Efficient in-memory data structures for n-grams
indexing

Daniel Robenek, Jan Platos, and Vaclav Snésel

Department of Computer Science, FEI, VSB — Technical University of Ostrava
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
{daniel.robenek.st, jan.platos, vaclav.snasel}@vsb.cz

Abstract. Indexing n-gram phrases from text has many praictipplications.
Plagiarism detection, comparison of DNA of sequencespam detection.
In this paper we describe several data structikeshiash table or B+ tree that
could store n-grams for searching. We perform tistsshows their advantages
and disadvantages. One of neglected data struftutbis purpose, ternary
search tree, is deeply described and two perforenangrovements are
proposed.

Keywords: n-gram, ternary tree, B+ tree, hash table

1 Introduction

N-gram is a sequence of elements, i.g. words iuch@nt or words in phrase. These
n-grams are used within text operations or text mamsons. It mainly goes about
finding plagiarisms, spam detection or comparisbseguences of DNA.

The first problem that occurs within a text compani is the extraction of n-grams
itself. It is generally solved by floating windowofm the beginning to the end of the
document. By extraction it is needed to eliminatglitated n-grams, store the
frequency of their appearance or their position tive document for further
comparison.

After finishing the extraction it is needed to look in the n-grams database.
Searching has to be quick even though the amourdatd is within gigabytes.
Sophisticated data structures were invented fos thirpose to provide effective
access to searching.

In the following article, the use of the ternaryassh tree (TST) is described as a
data structure to search n-grams. There are temie o compare ternary search tree
to the other commonly used data structures fordimgen-grams.

V. Snésel, K. Richta, J. Pokorny (Eds.): Dateso 2013, pp. 48-58, ISBN 978-80-248-2968-5.

Efficient in-memory data structures for n-grams indexing 49

2 Related Work

The text n-grams extraction is the first part nekfte the future use. We are not
interested about all n-grams but the specific dhas occur in text at least m-times
[8]. It's because we're comparing similarity of doents, respectively the mostly
repeated parts of them. In case of huge texts asch5T TREC ClueWeb-B, the use
of the ordinary data structures is, such as hdslb ta search trees, mainly ineffective
because the amount of the data cannot be stordse IRAM. Hard drive can be used
as a temporary storage where the preprocessedcdatae stored [4]. The second
option is to utilize structures like a B+ tree oagh table to manage this amount
of data [6].

Within the extraction is also mainly stored theoimhation about n-gram position
in the document. To save space, it is appropriatstare this information without
redundancy. The use of double indexing for thisecasms shown within data
collections PROTEIN-10M, PROTEIN-100M and PROTEIS-Due to the size of
the index was reduced 1.9 to 2.7 times and thekegreed increased up to 13 times
[5].

One opportunity how to process the n-grams is doestomplete text of this n-
gram in a data structure [3]. Effective tool foorstg the data is for example the
ternary search tree [10] in which every node stonéermation about one n-gram
character. As shown by tests on collections GodjébIT and English Gigaword
corpus is the data structure fast enough [3].

However, storing whole n-grams in a data structemsiderably increases memory
requirements. For this case it is better to usedata structures where the words in n-
grams are at first converted to unique numbersany after that the numbers are
processed by data structure [1,6]. The most uséa steucture to map the words to
numbers in n-grams is the hashmap [11]. The haslsn#panks to its properties, fast
enough and memory effective to convert words to bens It is ideal in cases where
there is beforehand known the word count.

To store n-grams or the words indexes containetthém is widely used B+ tree
[1]. It is no wonder because this data structure @esigned to search effectively also
with regard to the lack of the memory. In everyl oélthe B+ tree is stored whole n-
gram, which is used for comparison during the deprocess [2].

This attitude was tested on data collection Webidr&m corpus, which contains
over 88GB data separated to collection of unigram$-grams. Thanks to word
indexing and the use of B+ trees it was managedoiee the whole data collection on
598 MB of memory [1]. In this case there is no peobto have the data in memory
and thus avoid using slow hard drives. The creatiothe indexes for 5-grams itself
takes approximately an hour but it lasts only 2ges to look up 1,000 5-grams.

One of the key requirements to look up n-gram&ésapportunity to use wildcard
placeholders, for example when is suitable to looly for particular similarity. When
indexing both words and n-grams is first necessafind a range of words in the first

50 Daniel Robenek, Jan Platos, Vaclav Snasel

index. However, this is only possible when the ieteare sorted with the words. If
this case is fulfilled, it is easy to look up usithata structures like B+ tree [1].

3 Data Structures

There is a huge amount of data structures, whiehtlus pair<key, value> to store
data. They are mainly called the map. The selecfddeal data structure is not quite
easy task. Mainly there is also need to accountyipe of data, which will be stored
simultaneously with the data structure concept.

The array of pairskey, value> can be presented as the easiest data structure.
find the required element it is needed to go thhotlig whole array of elements or the
half in the average case. This access is, howaaste of the computing resources.

For faster search the binary search can be usegsd @, we need that the array of
elements is sorted. In case of adding one elenmetiitel array there is need to move
the half of the array elements in average.

There were more complex data structures inventéichvare far more effective
when inserting new element in the array or lookipgone from the array. These will
be described in the following paragraphs.

3.1 Hash Table

Hash table is a data structure, which associatesatlue of the key with the required
value. The straight access in the array is usegtahe value. The hash is used as th
index, which is computed from the key.

Algorithm of hash computation cannot be easily dedl It has to have many
properties, which ensure that this data structuite be enough effective. The key
requirement is, that the probability of the samshhappearance is minimal for the
given data. Furthermore, the resulting hash hdetm a range of the array size. It is
computed by the modular arithmetic [7].

The data table is composed by array, whose elenagatthe pairskey, value>.
However, there is a pointer to the pair stored nudten. It is appropriate because the
hash table is not always filled, so in these cdkesfree cells would only occupy
memory.

In case that the given hash exists in the data tall for the different key, there are
two methods to solve such a collision. The firsthefse uses a concatenation of store:
pairs to form a linked list. In case of looking thyere is every hash of the key testec
until the agreement occurs or the end of the tslileached.

For the following tests there is the djb2 algorithsed to hash the text

Efficient in-memory data structures for n-grams indexing 51

The second attitude is so called open addressih@ghwcomputes an alternative
position for the given hash up to time when theitosis free. In this case there is
need to go through all of the alternative spacd tm given key is found. For this
attitude the table has to be larger than the cotitite elements.

Whereas the hash function is used for indexing,rtfiggams can be indexed by
only ordering unigrams one by one. The hash is themputed out of these
concatenated unigrams.

3.2 B+ Tree

B+ tree is a tree structure outgoing of B-tree. ®hly main difference is that B+ tree
has values stored only in leaves. Every node ofreecontains the array of the keys
and the array of the pointers to the following node
Using the sequence searching or binary searchpdhreof keys is found, which
limits the search key. Its index is used to foumel mext node. This attitude is used to
get to the leave, which contains a reference twéhge of the given key.
Requirements to B+ tree can be summarized to flewiog 4 points:

Root hadN children at maximum
- Every node besides root has at the maximhnand at the minimuniN/2
children

Data are stored only in leaves

All the leaves has equal level, they are in theesdapth

By fulfilling these requirements the tree structisdormed. This structure is always
balanced. The advantage of tree structures denVdRHrees is, that by storing the

data to the hard drive, the size of the node caadlapted to the hard drive sector size
N-grams can be stored as sequences in B+ treeddi$advantage of this attitude is
the need always to compare the same prefixes ofiesegs during the key

comparisons, which decelerates the search itself.

3.3 Ternary AVL Tree

Binary search tree (BST) is a data structure, whimfsists of vertices, which always
contains the value and edges. It exists one reoteht and every vertex contains two
edges to the following vertices. One edge pointhéovertex, whose value is always
bigger and the second edge points to the vertexs&kalue is smaller.

To look up an element it is enough to start at thet and with the simple
comparison go through the tree to the requiredltteEbanks to this, the searching
in the tree achieves an average comple®itypg, n), wheren substitutes the number
of the tree elements.

52 Daniel Robenek, Jan Platos, Vaclav Snasel

During the tree creation the undesirable situattan happen due to miserably
ordered data when the linked list is created imstdaree. For example when the data
are ordered ascending by value, the tree is créatetlich every node has only right
child. The created tree has complexity of searcldafined asO(n/2) in average.
Mainly this extreme case does not occur but unlceldriree has far worse time for
look up of elements than a balanced tree. Thislpnolzan be solved using one self-
balancing tree, for example AVL tree [9]. It god®mat binary search tree, which in
addition fulfills the condition that the length tife left and the right subtree of node
differentiates by 1 at maximum. This is ensuredshitree rotation when inserting
new node when needed.

This access increases the time severity when ingeaind deleting nodes but it
ensures more effective searching when insertingdamred data. Storing n-grams can
be done similarly as in case of B+ trees. It metlyas every node would contain
whole n-gram and the text of these n-grams woulddmpared when searching. But
still remains the problem when, at minimum, theniitsal prefix of the given keys
must be compared in given node. Ternary searchigrae adjusted version of binary
search tree where every node of the tree contaiospé two links to the following
nodes also one more link. This link points to thetrof the next ternary search tree,
which contains only a part of the key without thefix which defines the superior
tree.

For example, if we would like to index in ternamyasch tree the letters “ab”, the
first ternary search tree would contain the letsrand also contain the link to the
second one with the letter "b”.

As ternary search tree can also be unbalanced imgplyorse search times, it is
suitable to combine this data structure with thiélsslancing idea. For example the
self-balancing ternary AVL tree can be built, whigbuld have suitable properties for
future use.

In some cases there is a need to store createdrrde disc. There is one simple
solution. The tree itself is stored in the one dyitaarray, so by storing this array and
some necessary variables the backup is done. Tklgureate original tree is just
necessary to allocate new array, copy stored are ind copy stored variables.

34 Hybrid AVL Tree

Using the ternary search tree for storing wholgants can involve problems with the
depth of some binary search trees. We made a téstallection of 3-granfs where
the counts of the search trees in ternary seasgh wrere detected. Table 1 shows
result distribution of binary trees. It was fout@t more than 3 % of binary trees has
depth greater than 4. In addition these binarysti@e one of the most used binary
trees in the ternary tree.

2Random lines extracted from Web 1T 5-gram, 10 Ewanpenguages Version 1 collection

Efficient in-memory data structures for n-grams indexing 53

One option how to stop creating the binary searebstin case of occurrence so
deep tree is to change this tree to trees withiphltoots. This is attained by small
hash table, which is placed instead of root of lmary search tree. As a hash
function is used only modulo to obtain sufficieatiech speed. By test was found that
adding this hash table is effective at the momemmthe depth of the tree is greater
than 4.

Table 1. Depth of binary trees in ternary tree

BST depth 1,000,000 n-grams,000,000 n-grams10,000,000 n-grams
1 4,770,413 30,204,256 62,114,35(
2 239,038 1,188,767 2,522,381
3 103,559 489,166 1,010,70C
4 42,342 196,679 390,481
5 15,693 73,598 139,014
6 4,478 24,277 4,7099
7 983 7,821 14,392
8 82 847 1480

3.5 DoubleTernary Search AVL Tree

If we use n-gram as n-tuple of words, the considereedundancy occurs. Thanks to
the redundancy the consumption of the working mgnemnsiderably increases and
operations made with these n-grams are also slow.

If the n-gram can be divided to more words, thedsaand the n-grams composed
of these words can be indexed independently [1in@exing of the words is meant
the conversion from the text form of word to thearauic value. Occurrence of the
word in the text is repeated and therefore it igsable have these numbers unique
only when the words vary. Thanks to this, the reldunty can be avoided.

If the words are converted to numbers, the n-gtagifidoes not consist of the text
now, but of the indexes of numbers. With the usethd$ knowledge, the two
previously described ternary search trees canibedoDuring inserting the n-grams
to the tree it has to be divided by a set of symbBEesulting words are inserted into
the first ternary search tree, which stores thgumivalues of the word.

Every vertex in this tree stores one character keyaAfter getting a complete list
of indexes of words, the second tree is filledtHa second tree, every vertex stores
the index of the given word as a key.

The search process is similar. If no word is foimthe first tree, the given n-gram
surely not exists. If every word exists, the segnatess continues to the second tree
Similarly as by ternary search tree, also by douklmary search tree the self-
balancing AVL and hybrid AVL trees can be used.

54 Daniel Robenek, Jan Platos, Vaclav Snasel

4 TheAverage Timeand Space Complexity of Data Structures

Before the testing itself it is suitable to deserithe time complexity and space
complexity of described data structures. In theofeing article theM would
represent the n-gram count aNdvould represent the number of the words in n-grar
andP would represent the average length of the worhim-gram.

Hash table using a good hash function and enoughabiay has the time
complexity for the insert operation @(N*P). This is true when a hash function goes
through the whole sequence during the hash congutinthe element count is
unknown, there can occur the situation, when thecaled array of hash table is
insufficient and it decreases the efficiency of tlaa structure. At the moment there
is need to reallocate an array of hash table acdlaglate the hash for all the
elements.

A hash table includes keys and a table with thaetpas to these keys. This table is
usually greater than the elements count, so the wil be twice as large as the
elements count. In the case of sequence storiege tiave to be next to the key, the
pointer to the possible value. The conclusion & the space complexity is defined as
O(2*N + M*N*P + M).

Searching in B+ tree can be divided in two pamsthie first part there is need to
find the right link in the node. Whereas the valaes ordered, the binary search car
be used to search the value. In the second pamawe to the next level of the tree.
By searching the tree the time complexity is defiasO(logs(M) * log,(B)) whereB
defines the number of keys in the node.

In case of ternary search tree where every nodticenone character, link to the
left and to the right subtree and the link to thévteee which represents the next
character of the sequence. The time and also theespomplexity can be hardly
exactly determined because it mainly depends oodhat of the identical prefixes.

5 Data Sructures Comparison

In this section, tests of previously mentioned datactures will be performed. All
data structures will be tested on n-gram collegtiwhich contains 1,000,000 of n-
grams. Moreover there are four collections, 2-gramsr&ats, 4-grams and 5-grams.
This allows us to discover behavior of data strreguto different size of n-grams.
Average length of the n-gram of each collectiosliswn in Table 2. Only in Double
hybrid AVL tree and Double ternary AVL tree theseuised technique of separate worc
and n-gram indexing, that was previously mentioned.

3Data collection can be found at http://www.ngranfsffree.asp

Efficient in-memory data structures for n-grams indexing 55

Table 2. Average length of n-grams

2-gram| 3-gram| 4-gram| 5-gram
Avg. length [characters] 14.01 16.77| 20.40 24.65

There will be compared seven implementations o d#tuctures. Each test was
performed several times for better accuracy. Tesse performed on computer
with 2.0Ghz Core 2 Duo processor and 4GB RAM. Measents were performed by
per-process timer from the CPU.

25,00
—m— HashMap
20,00 :
/ —— std::unordered
e _map
15,00 e Hybrid AVL

tree
—— Ternary AVL

10,00 tree
—t—DB+ tree

MN Double hybrid

5,00 AVL tree
——Double ternary

¢J—H AL

2-grams 3-grams d-grams S-grams

Time [sec]

0,00

Fig. 1. Insert time comparison

5.1 Comparison by Time of Inserting

This test measures time that is necessary for m-gngertion. Each data structure is
separately created and filled up.

The result on Fig. 1 shows huge difference betwesrary tree data structures and
the others. This difference may be caused by balgngrocess due data insertion.
This deficiency could be solved by using anothgretyof self-balanced tree, for
example red-black tree.

Duration of hash table reallocation seems to béigible. The worst impact of n-
gram size is visible on double trees.

56 Daniel Robenek, Jan Platos, Vaclav Snésel

300 / —m— HashMap

/' —— std::unordered
2,50 g _map

/ Hybrid AVL tree
2,00

—s=<— Ternary AVL
1,50 1 tree
\J —— B+ tree

1,00
§ Double hybrid
5 AVL tree
E L5 r_—.=—_-——.——=-———'. —+— Double ternary
AVL tree
0,00

2-grams 3-grams J-grams S-grams

Fig. 2.Comparison of search time

5.2 Comparison by Time of Searching

Search is performed after n-gram insertion. Allrargs from collection are found and
time is measured. The result is shown in Fig. 2.

Results shows the best performance of hash tabdesttaictures. But on hash table
can't be efficiently performed search with wildcatdceholder.

Hybrid variants of ternary trees shows great spged-lybrid AVL tree has up to
29% better search performance than Ternary AVL #eel Double hybrid AVL tree
has up to 40% better search speed than Doublerye®d tree. Double hybrid AVL
tree has comparable results to B+ tree.

The result of B+ trefeshows significant increase of search time dependim n-
gram size. Moreover, the search time for 5-granaba@ut 0,41s greater than its insert
time. This can be partially caused by necessityonfiplete look up through the tree in
case of search. In the other hand, size of treease during insertion.

“The implementation of used B+ tree can be foundtgm/fpanthema.net/2007/stx-btree/

Efficient in-memory data structures for n-grams indexing 57

180

160 —#— HashMap

140
—— std::unordered_

120 d map. a s
Hybrid AVL tree

100
—«— Ternary AVL tree
20
—+— B+ tree
60
k_kH DRI
40 F _______..--: AVL tree
20 _ e —— —— Double ternary

AVL tree

Memory [MB]

2-grams 3-grams A-gzrams S-grams

Fig. 3. Comparison of memory consumption

5.3 Comparison by Space Complexity

Last performed test is focused on memory consumpdbdata structures. Result
shows difference of allocated memory before aner afata insertion.

Fig. 3 shows large memory requirements of Ternary &ee and Hybrid AVL
tree, mainly at 5-grams. This is caused by pergenghorter identical prefix of n-
grams. This problem solves double variant of tteésd.

Double ternary AVL tree has even lesser memory wonpdion than hash table and
B+ tree. The memory consumption is about 40% smalle

6 Conclusion

This paper described data structures for n-grareximgy such as Hash table, B+tree
and ternary trees. Moreover, several approachesnfproving ternary search tree
efficiency was proposed. The using of the hashetablthe 4% nodes of ternary tree
with large depth improved the tree efficiency by#0

58 Daniel Robenek, Jan Platos, Vaclav Snasel

Moreover, this paper shown that the separate indexif words and n-grams
greatly reduced the space complexity. The spacelexity of 5-grams reached only
25% originally required memory of ternary tree. TaBowing work will be pointed
to the detailed research of data structures fogximd) words and n-grams separately.
There will also be tested data structures with mbguirement to search with the
wildcard placeholder. Related to this will be explib data structures for indexing
multidimensional data.

Acknowledgement: This work is supported by Grant of SGS No. SP200,.3
VSB - Technical University of Ostrava, Czech Rejubl

7 References

1. Hakan Ceylan and Rada Mihalcea. 2011. An efficiedéxer for large N-gram corpora.
In Proceedings of the 49th Annual Meeting of thesdtsation for Computational
Linguistics: Human Language Technologies: Systemem@nstrations (HLT '11).
Association for Computational Linguistics, StroudshuPA, USA, 103-108.

2. Douglas Comer. 1979. Ubiquitous B-Tree. ACM Com&urv. 11, 2 (June 1979), 121-
137.

3. Michael Flor. US Patent, EDUCATIONAL TESTING SERE, Princeton, NJ (US).
Systems and Methods for Optimizing Very Large N+@r&ollections for Speed and
Memory [patent]. United States. Patent ApplicatPuablication, US 2011/0320498 Al.
Dec. 29, 2011.

4. Samuel Huston, Alistair Moffat, and W. Bruce Cr@®11. Efficient indexing of repeated
n-grams. In Proceedings of the fourth ACM interragiioconference on Web search and
data mining(WSDM '11). ACM, New York, NY, USA, 12734.

5. Min-Soo Kim, Kyu-Young Whang, Jae-Gil Lee, andnMae Lee. 2005. n-gram/2L: a
space and time efficient two-level n-gram invertedex structure. In Proceedings of the
31st international conference on Very large datsebdVLDB '05). VLDB Endowment
325-336.

6. Kratky, M.; Baca, R.; Bednar, D.; Walder, J.; Dkys].; Chovanec, P., "Index-based n-
gram extraction from large document collectionsdital Information Management
(ICDIM), 2011 Sixth International Conference on ,.vab., pp.73,78, 26-28 Sept. 2011

7. B.J. McKenzie, R. Harries, and T. Bell. 1990.e8thg a hashing algorithm. Softw. Pract.
Exper.20, 2 (February 1990), 209-224.

8. J. Pomikdlek and P. Rychly, “Detecting Co-Deiis@at Documents in Large Text
Collections,” in Proceedings of the Sixth InternatibLanguage Resources and Evaluatior
(LREC’08). Marrakech, Morocco. European Language RessuAssociation (ELRA),
2008, pp. 132-135.

9. Robert Sedgewick, Algorithms, Addison-Wesley, 39BN 0-201-06672-6, page 199,
chapter 15: Balanced Trees.

10. David E. Siegel. 1998. All searches are dividett three parts: string searches using
ternary trees. In Proceedings of the APL98 confazein Array processing language (APL
'98). ACM, New York, NY, USA, 57-68.

11. Justin Zobel, Steffen Heinz, and Hugh E. Wiliga 2001. In-memory hash tables for
accumulating text vocabularies. Inf. Process. [881.6 (December 2001), 271-277.

