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Abstract. We consider implication bases with premises of size exactly
2, which are also known as betweenness relations. Our motivations is
that several problems in graph theory can be modelled using betweenness
relations, e.g. hull number, maximal cliques. In this paper we characterize
the lattice of all betweenness relations by giving its poset of irreducible
elements. Moreover, we show that this lattice is a meet-sublattice of the
lattice of all closure systems.

1 Introduction

A convezity space on a ground set X is a subset of 2X that is closed under
intersection. Convexity spaces were studied in [13] and are sometimes called
Closure systems. The members of a convexity space are called convex sets. Since
the paper [13], convexity spaces are studied by several authors who describe
several of their properties (see the joint paper [8] of Edelman and Jamison for a
list of publications during the eighties), in particular the set of convexity spaces
forms a lattice.

In this paper we deal with betweenness relations which are special cases of
convexity spaces. The notion of betweenness relation has appeared in the early
twentieth century when mathematicians focused on fundamental geometry [4].
A betweenness relation B on a finite set X is a set of triples (z,y,z) € X3.
The most intuitive betweenness relations are those coming from metric spaces
(a point y is between x and z if they satisfy the triangular equality). A convez
set of a betweenness relation B is a subset Y of X such that for all (z,y,z2) € B,
if {z,2} C Y, then y € Y. It is well-known that the set of convex sets of
a betweenness relation is a convexity space. Betweenness relations have been
thoroughly studied by Menger and his students [16]. Other betweenness relations
have arisen in research fields as probability theory with the work of Reichenbach
[18]. Betweenness relations have been also studied in graphs in order to generalize
geometrical theorems [1,2,9] (see the survey [17] for a non exhaustive list of
betweenness relations on graphs).

We are interested in describing the set of all betweenness relations on a
ground set X. We prove that the set of all convexity spaces on X derived from
betweenness relations on X forms a lattice and is in fact a meet-sublattice of the
lattice of all convexity spaces on X (we give an example showing that it is not
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a sub-lattice). We also describe the set of meet and join-irreducible elements of
the lattice. We conclude by showing that the set of convexity spaces obtained
from clique betweenness relations on graphs is a sublattice of the lattice of all
convexity spaces of betweenness relations.

This paper is motivated by understanding links between several parameters
that are considered in different areas such as FCA, database, logic and graph
theory.

Summary. Notations and definitions are given in Section 2. The description of
the lattice of convexity spaces of betweenness relations is given in Section 3. The
convexity spaces of clique betweenness relations is described in Section 4. Some
questions arising from algorithmic aspects are given in Section 5.

2 Preliminaries

Let X be finite set. A partially ordered set on X (or poset) is a reflexive, anti-
symmetric and transitive binary relation denoted by P := (X, <). For z,y € X,
we say that y covers z, denoted by = < y, if for any z € X with z < z < y we
have z = z or y = z. A lattice L := (X, <) is a partially ordered set with the
following properties:

1. for all x,y € X there exists a unique z, denoted by z V y, such that for all
te X, t>xandt>yimplies z < t. (Upper bound property.)

2. for all z,y € X there exists a unique z, denoted by x A y, such that for all
te X, t<zandt<yimplies z > t. (Lower bound property.)

Let L = (X, <) be a lattice. An element x € X is called join-irreducible
(vesp. meet-irreducible) if x = yV z (resp. © = y A z) implies x = y or z = z.
A join-irreducible (resp. meet-irreducible) element covers (resp. is covered by)
exactly one element. We denote by J;, and M, the set of all join-irreducible and
meet-irreducible elements of L respectively.

The poset of irreducible elements of a lattice L = (X, <) is a representation
of L by a bipartite poset Bip(L) = (Jr, My, <). The concept lattice of Bip(L)
is isomorphic to L (for more details see the books of Davey and Priestley [3],
and Ganter and Wille [10]).

An implication on X is an ordered pair (4, B) of subsets of X, denoted by
A — B. The set A is called the premise and the set B the conclusion of the
implication A — B. Let X be a set of implications on X. A subset Y C X is
XY -closed if for each implication A — B in X, A CY implies B C Y. The closure
of a set S by X, denoted by S, is the smallest X-closed set containing S.

Let S be a subset of X. Algorithm 1 computes the closure of S by a between-
ness relation X. It is known as forward chaining procedure or chase procedure
[11].

The set of XY-closed subsets of X, denoted by F, is a closure system on X
(i-e closed under set-intersection), and when ordered under inclusion is a lattice.
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Algorithm 1: Set Closure(S, X))
Data: A set S C X and Y a betweenness
Result: The closure S*
begin
Let S¥ := S,
while 3zy — 2 € ¥ s.t. {z,y} C S¥ and z ¢ S*¥ do
| §%=5%U{}

end

Conversely, given a closure system F on X, a family X of implications on X
is called an implicational basis for F if 7 = F'x;. A subset K € X is called a key
if K¥ = X and K is minimal under inclusion with this property. The name key
comes from database theory [15].

Definition 1. An implication set X on X is called a betweenness relation if for
al A—»Be X, |Al=2.

Two betweenness relations X1 and Y5 are said to be equivalent, denoted by
XYy =X, if Fy,, = Fx,. We define the closure of a betweenness relation X by
Y¢={ab = c| a,bc € X and ¥ = YU {ab — c}}. Note that X is the
unique maximal betweenness relation equivalent to Y. In each equivalence class
we distinguish two types of betweenness relations:

Canonical A canonical betweenness is the maximum in its equivalence class.
Optimal A betweenness X' is optimal if for any betweenness relation X’ equiv-
alent to X, we have |X| < |27

A graph G is a pair (V(G), E(G)), where V(G) is the set of vertices and
E(QG) is the set of edges. We consider simple graphs (for further definitions see
the book [6]). Examples of betweenness relations arising from graph theory are
Yo = {xy — z | z lies in a shortest path from z to y} and X¢ = {2y — V(G) |
xy € E(QG)}. Several other notions of convexity spaces are defined on graphs (see
[17]). Figure 1 gives an example of a graph and its convex sets for the shortest
path betweenness.

3 The Lattice of all Betweenness Relations

Let X be a finite set and X' a betweenness relation on X. Given two sets A and
C in 2% such that A C C, we define the set interval [A, C] as the family of all
sets B in 2¥ such that AC B C C.

Demetrovics et al. [5] gave a characterization of convex sets of an implication
basis. Proposition 1 is restricted to betweenness relations.
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d {
(a) A graph G (b) Convex sets of G for
shortest path betweenness

Fig. 1. A graph and its convex sets for the shortest path betweenness relation

Proposition 1. [5] Let X' be a betweenness relation on a set X. Then,

Fo=25\ | Ha.bh X\ {e}].

ab—ceX

We denote by Fx := {Fx | X' is a betweenness relation on X} the family of
all betweenness relations on X.

Theorem 1. Fx is a closure system and therefore a lattice when structured
under inclusion.

Proof. We have to prove that this structure is closed under the intersection and
it contains a unique maximal element.

Let F1, F» € F x, then there exist Xy and Y5 inducing these families of convex
sets on X. Let F' = F} N F, and X be the betweenness defined by ab — ¢ € X' if
ab— ce Xy or ab— ¢ € Y5. Then we claim that F = Fy,.

Let C be a set in F'. It is convex for 3} and for X5. Therefore, for any a, b in
C, every c such that ab — ¢ € X1 or ab — ¢ € X5 is in C. From this, we derive
that for any a,b in C, every ¢ such that ab — ¢ € X is in C, so that C' is convex
for X.

Reciprocally, let C be a convex set for Y. We will show that it is convex for Xy
and Ys. Let a, b, ¢ be elements of X such that a and b are in C' and ab — ¢ € Y.
Then ab — ¢ € X and since C' is convex for X, b is in C. Therefore, C is in F.
Similarly it is in F3 so that it is in F.

Since X' = X1 U X5, we conclude that X' is a betweenness relation and there-
fore the set Fx is closed under intersection.

The family 2% is in Fx. It arises when X is the empty betweenness relation.

Proposition 2. Given two families Fy and Fy in Fx and their canonical be-
tweenness relations X1 and X5. Then
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— FiNFy, = F21U22.
- FiVF,= FZ]lﬂEQ-

Proof. See the proof of Theorem 1 for the first point. Noww, note that >; and
X’y are canonical betweenness relations. Suppose that Fy V Fy is not Fx,nx,. By
Proposition 1, we have F} V F» C Fx nx,.

Now call X\, the canonical betweenness relation related to Fy V Fs. If ab —
c € Xy for some a,b and ¢ in X, then we know that ab — ¢ € X; because
F;, C Fy V Fy for i = 1,2 (in the canonical form, we have every ab — ¢ such
that the corresponding interval has no intersection with F). Therefore, every
ab— c € Xy is true for ¥, and Fs,nx, = F1 V F>.

Corollary 1. Fx is a meet-sublattice of the lattice of all closure systems on X.

Proof. Let Fy and F» be two families in F x. Since Fy N Fy is the closure system
of a betweenness relation then the meet is preserved and thus Fx is a a meet-
sublattice of the lattice of all closure systems on X.

Remark 1. Notice that F x is not a sublattice of the lattice of all closure systems
on X. It suffices to consider the example where X = {1,2,3,4}. Take the co-
atoms F; = 2%\ [{1,2},{1,2,3}] defined by the betweenness relation restricted
to 12 — 4 and F» = 2% \ [{2,3},{1,2,3}] defined by the betweenness relation
restricted to 23 — 4. Then F; U Fy = 2X \ {{1,2,3}} and is a closure system,
while F} V F is the top element, 2%.

In the following, we give a characterization of the poset of irreducible elements
of [FX .

Proposition 3. The poset of irreducible elements of Fx is the bipartite poset
Bip(Fx) = (Jry, Mr, <) where

Jry = {FLU{S}| S €2\ F} where F| = {0, X}U{{z} |z € X}
Mg, = {25\ [ab, X \ {c}] | a,b,c € X}.

Proof. We prove this proposition point by point.

Consider the maximal betweenness relation X' = {ab — ¢ | a,b,c € X}.
Then Fi = Fy = 2%\ U,y eexl{a, b}, X \ {c}] (see Proposition 1). Thus
F={0,X}u{{z} |z e X}

For meet-irreducible elements, we will first consider co-atoms. Let X be a
betweenness relation such that Fy is a co-atom. Since Y is non-empty, then
there exists a set which is not convex. Thus Y must contain an implication
ab — ¢, with a,b,c € X, which corresponds to the maximal closure system in
Fx and different from 2X. Namely, we remove from 2% the convex sets of the
interval [{a, b}, X \ {c}].

Now suppose there exists another meet-irreducible element F' which is not a
co-atom. Call X a betweenness relation such that F' is Fyx,. Also, call F’ the
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only successor of Fx, and X a betweenness such that F” is Fix,. By Proposi-
tion 1, we know that from I’ to I, we remove at least an interval of the form
[{a,b}, X \ {c}]. Thus, the co-atom associated to the implication ab — ¢ is not
above F’ but it is above F, so that F has at least two successors. We conclude
that all meet-irreducible elements are co-atoms of F x.

For join-irreducible elements, we will first characterize atoms of Fy. Pick
any subset S of X which is not empty, a singleton or the whole of X. Define
the betweenness relation Yg such that ab — ¢ € Xg for every a, b, c in X except
those where a and b are in S and ¢ is not in S. Then Fx, is F| U {S}. Now
suppose there exists a join-irreducible F' € F x that is not an atom. F' contains
at least one set S which is not in the unique closure system F’ € Fx that
it covers. But there is an atom which contains exactly F” = F| U {S}, with
F” C Fand F” € F'. Thus F covers at least two elements, and thus F is not a
join-irreducible element.

Corollary 2. Fx contains (3)(n — 2)2"~3 meet-irreducible and 2" — (n + 2)
join-irreducible elements.

Proof. Every co-atom is of the form 2%\ [{a, b}, X\ {c}] and is above every atom
formed by F; and any set not in the forbidden interval. This makes 2™ — (n +
2) — 273 atoms below it.

An atom of the form F, US where S is a set on X of size 2 to n — 1, is below
every co-atom that does not forbid S. This number equals (3)(n — 2)2"~% —

15N (n = IS

Figure 2 shows the irreducible poset for X = {1,2, 3,4} where every atom is
represented by the set S added to F'; and every co-atom is represented by the
removed implication zy — z.
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Fig. 2. Irreducible poset for n = 4
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4 Clique Betweenness Relations

In this section we deal with a special betweenness relation defined through a
graph in a specific way. Many other betweenness relations on graphs can be
defined in the same way, e.g. independent sets, set covers.

Given a graph G, we define the betweenness relation

Yo ={ab—c|ce X, ab¢ E(G)}.

The convex sets of X are exactly the cliques of G. Notice that for any graph
G, there is a corresponding betweenness relation Y. In the following, we char-
acterize the lattice of all Y where G is a graph with vertex-set X. We denote
by F¥ = {Fx, | G is a graph on X}.

Proposition 4. (F¥,C) is a lattice.

Proof. The bottom (resp. top) element of F x corresponds to Fx, where G is a
stable (resp. clique) on X.

Moreover, F£ is closed under intersection (the cliques of the intersection of
two graphs are exactly the ones in the intersection of both families of cliques).
Therefore, (F¥, C) is a lattice.

Since Y is a betweenness relation, then F¥ C Fy for any graph G defined
on X.

Proposition 5. The lattice (F¥,C) is a sublattice of (Fx,C).

Proof. Tt is easy to see that it is a meet-sublattice, the meet of two families is
the intersection of both families in both structures.

In order to prove that it is a join-sublattice of (Fx, C), consider two graphs
G4 and G and their clique families F; and F5. Call G the graph union of G; and
G5 and F the family of its cliques. The related betweenness relation is obtained
by taking the intersection of betweenness relations related to G; and G (non-
edges in G are exactly non-edges in G; and in G3). Therefore it is the join of F}
and F» in (Fx, Q).

Corollary 3. The lattice (F5, C) is a boolean lattice with () atoms.

Proof. For each graph G, its corresponding canonical betweenness relation is the
set L& = {ab— X | ab ¢ E(G)}. Note that any super-set of X¢ corresponds to
a betweenness relation of a partial graph of G, by deleting edges ab from G which
corresponds to adding ab — X in X¢. Since any atom of (F£, C) corresponds to
a betweenness relation which contains exactly an implication ab — X, we have
exactly () atoms.
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5 Algorithmic Aspects of Betweenness Relations

In this section, we recall some optimization problems related to betweenness
relations.

Minimum Key (MK)
Input: X' a betweenness relation on X and k an integer.
Question: Is there a set K C X such that |K| < k and K¥=X7?

These problems have been studied in the several domains and specially in
database theory, and they have been proved NP-complete [5,14,15] for general
implication bases. The problem MK has been proved NP-complete for particular
cases of betweenness relations (see for instance [7] for the shortest path between-
ness relation on graphs). It is known as the hull number of a betweenness relation.
Therefore, we have the following.

Proposition 6. MK is NP-complete.

Recently, Kanté and Nourine [12] have shown that MK is polynomial for
shortest path betweenness relations of chordal and distance hereditary graphs
by using database techniques. Can we use the lattice structure of F x to get new
polynomial time algorithms for the MK problem in new graph classes?

Now we consider the problem which computes an optimal cover of a between-
ness relation. This problem is to find an optimal betweenness relation which is
equivalent to a given betweenness relation. Several works have been done in the
general case known as Horn minimization [11].

Optimal Cover (OC)
Input: X' a betweenness relation on X and k an integer.
Question: Is there a betweenness relation X’/ equivalent to X' such that | X'| < k?

The size of an optimal cover is known as the hydra number [19]. The compu-
tational complexity of the hydra number is open for betweenness relations, but
is NP-complete for the general case [11,15]. We hope that the lattice structure
of Fx could help to address this question.

6 Conclusion

In this paper, we characterize the context of the lattice of all betweenness re-
lations on a finite set, which is a meet-sublattice of the lattice of all closure
systems on the same set. We are convinced that the structure of lattice can help
to understand some problems of graph theory such as hull number and hydra
number. In the future we will investigate the link of these parameters and the
structure of the lattice.
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