
The lattie of all betweenness relations :Struture and propertiesLaurent Beaudou, Mamadou Moustapha Kanté, and Lhouari NourineClermont Université, Université Blaise Pasal, LIMOS, CNRS, Franelaurent.beaudou�univ-bplermont.fr, {mamadou.kante,nourine}�isima.frAbstrat. We onsider impliation bases with premises of size exatly
2, whih are also known as betweenness relations. Our motivations isthat several problems in graph theory an be modelled using betweennessrelations, e.g. hull number, maximal liques. In this paper we haraterizethe lattie of all betweenness relations by giving its poset of irreduibleelements. Moreover, we show that this lattie is a meet-sublattie of thelattie of all losure systems.1 IntrodutionA onvexity spae on a ground set X is a subset of 2X that is losed underintersetion. Convexity spaes were studied in [13℄ and are sometimes alledClosure systems. The members of a onvexity spae are alled onvex sets. Sinethe paper [13℄, onvexity spaes are studied by several authors who desribeseveral of their properties (see the joint paper [8℄ of Edelman and Jamison for alist of publiations during the eighties), in partiular the set of onvexity spaesforms a lattie.In this paper we deal with betweenness relations whih are speial ases ofonvexity spaes. The notion of betweenness relation has appeared in the earlytwentieth entury when mathematiians foused on fundamental geometry [4℄.A betweenness relation B on a �nite set X is a set of triples (x, y, z) ∈ X3.The most intuitive betweenness relations are those oming from metri spaes(a point y is between x and z if they satisfy the triangular equality). A onvexset of a betweenness relation B is a subset Y of X suh that for all (x, y, z) ∈ B,if {x, z} ⊆ Y , then y ∈ Y . It is well-known that the set of onvex sets ofa betweenness relation is a onvexity spae. Betweenness relations have beenthoroughly studied by Menger and his students [16℄. Other betweenness relationshave arisen in researh �elds as probability theory with the work of Reihenbah[18℄. Betweenness relations have been also studied in graphs in order to generalizegeometrial theorems [1,2,9℄ (see the survey [17℄ for a non exhaustive list ofbetweenness relations on graphs).We are interested in desribing the set of all betweenness relations on aground set X . We prove that the set of all onvexity spaes on X derived frombetweenness relations on X forms a lattie and is in fat a meet-sublattie of thelattie of all onvexity spaes on X (we give an example showing that it is not
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a sub-lattie). We also desribe the set of meet and join-irreduible elements ofthe lattie. We onlude by showing that the set of onvexity spaes obtainedfrom lique betweenness relations on graphs is a sublattie of the lattie of allonvexity spaes of betweenness relations.This paper is motivated by understanding links between several parametersthat are onsidered in di�erent areas suh as FCA, database, logi and graphtheory.Summary. Notations and de�nitions are given in Setion 2. The desription ofthe lattie of onvexity spaes of betweenness relations is given in Setion 3. Theonvexity spaes of lique betweenness relations is desribed in Setion 4. Somequestions arising from algorithmi aspets are given in Setion 5.2 PreliminariesLet X be �nite set. A partially ordered set on X (or poset) is a re�exive, anti-symmetri and transitive binary relation denoted by P := (X,≤). For x, y ∈ X ,we say that y overs x, denoted by x ≺ y, if for any z ∈ X with x ≤ z ≤ y wehave x = z or y = z. A lattie L := (X,≤) is a partially ordered set with thefollowing properties:1. for all x, y ∈ X there exists a unique z, denoted by x ∨ y, suh that for all
t ∈ X , t ≥ x and t ≥ y implies z ≤ t. (Upper bound property.)2. for all x, y ∈ X there exists a unique z, denoted by x ∧ y, suh that for all
t ∈ X , t ≤ x and t ≤ y implies z ≥ t. (Lower bound property.)Let L = (X,≤) be a lattie. An element x ∈ X is alled join-irreduible(resp. meet-irreduible) if x = y ∨ z (resp. x = y ∧ z) implies x = y or x = z.A join-irreduible (resp. meet-irreduible) element overs (resp. is overed by)exatly one element. We denote by JL and ML the set of all join-irreduible andmeet-irreduible elements of L respetively.The poset of irreduible elements of a lattie L = (X,≤) is a representationof L by a bipartite poset Bip(L) = (JL,ML,≤). The onept lattie of Bip(L)is isomorphi to L (for more details see the books of Davey and Priestley [3℄,and Ganter and Wille [10℄).An impliation on X is an ordered pair (A,B) of subsets of X , denoted by

A → B. The set A is alled the premise and the set B the onlusion of theimpliation A → B. Let Σ be a set of impliations on X . A subset Y ⊆ X is
Σ-losed if for eah impliation A→ B in Σ, A ⊆ Y implies B ⊆ Y . The losureof a set S by Σ, denoted by SΣ , is the smallest Σ-losed set ontaining S.Let S be a subset of X . Algorithm 1 omputes the losure of S by a between-ness relation Σ. It is known as forward haining proedure or hase proedure[11℄.The set of Σ-losed subsets of X , denoted by FΣ , is a losure system on X(i.e losed under set-intersetion), and when ordered under inlusion is a lattie.
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Algorithm 1: Set Closure(S,Σ)Data: A set S ⊆ X and Σ a betweennessResult: The losure SΣbeginLet SΣ := S;while ∃xy → z ∈ Σ s.t. {x, y} ⊆ SΣ and z /∈ SΣ do
SΣ = SΣ ∪ {z};endConversely, given a losure system F on X , a family Σ of impliations on Xis alled an impliational basis for F if F = FΣ . A subset K ∈ X is alled a keyif KΣ = X and K is minimal under inlusion with this property. The name keyomes from database theory [15℄.De�nition 1. An impliation set Σ on X is alled a betweenness relation if forall A→ B ∈ Σ, |A| = 2.Two betweenness relations Σ1 and Σ2 are said to be equivalent, denoted by

Σ1 ≡ Σ2, if FΣ1
= FΣ2

. We de�ne the losure of a betweenness relation Σ by
Σc = {ab → c | a, b, c ∈ X and Σ ≡ Σ ∪ {ab → c}}. Note that Σc is theunique maximal betweenness relation equivalent to Σ. In eah equivalene lasswe distinguish two types of betweenness relations:Canonial A anonial betweenness is the maximum in its equivalene lass.Optimal A betweenness Σ is optimal if for any betweenness relation Σ′ equiv-alent to Σ, we have |Σ| ≤ |Σ′|.A graph G is a pair (V (G), E(G)), where V (G) is the set of verties and
E(G) is the set of edges. We onsider simple graphs (for further de�nitions seethe book [6℄). Examples of betweenness relations arising from graph theory are
ΣG = {xy → z | z lies in a shortest path from x to y} and ΣG = {xy → V (G) |
xy ∈ E(G)}. Several other notions of onvexity spaes are de�ned on graphs (see[17℄). Figure 1 gives an example of a graph and its onvex sets for the shortestpath betweenness.3 The Lattie of all Betweenness RelationsLet X be a �nite set and Σ a betweenness relation on X . Given two sets A and
C in 2X suh that A ⊆ C, we de�ne the set interval [A,C] as the family of allsets B in 2X suh that A ⊆ B ⊆ C.Demetrovis et al. [5℄ gave a haraterization of onvex sets of an impliationbasis. Proposition 1 is restrited to betweenness relations.
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{c} {d} {b}(b) Convex sets of G forshortest path betweennessFig. 1. A graph and its onvex sets for the shortest path betweenness relationProposition 1. [5℄ Let Σ be a betweenness relation on a set X. Then,
FΣ = 2X \

⋃

ab→c∈Σ

[{a, b}, X \ {c}].We denote by FX := {FΣ | Σ is a betweenness relation on X} the family ofall betweenness relations on X .Theorem 1. FX is a losure system and therefore a lattie when struturedunder inlusion.Proof. We have to prove that this struture is losed under the intersetion andit ontains a unique maximal element.Let F1, F2 ∈ FX , then there exist Σ1 and Σ2 induing these families of onvexsets on X . Let F = F1 ∩F2 and Σ be the betweenness de�ned by ab→ c ∈ Σ if
ab→ c ∈ Σ1 or ab→ c ∈ Σ2. Then we laim that F = FΣ .Let C be a set in F . It is onvex for Σ1 and for Σ2. Therefore, for any a, b in
C, every c suh that ab→ c ∈ Σ1 or ab→ c ∈ Σ2 is in C. From this, we derivethat for any a, b in C, every c suh that ab→ c ∈ Σ is in C, so that C is onvexfor Σ.Reiproally, let C be a onvex set for Σ. We will show that it is onvex forΣ1and Σ2. Let a, b, c be elements of X suh that a and b are in C and ab→ c ∈ Σ1.Then ab→ c ∈ Σ and sine C is onvex for Σ, b is in C. Therefore, C is in F1.Similarly it is in F2 so that it is in F .Sine Σ = Σ1 ∪Σ2, we onlude that Σ is a betweenness relation and there-fore the set FX is losed under intersetion.The family 2X is in FX . It arises when Σ is the empty betweenness relation.Proposition 2. Given two families F1 and F2 in FX and their anonial be-tweenness relations Σ1 and Σ2. Then
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� F1 ∧ F2 = FΣ1∪Σ2
.� F1 ∨ F2 = FΣ1∩Σ2
.Proof. See the proof of Theorem 1 for the �rst point. Noww, note that Σ1 and

Σ2 are anonial betweenness relations. Suppose that F1 ∨F2 is not FΣ1∩Σ2
. ByProposition 1, we have F1 ∨ F2 ⊆ FΣ1∩Σ2

.Now all Σ∨ the anonial betweenness relation related to F1 ∨ F2. If ab →
c ∈ Σ∨ for some a, b and c in X , then we know that ab → c ∈ Σi beause
Fi ⊆ F1 ∨ F2 for i = 1, 2 (in the anonial form, we have every ab → c suhthat the orresponding interval has no intersetion with F ). Therefore, every
ab→ c ∈ Σ∨ is true for Σ, and FΣ1∩Σ2

= F1 ∨ F2.Corollary 1. FX is a meet-sublattie of the lattie of all losure systems on X.Proof. Let F1 and F2 be two families in FX . Sine F1 ∩F2 is the losure systemof a betweenness relation then the meet is preserved and thus FX is a a meet-sublattie of the lattie of all losure systems on X .Remark 1. Notie that FX is not a sublattie of the lattie of all losure systemson X . It su�es to onsider the example where X = {1, 2, 3, 4}. Take the o-atoms F1 = 2X \ [{1, 2}, {1, 2, 3}] de�ned by the betweenness relation restritedto 12 → 4 and F2 = 2X \ [{2, 3}, {1, 2, 3}] de�ned by the betweenness relationrestrited to 23 → 4. Then F1 ∪ F2 = 2X \ {{1, 2, 3}} and is a losure system,while F1 ∨ F2 is the top element, 2X .In the following, we give a haraterization of the poset of irreduible elementsof FX .Proposition 3. The poset of irreduible elements of FX is the bipartite poset
Bip(FX) = (JFX

,MFX
,⊆) where

JFX
:= {F⊥ ∪ {S} | S ∈ 2X \ F⊥} where F⊥ = {∅, X} ∪ {{x} | x ∈ X}

MFX
:= {2X \ [ab,X \ {c}] | a, b, c ∈ X}.Proof. We prove this proposition point by point.Consider the maximal betweenness relation Σ = {ab → c | a, b, c ∈ X}.Then F⊥ = FΣ = 2X \

⋃

ab→c∈Σ [{a, b}, X \ {c}] (see Proposition 1). Thus
F⊥ = {∅, X} ∪ {{x} | x ∈ X}.For meet-irreduible elements, we will �rst onsider o-atoms. Let Σ be abetweenness relation suh that FΣ is a o-atom. Sine Σ is non-empty, thenthere exists a set whih is not onvex. Thus Σ must ontain an impliation
ab → c, with a, b, c ∈ X , whih orresponds to the maximal losure system inFX and di�erent from 2X . Namely, we remove from 2X the onvex sets of theinterval [{a, b}, X \ {c}].Now suppose there exists another meet-irreduible element F whih is not ao-atom. Call Σ1 a betweenness relation suh that F is FΣ1

. Also, all F ′ the
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only suessor of FΣ1
and Σ2 a betweenness suh that F ′ is FΣ2

. By Proposi-tion 1, we know that from F ′ to F , we remove at least an interval of the form
[{a, b}, X \ {c}]. Thus, the o-atom assoiated to the impliation ab → c is notabove F ′ but it is above F , so that F has at least two suessors. We onludethat all meet-irreduible elements are o-atoms of FX .For join-irreduible elements, we will �rst haraterize atoms of FX . Pikany subset S of X whih is not empty, a singleton or the whole of X . De�nethe betweenness relation ΣS suh that ab→ c ∈ ΣS for every a, b, c in X exeptthose where a and b are in S and c is not in S. Then FΣS

is F⊥ ∪ {S}. Nowsuppose there exists a join-irreduible F ∈ FX that is not an atom. F ontainsat least one set S whih is not in the unique losure system F ′ ∈ FX thatit overs. But there is an atom whih ontains exatly F” = F⊥ ∪ {S}, with
F” ⊆ F and F” 6⊆ F ′. Thus F overs at least two elements, and thus F is not ajoin-irreduible element.Corollary 2. FX ontains (n2)(n − 2)2n−3 meet-irreduible and 2n − (n + 2)join-irreduible elements.Proof. Every o-atom is of the form 2X \ [{a, b}, X\{c}] and is above every atomformed by F⊥ and any set not in the forbidden interval. This makes 2n − (n+
2)− 2n−3 atoms below it.An atom of the form F⊥∪S where S is a set on X of size 2 to n− 1, is belowevery o-atom that does not forbid S. This number equals (n2)(n − 2)2n−3 −

[
(

|S|
2

)

(n− |S|)].Figure 2 shows the irreduible poset for X = {1, 2, 3, 4} where every atom isrepresented by the set S added to F⊥ and every o-atom is represented by theremoved impliation xy → z.
12 → 3 12 → 4 13 → 2 13 → 4 14 → 2 14 → 3 23 → 1 23 → 4 24 → 1 24 → 3 34 → 1 34 → 2

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}Fig. 2. Irreduible poset for n = 4
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4 Clique Betweenness RelationsIn this setion we deal with a speial betweenness relation de�ned through agraph in a spei� way. Many other betweenness relations on graphs an bede�ned in the same way, e.g. independent sets, set overs.Given a graph G, we de�ne the betweenness relation
ΣG := {ab→ c | c ∈ X, ab /∈ E(G)}.The onvex sets of ΣG are exatly the liques of G. Notie that for any graph

G, there is a orresponding betweenness relation ΣG. In the following, we har-aterize the lattie of all ΣG where G is a graph with vertex-set X . We denoteby FK
X = {FΣG

| G is a graph on X}.Proposition 4. (FK
X ,⊆) is a lattie.Proof. The bottom (resp. top) element of FX orresponds to FΣG

where G is astable (resp. lique) on X .Moreover, FK
X is losed under intersetion (the liques of the intersetion oftwo graphs are exatly the ones in the intersetion of both families of liques).Therefore, (FK

X ,⊆) is a lattie.Sine ΣG is a betweenness relation, then FK
X ⊂ FX for any graph G de�nedon X .Proposition 5. The lattie (FK

X ,⊆) is a sublattie of (FX ,⊆).Proof. It is easy to see that it is a meet-sublattie, the meet of two families isthe intersetion of both families in both strutures.In order to prove that it is a join-sublattie of (FX ,⊆), onsider two graphs
G1 and G2 and their lique families F1 and F2. Call G the graph union of G1 and
G2 and F the family of its liques. The related betweenness relation is obtainedby taking the intersetion of betweenness relations related to G1 and G2 (non-edges in G are exatly non-edges in G1 and in G2). Therefore it is the join of F1and F2 in (FX ,⊆).Corollary 3. The lattie (FK

X ,⊂) is a boolean lattie with (n2) atoms.Proof. For eah graph G, its orresponding anonial betweenness relation is theset Σc
G := {ab→ X | ab /∈ E(G)}. Note that any super-set of Σc

G orresponds toa betweenness relation of a partial graph of G, by deleting edges ab from G whihorresponds to adding ab→ X in Σc
G. Sine any atom of (FK

X ,⊂) orresponds toa betweenness relation whih ontains exatly an impliation ab → X , we haveexatly (n2) atoms.
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5 Algorithmi Aspets of Betweenness RelationsIn this setion, we reall some optimization problems related to betweennessrelations.Minimum Key (MK)Input: Σ a betweenness relation on X and k an integer.Question: Is there a set K ⊆ X suh that |K| ≤ k and KΣ = X?These problems have been studied in the several domains and speially indatabase theory, and they have been proved NP-omplete [5,14,15℄ for generalimpliation bases. The problem MK has been proved NP-omplete for partiularases of betweenness relations (see for instane [7℄ for the shortest path between-ness relation on graphs). It is known as the hull number of a betweenness relation.Therefore, we have the following.Proposition 6. MK is NP-omplete.Reently, Kanté and Nourine [12℄ have shown that MK is polynomial forshortest path betweenness relations of hordal and distane hereditary graphsby using database tehniques. Can we use the lattie struture of FX to get newpolynomial time algorithms for the MK problem in new graph lasses?Now we onsider the problem whih omputes an optimal over of a between-ness relation. This problem is to �nd an optimal betweenness relation whih isequivalent to a given betweenness relation. Several works have been done in thegeneral ase known as Horn minimization [11℄.Optimal Cover (OC)Input: Σ a betweenness relation on X and k an integer.Question: Is there a betweenness relationΣ′ equivalent toΣ suh that |Σ′| ≤ k?The size of an optimal over is known as the hydra number [19℄. The ompu-tational omplexity of the hydra number is open for betweenness relations, butis NP-omplete for the general ase [11,15℄. We hope that the lattie strutureof FX ould help to address this question.6 ConlusionIn this paper, we haraterize the ontext of the lattie of all betweenness re-lations on a �nite set, whih is a meet-sublattie of the lattie of all losuresystems on the same set. We are onvined that the struture of lattie an helpto understand some problems of graph theory suh as hull number and hydranumber. In the future we will investigate the link of these parameters and thestruture of the lattie.
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