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t. We 
onsider impli
ation bases with premises of size exa
tly
2, whi
h are also known as betweenness relations. Our motivations isthat several problems in graph theory 
an be modelled using betweennessrelations, e.g. hull number, maximal 
liques. In this paper we 
hara
terizethe latti
e of all betweenness relations by giving its poset of irredu
ibleelements. Moreover, we show that this latti
e is a meet-sublatti
e of thelatti
e of all 
losure systems.1 Introdu
tionA 
onvexity spa
e on a ground set X is a subset of 2X that is 
losed underinterse
tion. Convexity spa
es were studied in [13℄ and are sometimes 
alledClosure systems. The members of a 
onvexity spa
e are 
alled 
onvex sets. Sin
ethe paper [13℄, 
onvexity spa
es are studied by several authors who des
ribeseveral of their properties (see the joint paper [8℄ of Edelman and Jamison for alist of publi
ations during the eighties), in parti
ular the set of 
onvexity spa
esforms a latti
e.In this paper we deal with betweenness relations whi
h are spe
ial 
ases of
onvexity spa
es. The notion of betweenness relation has appeared in the earlytwentieth 
entury when mathemati
ians fo
used on fundamental geometry [4℄.A betweenness relation B on a �nite set X is a set of triples (x, y, z) ∈ X3.The most intuitive betweenness relations are those 
oming from metri
 spa
es(a point y is between x and z if they satisfy the triangular equality). A 
onvexset of a betweenness relation B is a subset Y of X su
h that for all (x, y, z) ∈ B,if {x, z} ⊆ Y , then y ∈ Y . It is well-known that the set of 
onvex sets ofa betweenness relation is a 
onvexity spa
e. Betweenness relations have beenthoroughly studied by Menger and his students [16℄. Other betweenness relationshave arisen in resear
h �elds as probability theory with the work of Rei
henba
h[18℄. Betweenness relations have been also studied in graphs in order to generalizegeometri
al theorems [1,2,9℄ (see the survey [17℄ for a non exhaustive list ofbetweenness relations on graphs).We are interested in des
ribing the set of all betweenness relations on aground set X . We prove that the set of all 
onvexity spa
es on X derived frombetweenness relations on X forms a latti
e and is in fa
t a meet-sublatti
e of thelatti
e of all 
onvexity spa
es on X (we give an example showing that it is not
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a sub-latti
e). We also des
ribe the set of meet and join-irredu
ible elements ofthe latti
e. We 
on
lude by showing that the set of 
onvexity spa
es obtainedfrom 
lique betweenness relations on graphs is a sublatti
e of the latti
e of all
onvexity spa
es of betweenness relations.This paper is motivated by understanding links between several parametersthat are 
onsidered in di�erent areas su
h as FCA, database, logi
 and graphtheory.Summary. Notations and de�nitions are given in Se
tion 2. The des
ription ofthe latti
e of 
onvexity spa
es of betweenness relations is given in Se
tion 3. The
onvexity spa
es of 
lique betweenness relations is des
ribed in Se
tion 4. Somequestions arising from algorithmi
 aspe
ts are given in Se
tion 5.2 PreliminariesLet X be �nite set. A partially ordered set on X (or poset) is a re�exive, anti-symmetri
 and transitive binary relation denoted by P := (X,≤). For x, y ∈ X ,we say that y 
overs x, denoted by x ≺ y, if for any z ∈ X with x ≤ z ≤ y wehave x = z or y = z. A latti
e L := (X,≤) is a partially ordered set with thefollowing properties:1. for all x, y ∈ X there exists a unique z, denoted by x ∨ y, su
h that for all
t ∈ X , t ≥ x and t ≥ y implies z ≤ t. (Upper bound property.)2. for all x, y ∈ X there exists a unique z, denoted by x ∧ y, su
h that for all
t ∈ X , t ≤ x and t ≤ y implies z ≥ t. (Lower bound property.)Let L = (X,≤) be a latti
e. An element x ∈ X is 
alled join-irredu
ible(resp. meet-irredu
ible) if x = y ∨ z (resp. x = y ∧ z) implies x = y or x = z.A join-irredu
ible (resp. meet-irredu
ible) element 
overs (resp. is 
overed by)exa
tly one element. We denote by JL and ML the set of all join-irredu
ible andmeet-irredu
ible elements of L respe
tively.The poset of irredu
ible elements of a latti
e L = (X,≤) is a representationof L by a bipartite poset Bip(L) = (JL,ML,≤). The 
on
ept latti
e of Bip(L)is isomorphi
 to L (for more details see the books of Davey and Priestley [3℄,and Ganter and Wille [10℄).An impli
ation on X is an ordered pair (A,B) of subsets of X , denoted by

A → B. The set A is 
alled the premise and the set B the 
on
lusion of theimpli
ation A → B. Let Σ be a set of impli
ations on X . A subset Y ⊆ X is
Σ-
losed if for ea
h impli
ation A→ B in Σ, A ⊆ Y implies B ⊆ Y . The 
losureof a set S by Σ, denoted by SΣ , is the smallest Σ-
losed set 
ontaining S.Let S be a subset of X . Algorithm 1 
omputes the 
losure of S by a between-ness relation Σ. It is known as forward 
haining pro
edure or 
hase pro
edure[11℄.The set of Σ-
losed subsets of X , denoted by FΣ , is a 
losure system on X(i.e 
losed under set-interse
tion), and when ordered under in
lusion is a latti
e.
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Algorithm 1: Set Closure(S,Σ)Data: A set S ⊆ X and Σ a betweennessResult: The 
losure SΣbeginLet SΣ := S;while ∃xy → z ∈ Σ s.t. {x, y} ⊆ SΣ and z /∈ SΣ do
SΣ = SΣ ∪ {z};endConversely, given a 
losure system F on X , a family Σ of impli
ations on Xis 
alled an impli
ational basis for F if F = FΣ . A subset K ∈ X is 
alled a keyif KΣ = X and K is minimal under in
lusion with this property. The name key
omes from database theory [15℄.De�nition 1. An impli
ation set Σ on X is 
alled a betweenness relation if forall A→ B ∈ Σ, |A| = 2.Two betweenness relations Σ1 and Σ2 are said to be equivalent, denoted by

Σ1 ≡ Σ2, if FΣ1
= FΣ2

. We de�ne the 
losure of a betweenness relation Σ by
Σc = {ab → c | a, b, c ∈ X and Σ ≡ Σ ∪ {ab → c}}. Note that Σc is theunique maximal betweenness relation equivalent to Σ. In ea
h equivalen
e 
lasswe distinguish two types of betweenness relations:Canoni
al A 
anoni
al betweenness is the maximum in its equivalen
e 
lass.Optimal A betweenness Σ is optimal if for any betweenness relation Σ′ equiv-alent to Σ, we have |Σ| ≤ |Σ′|.A graph G is a pair (V (G), E(G)), where V (G) is the set of verti
es and
E(G) is the set of edges. We 
onsider simple graphs (for further de�nitions seethe book [6℄). Examples of betweenness relations arising from graph theory are
ΣG = {xy → z | z lies in a shortest path from x to y} and ΣG = {xy → V (G) |
xy ∈ E(G)}. Several other notions of 
onvexity spa
es are de�ned on graphs (see[17℄). Figure 1 gives an example of a graph and its 
onvex sets for the shortestpath betweenness.3 The Latti
e of all Betweenness RelationsLet X be a �nite set and Σ a betweenness relation on X . Given two sets A and
C in 2X su
h that A ⊆ C, we de�ne the set interval [A,C] as the family of allsets B in 2X su
h that A ⊆ B ⊆ C.Demetrovi
s et al. [5℄ gave a 
hara
terization of 
onvex sets of an impli
ationbasis. Proposition 1 is restri
ted to betweenness relations.
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onvex sets for the shortest path betweenness relationProposition 1. [5℄ Let Σ be a betweenness relation on a set X. Then,
FΣ = 2X \

⋃

ab→c∈Σ

[{a, b}, X \ {c}].We denote by FX := {FΣ | Σ is a betweenness relation on X} the family ofall betweenness relations on X .Theorem 1. FX is a 
losure system and therefore a latti
e when stru
turedunder in
lusion.Proof. We have to prove that this stru
ture is 
losed under the interse
tion andit 
ontains a unique maximal element.Let F1, F2 ∈ FX , then there exist Σ1 and Σ2 indu
ing these families of 
onvexsets on X . Let F = F1 ∩F2 and Σ be the betweenness de�ned by ab→ c ∈ Σ if
ab→ c ∈ Σ1 or ab→ c ∈ Σ2. Then we 
laim that F = FΣ .Let C be a set in F . It is 
onvex for Σ1 and for Σ2. Therefore, for any a, b in
C, every c su
h that ab→ c ∈ Σ1 or ab→ c ∈ Σ2 is in C. From this, we derivethat for any a, b in C, every c su
h that ab→ c ∈ Σ is in C, so that C is 
onvexfor Σ.Re
ipro
ally, let C be a 
onvex set for Σ. We will show that it is 
onvex forΣ1and Σ2. Let a, b, c be elements of X su
h that a and b are in C and ab→ c ∈ Σ1.Then ab→ c ∈ Σ and sin
e C is 
onvex for Σ, b is in C. Therefore, C is in F1.Similarly it is in F2 so that it is in F .Sin
e Σ = Σ1 ∪Σ2, we 
on
lude that Σ is a betweenness relation and there-fore the set FX is 
losed under interse
tion.The family 2X is in FX . It arises when Σ is the empty betweenness relation.Proposition 2. Given two families F1 and F2 in FX and their 
anoni
al be-tweenness relations Σ1 and Σ2. Then
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� F1 ∧ F2 = FΣ1∪Σ2
.� F1 ∨ F2 = FΣ1∩Σ2
.Proof. See the proof of Theorem 1 for the �rst point. Noww, note that Σ1 and

Σ2 are 
anoni
al betweenness relations. Suppose that F1 ∨F2 is not FΣ1∩Σ2
. ByProposition 1, we have F1 ∨ F2 ⊆ FΣ1∩Σ2

.Now 
all Σ∨ the 
anoni
al betweenness relation related to F1 ∨ F2. If ab →
c ∈ Σ∨ for some a, b and c in X , then we know that ab → c ∈ Σi be
ause
Fi ⊆ F1 ∨ F2 for i = 1, 2 (in the 
anoni
al form, we have every ab → c su
hthat the 
orresponding interval has no interse
tion with F ). Therefore, every
ab→ c ∈ Σ∨ is true for Σ, and FΣ1∩Σ2

= F1 ∨ F2.Corollary 1. FX is a meet-sublatti
e of the latti
e of all 
losure systems on X.Proof. Let F1 and F2 be two families in FX . Sin
e F1 ∩F2 is the 
losure systemof a betweenness relation then the meet is preserved and thus FX is a a meet-sublatti
e of the latti
e of all 
losure systems on X .Remark 1. Noti
e that FX is not a sublatti
e of the latti
e of all 
losure systemson X . It su�
es to 
onsider the example where X = {1, 2, 3, 4}. Take the 
o-atoms F1 = 2X \ [{1, 2}, {1, 2, 3}] de�ned by the betweenness relation restri
tedto 12 → 4 and F2 = 2X \ [{2, 3}, {1, 2, 3}] de�ned by the betweenness relationrestri
ted to 23 → 4. Then F1 ∪ F2 = 2X \ {{1, 2, 3}} and is a 
losure system,while F1 ∨ F2 is the top element, 2X .In the following, we give a 
hara
terization of the poset of irredu
ible elementsof FX .Proposition 3. The poset of irredu
ible elements of FX is the bipartite poset
Bip(FX) = (JFX

,MFX
,⊆) where

JFX
:= {F⊥ ∪ {S} | S ∈ 2X \ F⊥} where F⊥ = {∅, X} ∪ {{x} | x ∈ X}

MFX
:= {2X \ [ab,X \ {c}] | a, b, c ∈ X}.Proof. We prove this proposition point by point.Consider the maximal betweenness relation Σ = {ab → c | a, b, c ∈ X}.Then F⊥ = FΣ = 2X \

⋃

ab→c∈Σ [{a, b}, X \ {c}] (see Proposition 1). Thus
F⊥ = {∅, X} ∪ {{x} | x ∈ X}.For meet-irredu
ible elements, we will �rst 
onsider 
o-atoms. Let Σ be abetweenness relation su
h that FΣ is a 
o-atom. Sin
e Σ is non-empty, thenthere exists a set whi
h is not 
onvex. Thus Σ must 
ontain an impli
ation
ab → c, with a, b, c ∈ X , whi
h 
orresponds to the maximal 
losure system inFX and di�erent from 2X . Namely, we remove from 2X the 
onvex sets of theinterval [{a, b}, X \ {c}].Now suppose there exists another meet-irredu
ible element F whi
h is not a
o-atom. Call Σ1 a betweenness relation su
h that F is FΣ1

. Also, 
all F ′ the
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only su

essor of FΣ1
and Σ2 a betweenness su
h that F ′ is FΣ2

. By Proposi-tion 1, we know that from F ′ to F , we remove at least an interval of the form
[{a, b}, X \ {c}]. Thus, the 
o-atom asso
iated to the impli
ation ab → c is notabove F ′ but it is above F , so that F has at least two su

essors. We 
on
ludethat all meet-irredu
ible elements are 
o-atoms of FX .For join-irredu
ible elements, we will �rst 
hara
terize atoms of FX . Pi
kany subset S of X whi
h is not empty, a singleton or the whole of X . De�nethe betweenness relation ΣS su
h that ab→ c ∈ ΣS for every a, b, c in X ex
eptthose where a and b are in S and c is not in S. Then FΣS

is F⊥ ∪ {S}. Nowsuppose there exists a join-irredu
ible F ∈ FX that is not an atom. F 
ontainsat least one set S whi
h is not in the unique 
losure system F ′ ∈ FX thatit 
overs. But there is an atom whi
h 
ontains exa
tly F” = F⊥ ∪ {S}, with
F” ⊆ F and F” 6⊆ F ′. Thus F 
overs at least two elements, and thus F is not ajoin-irredu
ible element.Corollary 2. FX 
ontains (n2)(n − 2)2n−3 meet-irredu
ible and 2n − (n + 2)join-irredu
ible elements.Proof. Every 
o-atom is of the form 2X \ [{a, b}, X\{c}] and is above every atomformed by F⊥ and any set not in the forbidden interval. This makes 2n − (n+
2)− 2n−3 atoms below it.An atom of the form F⊥∪S where S is a set on X of size 2 to n− 1, is belowevery 
o-atom that does not forbid S. This number equals (n2)(n − 2)2n−3 −

[
(

|S|
2

)

(n− |S|)].Figure 2 shows the irredu
ible poset for X = {1, 2, 3, 4} where every atom isrepresented by the set S added to F⊥ and every 
o-atom is represented by theremoved impli
ation xy → z.
12 → 3 12 → 4 13 → 2 13 → 4 14 → 2 14 → 3 23 → 1 23 → 4 24 → 1 24 → 3 34 → 1 34 → 2

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}Fig. 2. Irredu
ible poset for n = 4
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4 Clique Betweenness RelationsIn this se
tion we deal with a spe
ial betweenness relation de�ned through agraph in a spe
i�
 way. Many other betweenness relations on graphs 
an bede�ned in the same way, e.g. independent sets, set 
overs.Given a graph G, we de�ne the betweenness relation
ΣG := {ab→ c | c ∈ X, ab /∈ E(G)}.The 
onvex sets of ΣG are exa
tly the 
liques of G. Noti
e that for any graph

G, there is a 
orresponding betweenness relation ΣG. In the following, we 
har-a
terize the latti
e of all ΣG where G is a graph with vertex-set X . We denoteby FK
X = {FΣG

| G is a graph on X}.Proposition 4. (FK
X ,⊆) is a latti
e.Proof. The bottom (resp. top) element of FX 
orresponds to FΣG

where G is astable (resp. 
lique) on X .Moreover, FK
X is 
losed under interse
tion (the 
liques of the interse
tion oftwo graphs are exa
tly the ones in the interse
tion of both families of 
liques).Therefore, (FK

X ,⊆) is a latti
e.Sin
e ΣG is a betweenness relation, then FK
X ⊂ FX for any graph G de�nedon X .Proposition 5. The latti
e (FK

X ,⊆) is a sublatti
e of (FX ,⊆).Proof. It is easy to see that it is a meet-sublatti
e, the meet of two families isthe interse
tion of both families in both stru
tures.In order to prove that it is a join-sublatti
e of (FX ,⊆), 
onsider two graphs
G1 and G2 and their 
lique families F1 and F2. Call G the graph union of G1 and
G2 and F the family of its 
liques. The related betweenness relation is obtainedby taking the interse
tion of betweenness relations related to G1 and G2 (non-edges in G are exa
tly non-edges in G1 and in G2). Therefore it is the join of F1and F2 in (FX ,⊆).Corollary 3. The latti
e (FK

X ,⊂) is a boolean latti
e with (n2) atoms.Proof. For ea
h graph G, its 
orresponding 
anoni
al betweenness relation is theset Σc
G := {ab→ X | ab /∈ E(G)}. Note that any super-set of Σc

G 
orresponds toa betweenness relation of a partial graph of G, by deleting edges ab from G whi
h
orresponds to adding ab→ X in Σc
G. Sin
e any atom of (FK

X ,⊂) 
orresponds toa betweenness relation whi
h 
ontains exa
tly an impli
ation ab → X , we haveexa
tly (n2) atoms.
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5 Algorithmi
 Aspe
ts of Betweenness RelationsIn this se
tion, we re
all some optimization problems related to betweennessrelations.Minimum Key (MK)Input: Σ a betweenness relation on X and k an integer.Question: Is there a set K ⊆ X su
h that |K| ≤ k and KΣ = X?These problems have been studied in the several domains and spe
ially indatabase theory, and they have been proved NP-
omplete [5,14,15℄ for generalimpli
ation bases. The problem MK has been proved NP-
omplete for parti
ular
ases of betweenness relations (see for instan
e [7℄ for the shortest path between-ness relation on graphs). It is known as the hull number of a betweenness relation.Therefore, we have the following.Proposition 6. MK is NP-
omplete.Re
ently, Kanté and Nourine [12℄ have shown that MK is polynomial forshortest path betweenness relations of 
hordal and distan
e hereditary graphsby using database te
hniques. Can we use the latti
e stru
ture of FX to get newpolynomial time algorithms for the MK problem in new graph 
lasses?Now we 
onsider the problem whi
h 
omputes an optimal 
over of a between-ness relation. This problem is to �nd an optimal betweenness relation whi
h isequivalent to a given betweenness relation. Several works have been done in thegeneral 
ase known as Horn minimization [11℄.Optimal Cover (OC)Input: Σ a betweenness relation on X and k an integer.Question: Is there a betweenness relationΣ′ equivalent toΣ su
h that |Σ′| ≤ k?The size of an optimal 
over is known as the hydra number [19℄. The 
ompu-tational 
omplexity of the hydra number is open for betweenness relations, butis NP-
omplete for the general 
ase [11,15℄. We hope that the latti
e stru
tureof FX 
ould help to address this question.6 Con
lusionIn this paper, we 
hara
terize the 
ontext of the latti
e of all betweenness re-lations on a �nite set, whi
h is a meet-sublatti
e of the latti
e of all 
losuresystems on the same set. We are 
onvin
ed that the stru
ture of latti
e 
an helpto understand some problems of graph theory su
h as hull number and hydranumber. In the future we will investigate the link of these parameters and thestru
ture of the latti
e.
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