongoing research, we have developed a 
preliminary version of CoEDS domain ontologies and 
knowledge base to demonstrate a proof of concept of how 
Semantic Web technologies can significantly contribute to 
resilient energy control systems. We also exported instances 
into an RDF data repository within the Sesame framework. 

 

Fig. 4. Protégé GUI screen shot exhibiting some CoEDS concepts. 

A. CoEDS Ontologies 

As discussed earlier in Section III.B, we have developed 
seven sub-ontologies in CoEDS: SCADA Status Ontology, 
Root Cause & Impact Ontology, Situational Awareness 
Ontology, Grid Component & Topology Ontology, 
Cybersecurity Econometrics Ontology, Cost Benefit 
Ontology, and Complex Event Processing Ontology. The 
purpose of such a decomposition strategy is to achieve the 
orthogonality feature, i.e., the non-overlapping feature 
among different CoEDS sub-ontologies. After individual 
sub-ontologies were developed, we then imported them into 
CoEDS. If future modifications are needed for any sub-
ontology, the changed schema information will be 
automatically integrated into CoEDS ontologies. Figure 4 
demonstrates a screen shot from Protégé GUI, which exhibits 
a portion of CoEDS concepts. Note that the well-defined, 
general-purpose structure from the Basic Formal Ontology 
(BFO), a popular upper ontology across different disciplines 
and research areas, was preserved in the ontology schema. 
Statistic information for all seven sub-ontologies is 

summarized in Table I. In total, CoEDS ontologies contain 
269 concepts, 232 object properties, and 110 data properties. 

TABLE I.  STATISTICS FOR COEDS ONTOLOGIES 

Sub-Ontology Statistic Information 

 Total 

Number of 

Concepts 

Total Number of 

Object Properties 

Total Number of 

Data Properties 

SCADA Status 

Ontology 
35 23 12 

Root Cause & 

Impact 

Ontology 

37 21 9 

Situational 

Awareness 

Ontology 

39 27 15 

Grid 

Component & 

Topology 

Ontology 

51 39 17 

Cybersecurity 

Econometrics 

Ontology 

38 25 20 

Cost Benefit 

Ontology 
33 19 18 

Complex 

Event 

Processing 

Ontology 

36 28 19 

B. CoEDS Knowledge Base 

The current CoEDS KB contains a total of 1,223 facts 
(a.k.a. axioms in Protégé). Details can be found in Table II. 

TABLE II.  STATISTICS FOR COEDS KNOWLEDGE BASE AXIOMS 

Axiom Category Statistic Information 

Class Axioms 460 

      Subclass Axioms 268 

      Equivalent Class Axioms 57 

      Disjoint Class Axioms 135 

Object Property Axioms 217 

Data Property Axioms 108 

Individual Axioms 236 

Annotation Axioms 202 

C. Sesame Framework to Manage Data Repository 

Within the Sesame framework we exported all 
ontological instances into an RDF data repository for future 
storage and management. Figure 5 is a screen shot from 
Sesame GUI, where the seven sub-ontologies and the overall 
CoEDS ontologies were clearly demonstrated. Being an 
open-source Java framework, Sesame framework can be 
readily extended and configured for the storage and querying 
of RDF data. Moreover, a JBDC-like user API, streamlined 
system APIs, and a RESTful HTTP interface are offered in 
Sesame as well. 

 



 
Fig. 5. Screen shot from Sesame repository management. 

V. CONCLUSION 

To preserve critical energy control functions while under 
attack, it is necessary to perform comprehensive analysis on 
the root cause, extent, and impacts of cyber intrusions 
without sacrificing the availability of energy delivery. We 
proposed to develop InTRECS, an intrinsically resilient 
energy control system, to address these challenges. Semantic 
Web technologies, which play critical roles in knowledge 
representation and acquisition, have been extensively 
adopted in our system. The focus of this ongoing research is 
to demonstrate a proof of concept of how Semantic Web 
technologies can significantly contribute to resilient energy 
control systems. We justified the research motivation, 
described our methodology in detail, and exhibited 
preliminary experimental results. Future research directions 
include, but are not limited to, (i) continue CoEDS ontology 
development towards delivering a highly stable and more 
usable version; (ii) incorporate query and inference engines 
into the knowledge base for end users to better analyze root 
causes and impacts of cyber intrusions; and (iii) implement 
SeDIEP subsystem. 
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