
 

A Set of Languages for Context-Aware Adaptation 
 

Giuseppe Giani, Fabio Paternò, Carmen Santoro, Lucio Davide Spano 
CNR-ISTI, HIIS Laboratory 

Via Moruzzi 1, 56124 Pisa, Italy 
{giuseppe.ghiani, fabio.paterno, carmen.santoro, lucio.davide.spano}@isti.cnr.it 

 
 
 

ABSTRACT 
The creation of service front ends  able to adapt to the 
context of use involves a wide spectrum of aspects to be 
considered by developers and designers. A context-aware 
adaptation enabled application needs a simultaneous 
management of very different application functionalities, 
such as the context sensing, identifying different given 
situations, determining the appropriate reactions and the 
execution of the adaptation effects. In this paper we 
describe an adaptation architecture for tackling this 
complexity and we present a set of languages that address 
the definition of the various aspects of an adaptive 
application. 

Author Keywords 
Adaptation, Context-Awareness, User-Interface models, 
Rule Languages. 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI) 

General Terms 
Human Factors; Design; Languages.  

INTRODUCTION 
The creation of Service Front Ends (SFE) that are able to 
adapt to the context of use enhances the user experience by 
taking into account different interaction techniques for 
different situations. However, creating applications that are 
able to react to the different states of the context involves 
the management of different aspects, which may be difficult 
to be handled if not considered with a systematic approach. 
For instance, adaptive applications need to sense the 
context, to reason about its state in order to determine 
which is the current situation, to decide which actions are 
more appropriate given the current situation and finally to 
execute these actions. In this paper, we consider different 
aspects involved in the definition of an adaptive SFE. After 
discussing related work, we introduce an adaptation 

architecture for separating the different adaptation 
concerns, then provide a brief description of the languages 
exploited by the different architecture modules (the UI 
definition, the context management and the adaptation 
rules) and finally we discuss conclusions and future work. 

RELATED WORK 
In this section, we briefly summarize some related work for 
the presented set of languages.  

The ASFE-DL language was submitted to the Model Based 
User Interface Working Group of the W3C, which aims to 
create a standard for the task modelling and for the abstract 
user interface languages. In this regard, the language had 
benefit from the comparison with the different submissions 
in the abstract UI field, which were MARIA [4], a 
universal, declarative, multiple  abstraction-level, XML-
based language for modelling interactive applications in 
ubiquitous environment, compliant with [7]; MINT-AIM 
[1] a language targeted for supporting multimodal setups, 
combining at least one media with several modes; UseDM 
[5] that describes abstract dialog models for context-
sensitive interactive systems; UsiXML [3], which is a 
formal Domain-Specific Language (DSL) used that 
describes user interfaces from the implementation 
technology. The comparison with these languages allowed 
the improvement of ASFE-DL, which now contains 
modelling elements that are able to cover all the concepts 
proposed by these state of the art languages. 

Regarding the AAL Description Language, we first mention 
some languages for model transformations. For instance, 
QVT (Query/View/Transformation) is a standard set of 
languages for the transformation of models, defined by the 
Object Management Group (OMG). The ATL (Atlas 
Tranformation Language) [2] is an implementation of the 
QVT proposal by OBEO and INRIA. It maintains the 
possibility to specify the transformation with a set of 
declarative matched rules that transform elements of the 
source model into elements of the target model. They are 
triggered with a pattern matching mechanism. XSLT 
(eXtensible Stylesheet Language Transformations) [7] is an 
XML syntax for defining transformations starting with 
XML files to different text formats, obviously including 
XML itself, based on pattern matching. A style sheet 
defines a set of rules that allows to take as input an XML 

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
 



 

tree (source) and to transform it into a destination tree 
(result). More specifically to adaptation we can mention the 
work by Sottet and others [10] who presented a set of 
general principles relevant  for supporting model-based 
adaptation while in our case we present a set of languages  
supported by engineered tools that can be applied in real 
world applications. Octavia et al.[9] have considered the 
use of a model-based approach to facilitate adaptation in 
virtual environments, also using the event-condition-action 
paradigm, we provide a more general approach for this 
purpose able to potentially support adaptation involving 
various interaction modalities. 

Issues about the exploitation and the management of the 
context information have already previously tackled by the 
research community. Salber et al. [5] have introduced the 
concept of context widgets,  which separate the application 
from the context acquisition concerns by hiding the sensor 
specifics to the higher layers (i.e.: to the application layer). 
Context widgets have a state and a behaviour, manage raw 
data coming from generators (which get data from sensors) 
and may interpreters if further abstraction is needed. 

 

ADAPTATION ARCHITECTURE 
Our adaptation  architecture separates different concerns 
that are involved in the creation of an adaptive SFE. In this 
section, we provide a big picture of the involved modules 
and languages.  

 

Figure 1: Adaptation Architecture 

Figure 1 shows the proposed adaptation architecture. The 
parchment-shaped boxes represent the different languages, 
the rounded boxes the architecture modules, while the 3D 
boxes represent running SFEs. The thinner arrows represent 
connections at design time, while the thicker ones represent 
communications at runtime. At the design phase, the 
developers specify the initial version of the SFE, providing 
different versions for different platforms (e.g. graphical 
desktop, mobile, vocal, multimodal), using the UI definition 
languages. Such descriptions are exploited by the platform 
generators that create the initial executable versions of the 
SFE. As we better describe in section 2, it is also possible to 
have higher-level descriptions that are common for all 
considered platforms. The adaptation logic is defined by an 

adaptation Rule language, which defines the logic of the 
adaptation: which actions have to be executed and under 
which conditions.  

At runtime, the architecture behaves as follows: each 
running SFE is provided with a Context Delegate (CD in   
Figure 1), which is able to supply the context data sensed 
by a given device. All the data collected by all Context 
Delegates is gathered by a Context Manager, which 
exposes an interface for querying and updating the different 
context entities, or for registering in order to  
asynchronously receive notifications on their state changes. 
The entities are described using another language, depicted 
as Entity Description in Figure 1. A module called Rule 
Interpreter registers itself to the Context Manager for 
receiving updates on the entities that are necessary for the 
execution of the specified Rules. Once an update is 
received, the Rule Interpreter selects the rules that, 
according to their definition, have to be executed in the 
current situation. Then, it notifies each different platform 
about the adaptation actions that need to be executed. Such 
actions may be very simple (e.g. changing a background 
colour or font) or very complex (changing the current 
interaction modality). Therefore, it is necessary that the 
actual way to execute these actions is delegated to each 
considered platform. Such delegation is implemented by the 
various Platform Adapters. Once the execution technique 
has been decided, the Platform Adapter sends the actual 
changes to the Platform Generator, which executes them on 
the running Platform SFE. In the following sections we 
describe a language for describing the SFE UIs, a language 
for defining adaptation rules and a language for interacting 
with the Context Manager. 

 

FRONT-END DESCRIPTION LANGUAGE 
In this section we  describe the Advanced Service Front 
End Description Language (ASFE-DL), which is used in 
the Serenoa1 EU FP7 project for describing SFEs. The 
language is compliant with the Cameleon Reference 
Framework [7]. Therefore, the modelling of a UI is defined 
through a set of levels of abstraction (Task & Concepts, 
Abstract User Interface, Concrete User Interface, Final User 
Interface). 

Abstract-User Interface 
The Abstract User Interface (corresponding to the Platform-
Independent-Model – PIM in Model Driven Engineering) 
expresses the UI regarding its presentation units, 
independently of the interactors available and of the 
modality of interaction (graphical, vocal, haptic). A 
presentation unit groups a set of logically connected 
interactors.  

                                                           
1 http://www.serenoa-fp7.eu/ 



 

Figure 2 shows the UML class diagram for the version of 
the ASFE-DL at the abstract level. We used different 
colours in order to highlight different parts of the 
metamodel: sky-blue for the main structure of the interface, 
green for the interactor hierarchy, red for the classes that 
model the relationships between interactors and yellow for 
the classes that model the UI behaviour. 

The class that represents an abstract user interface model is 
called AbstractUIModel. It contains the entire specification 
of both the UI structure and behaviour. The interface 
contains an optional DataModel, which defines the data 
types manipulated by the user interface, which allow 
maintaining the state of the interaction with the user.  

An AbstractUIModel consists of a composition of 
AbstractInteractionUnits. Each instance of this class 
represents a part of an application user interface that should 
be presented to the user at once. The first one among these 
AbstractInteractionUnits will be the starting point for 
interaction. It is possible to model the navigation among the 
different abstract interaction units defining instances of the 
Connection class. An AbstractInteractionUnit is composed 
of AbstractInteractors and AbstractRelationships. The 
abstract class AbstractInteractor defines a generic 
interactor, which represents a generic user interface object. 
Different categories of interactor exist, according to their 
semantics: Selection, which allows the user to select one 
(SingleChoice) or more options (MultipleChoice) from a 
predefined set of choices; Edit, which allows the user to 
manually modify an input value; Only output, which 
presents information to the user; Control, which allows the 
user to trigger actions. 

The AbstractReationship, the base class of all the 
relationships among abstract interactors. Different types of 

relationships are defined in ASFE-DL: Grouping, which 
represents a generic group of interactors; Ordering, which 
represents an ordering relationship among a group of 
interactors; Hierarchy, which represents a hierarchical 
relationship among a group of interactors; Repetition, which 
represents the template for a list of interactors that have to 
be repeated for each element of a dynamic list (e.g. a list of 
search results); Dependency, which defines a dependency 
relation between 1 interactor/interactor group and N 
interactors/interactor groups.  

The behaviour part of the language is able to describe the to 
describe the dynamic changes in the UI according to the 
interaction with the user. The described concepts are shared 
with the Action part of the language for describing 
adaptation rules (see section 3)  which express the changes 
that have to be applied to the UI (and also to other models) 
in order to react to context changes. In order to have a 
complete model for defining the dynamic behaviour, we 
introduced the classic set of Statements of the imperative 
programming languages. Therefore, an EventHandler is 
simply a Block, representing a collection of Statements, 
which can be either basic or composite. The class names for 
the composite ones are self-explaining: If, While, For, 
Foreach. The possible types of basic actions (represented 
by the abstract class Action) are defined by the four classic 
functions of the persistent storage: Create, Read, Update 
and Delete, which work on all the model elements at 
runtime. In addition, we introduced a statement that allows 
the UI to invoke external functionalities, declared through 
the ExternalFunction instances. 

 



 

 

Figure 2: ASFE-DL UML diagram (abstract level) 

 

Concrete Desktop User Interface 
The definition of a Concrete Language according to [7] 
consists mainly of the refinement of the abstract classes 
with the elements that can be used in the specific platform 
in order to build the UI, which is depicted in Figure 3, the 
concrete refinements are highlighted in dark blue. Different 
style properties can be associated to the different concrete 
interactors, which can be grouped in the following 
categories: borders, position, display (height, width etc.), 
margins, padding, text formatting, list formatting and table 
formatting. 

The input devices provided by the Desktop platform are the 
pointer and the keyboard. Each model element may receive 
notifications about the status of pointer position and 
keyboard or mouse buttons. Therefore, in the ASFE-DL 
Concrete Desktop model we introduce two classes that 
represent such events: the MouseEvent (enter, over, leave, 

click, double-click, down, up) and the KeyboardEvent 
(down, up, pressed). 

The concrete refinements for the Activator and the 
Navigator class are the Button, Link  and Image Map. While 
the first two elements contain a combination of Text and 
Images that provide their label, the Image Map contains an 
image and a set of polygons which represent the clickable 
areas.  

The Edit interactor can be refined into Text Field (a field 
for entering text on a single row),  Text Area (a field for 
entering text on multiple lines), Spin Box  (a field for 
entering numerical values buttons for increasing and 
decreasing the values), Track Bar (a bar with a draggable 
knob for entering values in a given range) and Map (a map 
control for entering positions). All of them may contain a 
list of texts and images that represents the element labels.  



 

 

Figure 3:  ASFE-DL UML class diagram (concrete desktop level) 

 

The Only Output interactor can be refined into a Text 
(which represent a textual content provided by the content 
attribute), an Image (which represent an image content) 
Table (which represent a set of contents displayed in a 
tabular form), an Audio (which represents an audio content, 
together with the controls for playing, pausing, stopping 
and change the position in the stream), a Video (which 
represents a video content, again together with the controls 
for playing, pausing, stopping and to change the position in 
the stream), or a  Progress Bar (which represents a bar that 
can be displayed in order to show the progress of an 
operation that may take a long time). 

The Single Choice interactor (Selection) can be refined into 
a Radio Button (which shows the choice elements together 
with an associated button for the selection), a List Box 
(which shows the choice elements grouped inside a box 
where it is possible to highlight one of them), a Drop Down 
List (which shows the currently selected object together 
with a button that allows the visualization of the other 
options), an Image Map (which allows the graphical 
selection of an area in an image), or a Calendar (which 
allows the selection of a date).  

The Multiple Choice interactor (Selection) may be refined 
into a Check Box (which displays the choice elements 



 

together with a check for selecting them) or  List Box (this 
time with the possibility to highlight more than one option).  

With respect to the Abstract Relationships,  some classes 
from the abstract level can be directly used also in the 
concrete desktop platform (e.g., Hierarchy, Repetition, 
Dependency). Other may be used either directly or through 
their refinements. The Grouping class can be directly used 
or, in addition, it is possible to use the Grid, the Tab and the 
List refinements that specify a different layout for the 
group. The Grid allows the designer to display the different 
contents in a table-like layout, without using a table. 
Therefore, in the grid specification, there are no headings 
for the rows and columns. The Tab element allows to 
display only one of the different TabElement contents at a 
given time. The List displays its inner contents using a 
bullet list. Also the Ordering Relation can be used directly 
or through its OrderedList subclass, which represents an 
ordered list of items.  

ADAPTATION RULE LANGUAGE 
In this section, we describe the Advanced Adaptation Logic 
Description Language (AAL-DL), which is used in the 
Serenoa EU FP7 project for describing when and how the 
applications should react to the context changes. Such 
adaptation logic should define the transformations affecting 
the interactive application when some specific situations 
occur both at the context level (e.g. an entity of the context 
changes its state), and in the interactive application (e.g. an 
UI event is triggered). 

In Figure 4 there is the UML class diagram representing the 
main classes, interrelationships, and attributes of the AAL-
DL. At the highest level we have the element RuleModel, 
which will contain a number of Rules, each one consisting 
of a triplet <Event, Condition, Action>. In addition, a rule 
could have an optional priority attribute (modelled through 
an integer value), to identify the rule which is the most 
likely to be triggered when multiple, conflicting rules occur 
simultaneously. 

The Event  part of a rule describes the event whose 
occurrence triggers the evaluation of the rule. It could 
specify elementary events occurring in the interactive 
application, or even a composition of events. The agent 
(user, platform or environment) responsible for the 
activation of the event can be optionally specified. The 
Condition of a rule is represented by a Boolean condition 
that has to be satisfied in order to execute the associated 
rule action(s). The Action part of the rule, as mentioned in 
the previous section, is shared with the ASFE-DL language. 
This part allows to define which changes should be 
performed at runtime in order to react to the context 
change. It is worth pointing out that the actions may be 
expressed either at the abstract or at the concrete level. This 
means that it is possible to concentrate the adaptation 
behaviour, which is shared between all the different 
platforms into a single rule expressed at the abstract level.  

When the Rule Interpreter module in Figure 1 selects a rule 
that contains abstract actions, forwards it to all the Platform 
Adapters, which are able to interpret the action part binding 
the abstract interactors with their concrete counterparts.  

CONTEXT MANAGEMENT LANGUAGE 
Context information refers to the situation where the 
application is operating: user-related parameters (e.g., 
geographical position), capabilities of the 
software/hardware, environment light, etc., are considered 
to be part of the context of use. 

Among the benefits of context-aware applications, there is 
the possibility of retrieving information based on the user’s 
situation and of adapting the system behaviour. In general, 
context-awareness leads to an optimal utilization of the 
available resources. 

Exploiting context information, however, can be 
problematic due to some issues. Firstly, context information 
may change dynamically and thus needs to be monitored in 
real time. In addition, information often needs to be 
abstracted from data coming from several sensors, each of 
which has its own peculiarities 

In general terms, context management is responsible for the 
collection and processing of the information that 
characterizes the environment defined by the interaction 
between the user, the services and the devices. The context 
information is collected from various sources and should be 
represented formally in accordance with ontological 
resources described in order to be effectively understood 
and used for reasoning. High variability of contexts must be 
considered as these are changing over time. In this regard, 
in the Serenoa FP7 EU project, the Context Manager in 
Figure 1 provides the functionality for storing the various 
context entities into a centralised repository, where all the 
SFE may add, modify or delete information. Subscription 
for receiving asynchronous notifications about a value 
change for the specified context entity is also possible. 
Therefore, the context management language contains 
elements that allows different applications through different 
communication protocols to: 

 Insert an entity, i.e. adding it on the context 
management core. A type and a data field must be 
specified in order to create the entity. The context 
manager returns the entity identifier. 

 Query an entity, i.e. asking the context management 
core for the current definition of the entity. It returns 
the description of the entity. 

 Query all entities, i.e. getting the list of stored entities. 

 Update an entity with the specified data. This method 
merges the data of the entity with the provided data. 

 Delete an entity..  

 Reset an entity, i.e. clearing  its data field. 



 

 Subscribe for an entity update, specifying the entity 
identifier and the network address for receiving the 
notifications. This operation creates a subscription on 
entity updates for the specified network address (IP-
port). After the subscription, a message is sent back to 
the subscriber, for every modification of the entity 

(update, reset, delete), that specifies the current entity 
description. 

 Unsubscribe from an entity update, which removes a 
previously created subscription. 

 

 

Figure 4:  AAL-DL UML class diagram 

 

CONCLUSION AND FUTURE WORK 
In this paper we described an architecture for creating 
Service Front Ends that are able to adapt to different 
context of use. We described a set of modules that manage 
the different aspects of adaptation, such as the design-time 
definition of the initial application configuration, the 
definition of the adaptation logic, the adaptation decision 
making process, and the execution of the adaptation logic 
on different platform. In addition, we described a set of 
languages that can be used for i) defining the User Interface 
structure ii) describing when the adaptation should take 
place and what are its effects and iii) interconnecting 

different context sensing devices and applications in order 
to create a shared representation of the context of use.  

In the future, we will extend the UI description language in 
order to cover more platforms. In addition, we will consider 
the inclusion in the AAL-DL of declarative rules the may 
be used for maintaining the consistency of the adaptation 
across various platform. Indeed, such kind of rules are 
suitable in order to express relationships that should hold 
when passing from a level to another.  

REFERENCES 
1. Feuerstack S., Pizzolato, E.; Building Multimodal 

Interfaces out of Executable, Model-based Interactors 



 

and Mappings; HCI International 2011; 14th 
International Conference on Human-Computer 
Interaction; J.A. Jacko (Ed.): Human-Computer 
Interaction, Part I, HCII 2011, LNCS 6761, pp. 221-228. 
Springer, Heidelberg (2011), 9-14 July 2011, Orlando, 
Florida, USA. 

2. Jouault, F. and Kurtev, I. Transforming Models with 
ATL. Lecture Notes in Computer Science, 2006, 
Springer, Volume 3844/2006, 128--138 

3. Limbourg, Q., Vanderdonckt, Q., Michotte, B., 
Bouillon, L., López-Jaquero, V.: USIXML: A Language 
Supporting Multi-path Development of User Interfaces. 
EHCI/DS-VIS 2004: 200-220 

4. Paternò, F., Santoro C., Spano, L.D., MARIA: A 
Universal Language for Service-Oriented Applications 
in Ubiquitous  Environment", ACM Transactions on 
Computer-Human Interaction, Vol.16, N.4, November 
2009, pp.19:1-19:30,  ACM Press. 

5. Salber, D., Anind, D., Abowd, G. 1999. The context 
toolkit: Aiding the development of context-enabled 
applications. In Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems. ACM (1999), 
pp. 434–441 

6. Seissler, M., Breiner, K., Meixner, G.: Towards Pattern-
Driven  Engineering of Run-Time Adaptive  User 
Interfaces for Smart Production  Environments. 
Proceedings of the 14th International  Conference on  
Human-Computer Interaction. Springer (2011) 

7. The CAMELEON Reference Framework, G. Calvary, J. 
Coutaz, D. Thevenin, L. Bouillon, M. Florins, Q. 
Limbourg, N. Souchon, J. Vanderdonckt, L.Marucci, 
F.Paternò, and C.Santoro, CAMELEON Project, 
September 2002. 

8. XSL Transformations (XSLT) Version 2.0. W3C 
recommendation, W3C, Feb. 2007. 
http://www.w3.org/TR/xslt20/ 

9. Octavia, J.; Vanacken, L.; Raymaekers, C.; Coninx, K.; 
Flerackers, E., Facilitating Adaptation in Virtual 
Environments Using a Context-Aware Model-Based 
Design Process, Proceedings TAMODIA 2009, LNCS 
5963, pp.58-71. 

10. Sottet, J.S., Ganneau, V., Calvary, G.,  Coutaz, J., 
Demeure, A., Favre, J.M., Demumieux R.: Model-
Driven Adaptation for Plastic User Interfaces. 
INTERACT (1) 2007: 397-410 

 


