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Abstract. Sets of attribute implications may have a certain degree of
redundancy and the notion of basis appears as a way to characterize the
implication set with less redundancy. The most widely accepted is the
Duquenne-Guigues basis, strongly based on the notion of pseudo-intents.
In this work we propose the minimal generators as an element to remove
redundancy in the basis.
The main problem is to enumerate all the minimal generators from a
set of implications. We introduce a method to compute all the minimal
generators which is based on the Simplification Rule for implications.
The simplification paradigm allows us to remove redundancy in the im-
plications by deleting attributes inside the implication without removing
the whole implication itself. In this work, the application of the Simpli-
fication Rule to the set of implications guides the search of the minimal
generators in a logic-based style, providing a deterministic approach.

1 Introduction

A concept is a general idea that corresponds to some kind of entities and that
may be characterized by some essential features of the class. When Wille [18]
conceived Formal Concept Analysis (FCA), he probably did not foresee the wide
diffusion of his original idea, both in the theoretical and in the applied areas.
Application areas of FCA ranges from data analysis, information retrieval, or
data mining to knowledge representation or the semantic web.

The main goal of Formal Concept Analysis is to identify the relationships
between sets of objects and sets of attributes from information in a binary table.
These relationships establish a Galois connection which allows us to identify the
concepts by using lattice theory. The construction of the lattice of concepts is
known to be a hard problem due to its exponential complexity. For this task,
probably the most cited method is the NEXTCLOSURE algorithm developed by
Ganter [5].

Apart from building the concept lattice itself, one of the key problems is to
extract the set of attribute implications which hold in the concept lattice. In
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real applications the size of the concept lattice is usually huge and is impossible
for the user to visualize it. Belohlavek and Vychodil developed [1] a method
of expressing implications by means of closure operators. The main effect is to
filter-out outputs to the user. The study of implications allowed those authors
to reduce the number of formal concepts extracted from the input data: “Using
background knowledge thus enables a focused extraction of knowledge and may
considerably reduce the amount of information presented to the user” [2].

The problem arises when the set of implications has a high degree of re-
dundancy: by the existence of redundant implications or redundant attributes
inside the implications. One desired goal in this area is to remove redundancy
and obtain a minimal basis. The most widely approach comes from the notion
of Duquenne-Guigues Basis [6] also called stem base. This basis is minimal w.r.t.
the number of implications, i.e. if one of the implications is removed from the
basis, there are non-redundant implications which are valid in the dataset and
cannot be inferred, using the Armstrong’s Axioms, from the new reduced basis.

Nevertheless, this notion of minimality and its associated redundancy may
be improved. To illustrate this assertion, we present here an example appeared
in [5, pp. 30 and 84] where Ganter presents a context of developing countries.
In the example, 130 countries and six attributes are considered: Group of 77,
Non-aligned, LLDC (Least Developed Countries), MASC (Most Seriously Af-
fected Countries), OPEC (Organization of Petrol Exporting Countries) and ACP
(African, Caribbean and Pacific Countries). Ganter builds the concept lattice
from this context and provides the following Duquenne-Guigues basis:

OPEC → Group 77, Non-aligned

MASC → Group 77

Non-aligned → Group of 77

Group 77, Non-aligned, MASC, OPEC → LLDC, ACP

Group 77, Non-aligned, LLDC, OPEC → MASC, ACP

Note, however, that in the last two implications, there still exist redundant
attributes in the left hand side, whereas in the first and in the last implications
the redundancy appears in the right hand sides. This implies that it is possible
to provide an equivalent and simpler set of implications:

OPEC → Non-aligned

MASC → Group 77

Non-aligned → Group of 77

MASC, OPEC → LLDC, ACP

LLDC, OPEC → MASC

Thus, we have an example in which the Duquenne-Guigues basis still can contain
redundant information. In order to obtain the latter basis it is necessary to
consider minimal generators instead of pseudo-intents.

Implications define a closure system, and for this reason, a closure system
can be replaced by their equivalent implications. The relationship between closed
sets and implications are the key of the attribute exploration techniques [8, 13].

In [12] we introduced a closure algorithm strongly based on the simplification
logic [3]. Here, our closure operator is used to guide the search of all the minimal
generators of the closed sets corresponding to a given set of implications.

Methods for obtaining generators of closed sets have been studied in [4,10,17].
Minimal generators [14–16] appear in the literature under different names in
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various fields. For instance, in relational databases they are called minimal keys.
In [17], the authors emphasize the importance of studying minimal generators
although “they have been paid little attention so far in the FCA literature”.

We would like to provide, in a further step, an alternative definition of ba-
sis built around the notion of minimal generator, since our goal is to avoid
redundancy inside the implications, instead of just minimizing the number of
implications. As a preliminary step, we have to design a method to enumerate
all the minimal generators and their corresponding closed sets.

This paper is structured in the following way: in Section 2 some preliminaries
about formal concept analysis and the Simplification paradigm are presented. In
Section 3 a method to enumerate all the minimal generators from an implication
set is introduced and in subsection 3.2 the algorithm is modified to compute the
non-trivial minimal generators. The paper ends with a section on conclusions
and prospects for future work.

2 Preliminaries

2.1 Formal Concept Analysis

Intuitively, Formal Concept Analysis (FCA) provides methods to describe the
relationship between a set of objects and a set of attributes. A formal context
is a triple K := (G,M, I) where G is a set of objects, M is a set of attributes
and I ⊆ G×M is a binary relation between G and M such that, for o ∈ G and
a ∈ M , o I a means that the object o has the attribute a. From this triple two
mappings can be defined. One of them ( )′ : 2G → 2M is defined for all A ⊆ G as
A′ = {m ∈M | g I m for all g ∈ A}. The other one, ( )′ : 2M → 2G is defined for
all B ⊆ M as B′ = {g ∈ G | g I m for all m ∈ B}. Both mappings are denoted
by the same symbol because no confusion arises. This pair of mappings is a
Galois connection and both are antitone mappings (A1 ⊆ A2 implies A′

2 ⊆ A′
1

for all A1, A2 ⊆ G, and, for all B1, B2 ⊆M , if B1 ⊆ B2 then B′
2 ⊆ B

′
1)

The composition of the intent and the extent mappings, and vice versa, give
us two closure operators ( )′′ : 2G → 2G and ( )′′ : 2M → 2M . That is, both are
extensive (X ⊆ X ′′), idempotent ((X ′′)′′ = X ′′) and isotone (if X1 ⊆ X2 then
X ′′

1 ⊆ X ′′
2 ). In order to make this work self-contained, the notion of closed set

(as a fixpoint of a closure operator) is defined below:

Definition 1. A formal concept is a pair (A,B) such that A ⊆ G, B ⊆ M ,
A′ = B and B′ = A. Consequently, A and B are closed sets of objects and
attributes, respectively called extent and intent.

It is well-known that the set of formal concepts is a complete lattice, the con-
cept lattice associated to the context, with the following partial ordering
is considered:

(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or equivalently B1 ⊇ B2)

Related to the notion of closed set, the minimal generator (mingen) and
implication are defined as follows:
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Definition 2. Let K = (G,M, I) be a formal context and A ⊆ M . The set
of attributes A is said to be a minimal generator (mingen) if, for all set of
attributes X ⊆ A if X ′′ = A′′ then X = A.

Attribute implication allows us to capture all the information which can be
deduced from a context. They are expressions A → B being A and B sets of
attributes. A context satisfies the implication A→ B if every object that has all
the attributes from A also has all the attributes from B.

Definition 3. An (attribute) implication of a formal context K = (G,M, I) is
defined as a pair (A,B), written A→ B, where A,B ⊆ M . Implication A→ B
holds (is valid) in K if A′ ⊆ B′.

The set of all valid implications in a context satisfies the well-known Arm-
strong’s axioms:

[Ref]
A ⊇ B

A→B
, [Augm]

A→B

A ∪ C→B ∪ C
, [Trans]

A→B, B→C

A→C

An implication basis of K is defined as a set L of implications of K from which
any valid implication for K can be deduced by using Armstrong rules. The goal
is to obtain a implication basis with minimal size. This condition is satisfied by
the so-called Duquenne-Guigues basis [6] or stem basis, which is built over the
set of the pseudo-intents [5].

As we have illustrated in the introduction, the definition of the Duquenne-
Guigues basis refers to minimality only in the size of the set of implicants, but
redundant attributes use to appear in this kind of minimal basis. This situation
comes from the use of pseudo-intents in the construction of the basis. To avoid
redundant attributes, we propose to consider minimal generators in the left hand
side of the implications. In this work we do not provide such alternative definition
of minimal basis, but focus on the problem of enumerating all the minimal
generators. This is the main goal of Section 3, but before we need to recall the
basics of the simplification logic.

2.2 Simplification logic and closures

Armstrong’s axiom system has influenced the design of several logics for func-
tional dependencies [9,11], all of them built around the transitivity paradigm. In
this section, we summarize the axiom system of Simplification Logic for Func-
tional Dependencies SL

FD
. It avoids the use of transitivity and is guided by

the idea of simplifying the set of functional dependencies by efficiently removing
some redundant attributes [3].

To begin with, SL
FD

logic considers reflexivity as axiom scheme

[Ref]
A ⊇ B

A→B

together with the following inference rules called fragmentation, composition and
simplification respectively.
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[Frag]
A→B ∪ C

A→B
[Comp]

A→B, C→D

A ∪ C→B ∪D
[Simp]

A→B, C→D

A ∪ (C rB)→D

The equivalence between SL
FD

logic and Armstrong’s Axioms and an ef-
ficient algorithm to compute the closure of a set of attributes were proposed
in [12]. We have also conducted a comparison to other closure algorithms in the
literature in order to prove the better performance of our logic-based system.
The main advantage of SL

FD
is that inference rules can be considered as equiva-

lence rules, and that is enough to compute all the derivations (see [12] for further
details).

Proposition 1. Let A,B,C,D sets of attributes. In SL
FD

logic, the following
equivalences hold:

1. {A→B} ≡ {A→B rA}

2. {A→B,A→C} ≡ {A→B ∪ C}
3. A ∩B = ∅ and A ⊆ C imply {A→B,C→D} ≡ {A→B,C rB→D rB}

It is well-known that, given a basis of a context, the closure of attribute sets
defined based on Armstrong’s axioms coincides with the closure ()

′′

: 2M → 2M .
On the other hand, Armstrong’s axioms and the axiom system in SL

FD
logic

are equivalent.

Definition 4. Let Γ be a set of implications and A be a set of attributes. The
closure of A in SL

FD
logic is defined as the maximum set of attributes A+ such

that Γ ⊢ A→A+.

Theorem 1. Let K = (G,M, I) a formal context and Γ a basis for K. For all
A ⊆M , the equality A+ = A′′ holds.

As we have said, in [12] we present a novel algorithm to compute closures using
SL

FD
Logic. The formula ∅→A is used as a seed by the reasoning method to

render the closure A+ of A (which coincides with A′′) just by applying some
operators based on the [Simp] inference rule. The algorithm is based on the
following results:

Theorem 2. Let A and B be sets of attributes and Γ be a set of implications.

Γ ⊢ A→B if and only if {∅→A} ∪ Γ ⊢ {∅→B}

The closure algorithm is based on the previous theorem and the systematic
application of the following equivalences which are direct consequences of the
simplification equivalence (item 3 in Proposition 1).

Proposition 2. Let A,B and C be sets of attributes, then the following equiv-
alences hold:

– Eq. I: If B ⊆ A then {∅→A,B→C} ≡ {∅→A ∪ C}.
– Eq. II: If C ⊆ A then {∅→A,B→C} ≡ {∅→A}.
– Eq. III: Otherwise {∅→A,B→C} ≡ {∅→A,B rA→C rA}.
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Given a set of implications Γ and a set of attributes A, the execution of the
SL

FD
closure method begins with the construction of the guide ∅→A. The three

equivalences are systematically applied to Γ , which produces a growth of the
guide. When none of the three equivalences can be applied, in the guide we have
the closure.

Method 1 Let Γ be a set of implications and A a subset of attributes. The
following method computes the closure A+ of the set A w.r.t. Γ :

1. Build the guide as follows {∅→A}
2. While there exist B→C ∈ Γ such that A ∩ B 6= ∅ or A ∩ C 6= ∅ (being
{∅→A} the guide in this state of the execution), execute the corresponding
equivalence:
– If B ⊆ A then remove B→C from Γ and change the guide {∅→A} by
{∅→A ∪ C}.

– If C ⊆ A then remove B→C from Γ .
– Otherwise substitute B→C by B rA→C rA in Γ .

3. If {∅→A} is the guide (in this state) then return A.

Example 1. Let Γ = {ab→c, bc→d, de→f, ce→f} and A = de. The following
table summarizes the execution of Method 1 to compute A+ = def .

Guide Γ
∅→de ab→c bc→d de→f ce→f

∅→de ab→c bc→6d 6d6e→f c6e→f
∅→def ab→c c→6f
∅→def ab→c

The new closure operator was proven to be faster than other closure algo-
rithms [12]. Finally, it is possible to define a modification of the closure algorithm
to return not only the closure but also the resulting set Γ . This algorithm will
be denoted by Cls. So, considering the previous example,

Cls(de, {ab→c, bc→d, de→f, ce→f}) = (def, {ab→c})

3 Computing all mingens from a basis

In this section, we present how the Simplification paradigm can be considered
as a powerful tool to guide the search of all minimal generator sets. In the
first method we present here, we will compute mingens (the set of all minimal
generators) from a set of implicant set. The algorithm works by applying the
SL

FD
Closure algorithm to the set of implications. This application provides a

new candidate to be added to mingen and a smaller implications set which guides
us in the search of new sets of attributes to be added to mingens.

The input of this algorithm is a set of attributes M and a set of implications Γ
over the attributes in M . The output is the set of closed sets endowed with all
the mingens that generate them, i.e.
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{〈C,mg(C)〉 : C is a closed set of attributes}

where mg(C) = {D : D is a mingen and D+ = C}.
For example, if M = {a, b, c} and Γ = {a→b, b→a} the output must be

{〈abc, {ac, bc}〉, 〈ab, {a, b}〉, 〈c, {c}〉, 〈∅, {∅}〉}

It can be seen as the concept lattice in which we have added labels with the
mingens to each closed set.

With this idea we are going to need operators that allow us to work with this
kind of sets, i.e. sets of pairs 〈A,B〉 such that A ⊆M is an intent and B ⊆ 2M

satisfies the following conditions:

1. X ⊆ A for all X ∈ B.
2. X,Y ∈ B and X ⊆ Y imply X = Y .

This kind of sets are called labeled set of intents (LSI). Given two LSIs Φ and
Ψ , we define the join of both, Φ ⊔ Ψ , as the the minimum LSI that satisfies:

– If 〈A1, B1〉 ∈ Φ and A1 6= A2 for all 〈A2, B2〉 ∈ Ψ then 〈A1, B1〉 ∈ Φ ⊔ Ψ
– If 〈A1, B1〉 ∈ Ψ and A1 6= A2 for all 〈A2, B2〉 ∈ Φ then 〈A1, B1〉 ∈ Φ ⊔ Ψ
– If 〈A,B1〉 ∈ Ψ and 〈A,B2〉 ∈ Φ then 〈A,B3〉 ∈ Φ ⊔ Ψ being B3 the set of minimal

elements of B1 ∪B2.

We define an operator, the trivial operator, that given M and Γ returns the
following LSI:

trv(M,Γ ) = {〈X, {X}〉 : X ⊆M with A 6⊆ X for all A→B ∈ Γ}

For example, trv({a, b, c}, {a→b, b→a}) = {〈c, {c}〉, 〈∅, {∅}〉}.
We will also need a way to add a pair to an LSI; it is defined as follows:

Add(〈C, {D}〉, Φ) = {〈A ∪ C, {X ∪D : X ∈ B}〉 : 〈A,B〉 ∈ Φ}

For example,

Add(〈ab, {a}〉, {〈c, {c}〉, 〈∅, {∅}〉}) = {〈abc, {ac}〉, 〈ab, {a}〉}

Add(〈c, {c}〉, {〈ab, {a, b}〉, 〈∅, {∅}〉}) = {〈abc, {ac, bc}〉, 〈c, {c}〉}

3.1 MinGen Algorithm

We already have all the tools needed to define the algorithm, which is introduced
below, together with an illustrative example of its application.

Example 2. We want to compute

MinGen({a, b, c, d}, {a→b, c→bd, bd→ac})

Step 1. Φ = trv({a, b, c, d}, {a→b, c→bd, bd→ac} =
= {〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
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Algorithm 1: MinGen

Data: M,Γ
Result: Φ

begin
if Γ = ∅ then

Φ = trv(M,Γ )
else

Let Φ = trv(M,Γ );
foreach A→B ∈ Γ do

Let (A+, Γ ′) = Cls(A,Γ );
Let Φ := Φ ⊔ Add(〈A+, {A}〉, MinGen(M rA+, Γ ′);

Return Φ

Step 2. Considering a→b ∈ Γ ,

Cls(a, Γ ) = (ab, {c→d, d→c})

and call to MinGen({c, d}, {c→d, d→c})

∅→a a→b c→bd bd→ac

∅→a 6a→b c→bd bd→6ac
∅→ab c→6bd 6bd→c

Step 2.1. This label (2.1) points that we have passed to a lower level, i.e. we have made
a recursive call to the procedure.

Φ1 = trv({c, d}, {c→d, d→c} = {〈∅, {∅}〉}

Step 2.2. Considering c→d ∈ Γ1,

Cls(c, Γ1) = (cd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→c c→d d→c

∅→c 6c→d d→6c
∅→cd

And so Φ1 = {〈∅, {∅}〉} ⊔ Add(〈cd, {c}〉, {〈∅, {∅}〉})
= {〈cd, {c}〉, 〈∅, {∅}〉}

Step 2.3. Considering d→c ∈ Γ1,

Cls(d, Γ1) = (cd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→d c→d d→c

∅→d c→6d 6d→c
∅→cd

And so
Φ1 = {〈cd, {c}〉, 〈∅, {∅}〉} ⊔ Add(〈cd, {d}〉, {〈∅, {∅}〉})

= {〈cd, {c, d}〉, 〈∅, {∅}〉}
Returning to the higher level,

Φ = {〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉} ⊔ Add(〈ab, {a}〉, {〈cd, {c, d}〉, 〈∅, {∅}〉})
= {〈abcd, {ac, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Step 3. Considering c→bd ∈ Γ ,

Cls(bc, Γ ) = (abcd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→c a→b c→bd bd→ac

∅→c a→b 6c→bd bd→a6c
∅→bcd a→6b 6b6d→a
∅→abcd

Φ = {〈abcd, {ac, ad}〉, 〈ab, {a}〉〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
⊔ Add(〈abcd, {c}〉, {〈∅, {∅}〉})
= {〈abcd, {c, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
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Note that {〈abcd, {ac, ad}〉} ⊔ {〈abcd, {c}〉} = {〈abcd, {c, ad}〉}.

Step 4. Considering bd→ac ∈ Γ ,

Cls(bd, Γ ) = (abcd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→bd a→b c→bd bd→ac

∅→bd a→6b c→6b6d 6b6d→ac
∅→abcd

Φ = {〈abcd, {c, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
⊔ Add(〈abcd, {bd}〉, {〈∅, {∅}〉})
= {〈abcd, {c, ad, bd}〉, 〈ab, {a}〉〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Finally, the algorithm returns

{〈abcd, {c, ad, bd}〉, 〈ab, {a}〉〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

3.2 Non-trivial minimal generators.

Notice that the first method we have just introduced computes all minimal
generators, including trivial mingens with non-relevant information.

In this subsection, we slightly modify the previous algoritm to produce only
the relevant information (not trivial mingens), by considering that trv(M,Γ )
returns always only {〈∅, {∅}〉}. This new algorithm is called L MinGen0.

Fig. 1. SL
FD

guides the construction of the MinGen set
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Example 3. We want L to compute

MinGen0({a, b, c, d, e, f}, {a→b, bc→d, de→f, ace→f})

The full execution of the method MinGen0 is depicted in Figure 1. In Figure 2
we show the lattice of closed sets built with the non-trivial mingens provided by
MinGen0.

Fig. 2. Lattice of minimal generators

Step 1. Φ = {〈∅, {∅}〉}
Step 2. Considering a→b ∈ Γ , compute

Cls(a, Γ ) = (ab, {c→d, de→f, ce→f})

Now we compute MinGen0({c, d, e, f}, {c→d, de→f, ce→f})
Step 2.1. Φ1 = {〈∅, {∅}〉}
Step 2.2. Considering c→d ∈ Γ ′, compute Cls(c, Γ ) = (cd, {e→f}). Now we are going
to compute MinGen0({e, f}, {e→f}).
Step 2.2.1 Φ1.1 = {〈∅, {∅}〉}
Step 2.2.2 Considering e→f ∈ Γ ′′, Cls(e, Γ ′′) = (ef,∅). And so

Φ1.1 = {〈∅, {∅}〉} ⊔ Add(〈ef, {e}〉, {〈∅, {∅}〉})
= {〈ef, {e}〉, 〈∅, {∅}〉}

Returning to the higher level,

Φ1 = {〈∅, {∅}〉} ⊔ Add(〈cd, {c}〉, {〈ef, {e}〉, 〈∅, {∅}〉})
= {〈cdef, {ce}〉, 〈cd, {c}〉, 〈∅, {∅}〉}

Step 2.3. Considering de→f ∈ Γ ′, Cls(de, Γ ) = (def,∅). Moreover, MinGen0({c},∅) =
{〈∅, {∅}〉}

Φ1 = {〈cdef, {ce}〉, 〈cd, {c}〉, 〈∅, {∅}〉} ⊔ Add(〈def, {de}〉, {〈∅, {∅}〉})
= {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉}

Step 2.4. Considering ce→f ∈ Γ ′, compute Cls(ce, Γ ) = (cdef,∅). Moreover MinGen0(∅,∅) =
{〈∅, {∅}〉}

Φ1 = {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉} ⊔ Add(〈cdef, {ce}〉, {〈∅, {∅}〉})
= {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉}
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Returning to the high level,

Φ = {〈∅, {∅}〉} ⊔ Add(〈ab, {a}〉, {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉})
= {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈abcd, {ac}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

Step 3. Considering bc→d ∈ Γ , Cls(bc, Γ ) = (bcd, {e→f, ae→f}). Now we compute
MinGen0({a, e, f}, {e→f, ae→f}).
Step 3.1. Φ2 = {〈∅, {∅}〉}
Step 3.2. Considering e→f ∈ Γ ′, compute Cls(e, Γ ) = (ef,∅) and MinGen0({a},∅) =
{〈∅, {∅}〉}

Φ2 = {〈∅, {∅}〉} ⊔ Add(〈ef, {e}〉, {〈∅, {∅}〉}) = {〈ef, {e}〉, 〈∅, {∅}〉}

Step 3.3. Considering ae→f ∈ Γ ′, Cls(ae, Γ ) = (aef,∅). Moreover MinGen0(∅,∅) =
{〈∅, {∅}〉}

Φ2 = {〈ef, {e}〉, 〈∅, {∅}〉} ⊔ Add(〈aef, {ae}〉, {〈∅, {∅}〉})
= {〈aef, {ae}〉, 〈ef, {e}〉, 〈∅, {∅}〉}

Returning to the high level,

Φ = {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈abcd, {ac}〉, 〈ab, {a}〉, 〈∅, {∅}〉}
⊔Add(〈bcd, {bc}〉, {〈aef, {ae}〉, 〈ef, {e}〉, 〈∅, {∅}〉})
= {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈abcd, {ac}〉, 〈ab, {a}〉, 〈∅, {∅}〉}
⊔{〈abcdef, {abce}〉, 〈bcdef, {bce}〉, 〈bcd, {bc}〉}
={〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈bcdef, {bce}〉, 〈abcd, {ac}〉,
〈bcd, {bc}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

Notice that the last application of the ⊔ operator does not add the set {abce} to mingen
because it produces the same closed set than {ace}. Thus, in Figure 1 this leaf appears
with gray color.
Step 4. Considering de→f ∈ Γ , renders

Φ = {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈bcdef, {bce}〉, 〈abcd, {ac}〉,
〈bcd, {bc}〉, 〈def, {de}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

Step 5. Considering ace→f ∈ Γ , renders

Φ = {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈bcdef, {bce}〉, 〈abcd, {ac}〉,
〈bcd, {bc}〉, 〈def, {de}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

4 Conclusions and future works

In this work we have proposed the minimal generators as a basic notion to
remove redundancy in sets of implications. To achieve this goal, the first step
is to design a method to compute all minimal generators corresponding to a
set of implications. The simplification paradigm is the key to design the MinGen

and MinGen0 algorithms. The application of SL
FD

closure algorithm guides the
search of minimal generators.

As future work we will present a thorough study about the soundness, com-
pleteness, and complexity of the mingens algorithms, which have not been in-
cluded here due to space limitations; moreover, a definition of basis center within
the notion of minimal generators will be studied, together with a method to com-
pute such a basis.
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