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The Ninth International Conference on

Concept Lattices and Their Applications

CLA 2012

Fuengirola (Málaga), Spain

October 11–14, 2012

Edited by

Laszlo Szathmary

Uta Priss



CLA 2012, October 11–14, 2012, Fuengirola (Málaga), Spain.
Copyright c© 2012 by paper authors.
Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors.

Technical Editor:

Laszlo Szathmary, szathmary.laszlo@inf.unideb.hu

Page count: xii+357

Impression: 75

Edition: 1st

First published: 2012

Printed version published by:
Universidad de Málaga (Dept. Matemática Aplicada), Spain
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Ondrej Kŕıdlo and Manuel Ojeda-Aciego



Using intensifying hedges to reduce size of multi-adjoint concept lattices
with heterogeneous conjunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
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Preface

The Ninth International Conference “Concept Lattices and Applications (CLA
2012)” is held in Fuengirola (Málaga), Spain from October 11th until October
14th 2012. CLA 2012 is aimed at providing to everyone interested in Formal
Concept Analysis and more generally in Concept Lattices or Galois Lattices,
students, professors, researchers and engineers, a global and an advanced view
of some of the latest research trends and applications in this field. As the di-
versity of the selected papers shows, there is a wide range of theoretical and
practical research directions, in the field of data and knowledge processing, such
as data mining, knowledge discovery, knowledge representation, reasoning, pat-
tern recognition, together with logic, algebra and lattice theory.

This volume includes the selected papers and the abstracts of the 4 invited
talks. This year there were initially 44 submissions from which 28 papers were
accepted as full papers and 3 papers as short papers. We would like to thank the
authors for their work, often of very good quality, the members of the program
committee and the external reviewers without whose tremendous efforts this
conference would not have been possible. This is evidence of the growing quality
and importance of CLA, highlighting its leading position in the field.

We would like to thank the financial support that this conference has received
from the Research Promotion Programme of the Universidad de Málaga. We
would also like to thank the steering committee of CLA for giving us the op-
portunity of leading this edition of CLA, the conference participants for their
participation and support, and people in charge of the organization.

Finally, we also should not forget that the conference was managed (quite easily)
with the Easychair system, paper submission, selection, and reviewing, and that
Jan Outrata has offered his files for preparing the proceedings.

October 2012 Laszlo Szathmary
Uta Priss

Program Chairs of CLA 2012





Some results on the L-Fuzzy Concept Analysis

Ana Burusco

Dpt. Automática y Computación, Univ. Pública de Navarra
Campus de Arrosad́ıa, 31006 - Pamplona (Spain)

burusco@unavarra.es

Abstract. The main goal of this talk is the study of some extensions of the Formal

Concept Analysis to the L-fuzzy case as the interval-valued L-fuzzy contexts or the

K-labeled L-fuzzy contexts. These results are applied to the extraction of information

when we do not have all the necessary elements replacing the absent values by means

of implications between attributes associated with labels. I will show an application to

the diagnosis of the short-circuits produced in an electrical network. Moreover, using

a fuzzy tolerance relation R, certain fuzzy relations are characterized as solutions of

X C R = X, proving that they can be determined by means of the L-fuzzy concepts

associated with the K-labeled L-fuzzy contexts. In the last part of the talk the L-fuzzy

context sequences are studied using OWA operators. A particular case of this situation

appears when we want to study the evolution of an L-fuzzy context in time.
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Multi-adjoint concept lattices

Jesús Medina

Dept. Mathematics, University of Cádiz, Spain?

jesus.medina@uca.es

Abstract. Multi-adjoint concept lattices were introduced [2,3] as a new general ap-
proach to formal concept analysis, in which the philosophy of the multi-adjoint para-
digm [1,4] to formal concept analysis is applied. With the idea of providing a general
framework in which different approaches could be conveniently accommodated, the
authors worked in a general non-commutative environment; and this naturally lead
to the consideration of adjoint triples, also called implication triples or bi-residuated
structure as the main building blocks of a multi-adjoint concept lattice.
In recent years there has been an increased interest in studying formal concept analysis
on the perspective of using non-commutative conjunctors. This is not a mere mathe-
matical generalization, but a real need since, for instance, when one learns a conjunction
from examples it is not unusual that the resulting conjunction does not satisfy com-
mutativity. Different authors have argued in favour of considering non-commutative
conjunctors. Actually, there exist quite reasonable examples of non-commutative and
even non-associative conjunctors defined on a regular partition of the unit interval.
Hence, the possibility of considering non-commutative conjunctors provides more flex-
ibility and increases the number of applications.
This is one of the properties that the multi-adjoint concept lattice framework offers.
Another important feature is that different preferences among the set of attributes
or/and objects can be considered.
Moreover, this framework has been extended following different lines and has been
applied to define general extensions of fuzzy rough sets theory, to solve fuzzy relation
equations, etc.

References

1. P. Julian, G. Moreno, and J. Penabad. On fuzzy unfolding: A multi-adjoint ap-
proach. Fuzzy Sets and Systems, 154(1):16–33, 2005.

2. J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. Formal concept analysis via
multi-adjoint concept lattices. Fuzzy Sets and Systems, 160(2):130–144, 2009.
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? Partially supported by Spanish Ministry of Science and FEDER funds through
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Data characteristics and their relation to closed
patterns discovery algorithms

Engelbert Mephu Nguifo

LIMOS, Clermont University, Blaise Pascal University and CNRS
Clermont-Ferrand, France

mephu@isima.fr

Abstract. Closed frequent patterns discovery remains a challenge in data mining.
During the last decade, different works on data mining algorithms have based their
performance evaluation on one dataset characteristic: its density (or on the contrary
its sparseness). The incoming of massive datasets in different applications, points out
the important goal to design efficient algorithms. The density measurement have shown
to be a direction to reach such goal, especially when dealing with formal context of
concept lattices. This talk will discuss this notion and describe some metrics defined
to characterize dataset density for patterns discovery purpose.

References

1. Yahia, S.B., Hamrouni, T., Nguifo, E.M.: Frequent closed itemset based algorithms:
a thorough structural and analytical survey. SIGKDD Explor. Newsl. 8(1) (June
2006) 93–104

2. Boley, M., Grosskreutz, H.: Approximating the number of frequent sets in dense
data. Knowl. Inf. Syst. 21(1) (October 2009) 65–89
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On the names of implication

Sergei O. Kuznetsov

Higher School of Economics, Moscow
skuznetsov@hse.ru

Abstract. We discuss relationships of attribute implications to various tools in com-

puter science and artificial intelligence: functional dependencies, horn theories, emer-

gent patterns, disjunctive version spaces, and concept-based hypotheses. The intractabil-

ity of computing implication bases seems to be the main challenge for the use of im-

plications in analyzing large data collections. Alternatives to generation of implication

bases such as lazy-learning classification, target-driven generation of classifiers, and

sampling are considered.

skuznetsov@hse.ru




A Generalized Next-Closure Algorithm –
Enumerating Semilattice Elements

from a Generating Set

Daniel Borchmann

TU Dresden, Institute of Algebra
daniel.borchmann@mailbox.tu-dresden.de

Abstract. A generalization of the well known Next-Closure algorithm is
presented, which is able to enumerate finite semilattices from a generating
set. We prove the correctness of the algorithm and apply it on the
computation of the intents of a formal context.

1 Introduction

Next-Closure is one of the best known algorithms in Formal Concept Analysis [8]
to compute the concepts of a formal context. In its general form it is able to
efficiently enumerate the closed sets of a given closure operator on a finite set.
This generality might be a drawback concerning efficiency compared to other
algorithms like Close-by-One [1,9,11]. On the other hand, the general formulation
of Next-Closure widens its field of application. However, there are still applications
where Next-Closure might be useful, but is not applicable, because a closure
operator on a finite set is not explicitly available. One such example might be
the computation of concepts of a fuzzy formal context [3]. In those cases most
often an ad hoc variation of Next-Closure can be constructed. The aim of this
paper is to provide a generalization of Next-Closure which covers those cases,
and may even go beyond them.

As it turns out, Next-Closure is not about enumerating closed sets of a closure
operator, even not on an abstract ordered set. The algorithm is merely about
enumerating elements of a certain semilattice, given as an operation together
with a generating set. This observation shall turn out to be quite natural.

It has to be noted that there have been prior attempts to generalize Next-
Closure to a more general setting [7]. But this approach is, as far as the author
can tell, not related to the one presented in this paper.

This paper is organized as follows. First of all we shall revisit the original
version of Next-Closure, together with the basic definitions. Then we present our
generalized version working on semilattices, together with a complete proof of its
correctness. Then we show how this generalized form is indeed a generalization
of the original Next-Closure. Additionally, we present another algorithm for
enumerating the intents of a given formal context, which is very similar to
Close-by-One. Finally, we give some outlook on further questions which might
be interesting within this line of research.

c© 2012 by the paper authors. CLA 2012, pp. 9–20. Copying permitted only for private
and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



2 The Next-Closure Algorithm

Before we are going to discuss our generalized form of Next-Closure, let us
revisit the original version as it is given in [6,8]. To make our discussion a bit
more consistent, we shall allow ourselves a minor deviation from the standard
description of the algorithm, which we shall mention explicitly.

Let 𝑀 be a finite set and let 𝑐 : Pp𝑃 q ÝÑ Pp𝑃 q be a function such that

a) 𝑐 is idempotent, i.e. 𝑐p𝑐p𝐴qq “ 𝑐p𝐴q for all 𝐴 Ď 𝑀 ,
b) 𝑐 is monotone, i.e. if 𝐴 Ď 𝐵, then 𝑐p𝐴q Ď 𝑐p𝐵q for all 𝐴, 𝐵 Ď 𝑀 , and
c) 𝑐 is extensive, i.e. 𝐴 Ď 𝑐p𝐴q for all 𝐴 Ď 𝑀 .

The mapping 𝑐 is then said to be a closure operator on 𝑃 . A set 𝐴 Ď 𝑀 is called
closed (with respect to 𝑐) if 𝐴 “ 𝑐p𝐴q, and the image of 𝑐 is defined as

𝑐rPp𝑀qs :“ t 𝑐p𝐴q | 𝐴 Ď 𝑀 u.
Without loss of generality, let 𝑀 “ t 1, . . . , 𝑛 u for some 𝑛 P N. For two sets

𝐴, 𝐵 P 𝑐rPp𝑀qs with 𝐴 ‰ 𝐵 and 𝑖 P 𝑀 we say that 𝐴 is lectically smaller than
𝐵 at position 𝑖 if and only if

𝑖 “ minp𝐴 𝛥 𝐵q and 𝑖 P 𝐵,

where 𝐴 𝛥 𝐵 “ p𝐴z𝐵q Y p𝐵z𝐴q denotes the symmetric difference of 𝐴 and 𝐵.
We shall write 𝐴 ă𝑖 𝐵 if 𝐴 is lectically smaller than 𝐵 at position 𝑖. Finally, we
say that 𝐴 is lectically smaller than 𝐵, for 𝐴, 𝐵 P 𝑐rPp𝑀qs, if 𝐴 “ 𝐵 or 𝐴 ă𝑖 𝐵
for some 𝑖 P 𝑀 . We shall write 𝐴 ĺ 𝐵 in this case.

It has to be noted that, in contrast to our definition, the lectic order is
normally defined for all sets 𝐴, 𝐵 Ď 𝑀 in the very same spirit as given above.
However, as we shall see, this is not necessary, which is why we have restricted
our definition to closed sets only.

Now let us define for 𝐴 P 𝑐rPp𝑀qs and 𝑖 P 𝑀

𝐴‘ 𝑖 :“ 𝑐pt 𝑗 P 𝐴 | 𝑗 ă 𝑖 u Y t 𝑖 uq.
Then we have the following result.

Theorem 1 (Next-Closure [6]). Let 𝐴 P 𝑐rPp𝑀qs. Then the next closed set
𝐴` P 𝑐rPp𝑀qs after 𝐴 with respect to the lectic order ĺ, if it exists, is given by

𝐴` “ 𝐴‘ 𝑖

with 𝑖 P 𝑀 being maximal with 𝐴 ă𝑖 𝐴‘ 𝑖.

This is the original version of Next-Closure, as it is given in [6,8]. Therein,
the term “next closed set” has the obvious meaning, namely

𝐴` “ minăt𝐵 P 𝑐rPp𝑀qs | 𝐴 ă 𝐵 u.

10 Daniel Borchmann



Our generalization now starts with the following observation: the set 𝐴‘ 𝑖
can be seen as the smallest closed set containing both t 𝑗 P 𝐴 | 𝑗 ă 𝑖 u and t 𝑖 u,
or equivalently, both 𝑐pt 𝑗 P 𝐴 | 𝑗 ă 𝑖 uq and 𝑐pt 𝑖 uq. This means that we can
rewrite 𝐴‘ 𝑖 as

𝐴‘ 𝑖 “ 𝑐pt 𝑗 P 𝐴 | 𝑗 ă 𝑖 uq _ 𝑐pt 𝑖 uq,
where 𝑋 _ 𝑌 is the smallest closed set containing both 𝑋, 𝑌 P 𝑐rPp𝑀qs, the
supremum of 𝑋 and 𝑌 , which is simply given by 𝑋 _ 𝑌 “ 𝑐p𝑋 Y 𝑌 q. This
observation suggests to consider Next-Closure on abstract algebraic structures
with a binary operation _ with some certain properties, namely on semi-lattices.
To do so we need a more general notion of 𝑐pt 𝑖 uq, since we do not necessarily
deal with subsets, and a more general notion of t 𝑗 P 𝐴 | 𝑗 ă 𝑖 u, which likewise
might not be expressible in a more general setting. Finally, we need to find a
starting point for our enumeration, which is 𝑐pHq in the original description of
Next-Closure, but may vary in other cases. Luckily, all this is possible and quite
natural, as we shall see in the next section.

3 Generalizing Next-Closure for Semilattices

The aim of this section is to present a generalization of the Next-Closure algorithm
that works on semilattices. For this recall that a semilattice 𝐿 “ p𝐿,_q is an
algebraic structure with a binary operation _ which is associative, commutative
and idempotent. It is well known that by

𝑥 ď𝐿 𝑦 :ðñ 𝑥_ 𝑦 “ 𝑦, p𝑥, 𝑦 P 𝐿q
an order relation on 𝐿 is defined in such a way that for every two elements
𝑎, 𝑏 P 𝐿 the element 𝑎_ 𝑏 is the least upper bound of both 𝑎 and 𝑏 with respect
to ď𝐿.

For the remainder of this section let 𝐿 “ p𝐿,_q be an arbitrary but fixed
semilattice. Furthermore, let p𝑥𝑖 | 𝑖 P 𝐼q be an enumeration of a finite generating
set t𝑥𝑖 | 𝑖 P 𝐼 u Ď 𝐿 of 𝐿. Finally, let ď𝐼 be a total order on 𝐼.

Definition 1. Let 𝑎, 𝑏 P 𝐿 and let 𝑖 P 𝐼. Set

𝛥𝑎,𝑏 :“ t 𝑗 P 𝐼 | p𝑥𝑗 ď𝐿 𝑎 and 𝑥𝑗 ­ď𝐿 𝑏q or p𝑥𝑗 ­ď𝐿 𝑎 and 𝑥𝑗 ď𝐿 𝑏q u.
We then define

𝑎 ă𝑖 𝑏 :ðñ 𝑖 “ min 𝛥𝑎,𝑏 and 𝑥𝑖 ď𝐿 𝑏.

Furthermore we write 𝑎 ă 𝑏 if 𝑎 ă𝑖 𝑏 for some 𝑖 P 𝐼 and write 𝑎 ď 𝑏 if 𝑎 “ 𝑏 or
𝑎 ă 𝑏.

One can see the similarity of this definition to the one of the lectic order.
Here, the set 𝛥𝑎,𝑏 generalizes 𝑎 𝛥 𝑏 and 𝑥𝑖 ď𝐿 𝑏 somehow represents the fact
that 𝑖 P 𝑏, or equivalently t 𝑖 u Ď 𝑏, in the special case of 𝐿 “ Pp𝑀q and 𝑖 P 𝑀 .

Note that if 𝑎 ă𝑖 𝑏 and 𝑘 P 𝐼 with 𝑘 ă𝐼 𝑖, then

𝑥𝑘 ď𝐿 𝑎 ðñ 𝑥𝑘 ď𝐿 𝑏.
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This observation is quite useful and will be used in some of the proofs later on.
The first thing we want to consider now are two easy results stating that ď

is a total order relation on 𝐿 extending ď𝐿.

Lemma 1. The relation ă is irreflexive and transitive. Furthermore, for every
two elements 𝑎, 𝑏 P 𝐿 with 𝑎 ‰ 𝑏, it is either 𝑎 ă 𝑏 or 𝑏 ă 𝑎.

Proof. If 𝑎 “ 𝑏, then the set 𝛥𝑎,𝑏 defined above is empty, therefore we cannot
have 𝑎 ă𝑖 𝑎 for some 𝑖 P 𝐼. This shows the irreflexivity of ă. Let us now consider
the transitivity of ă. For this let 𝑎, 𝑏, 𝑐 P 𝐿, 𝑖, 𝑗 P 𝐼 and suppose that 𝑎 ă𝑖 𝑏 and
𝑏 ă𝑗 𝑐. We have to show that 𝑎 ă 𝑐. Let us consider the following cases.

Case 𝑖 ă𝐼 𝑗. We have 𝑥𝑖 ­ď𝐿 𝑎 and 𝑥𝑖 ď𝐿 𝑏 because of 𝑎 ă𝑖 𝑏. Due to 𝑖 ă𝐼 𝑗
it follows that 𝑥𝑖 ď𝐿 𝑐. Suppose that there exists 𝑘 P 𝐼, 𝑘 ă𝐼 𝑖 with 𝑥𝑘 ď𝐿 𝑎
and 𝑥𝑘 ­ď𝐿 𝑐. Then if 𝑥𝑘 ­ď𝐿 𝑏 we would have 𝑥𝑘 ­ď𝐿 𝑎 because of 𝑘 ă𝐼 𝑖, a
contradiction. But if 𝑥𝑘 ď𝐿 𝑏, then 𝑥𝑘 ď𝐿 𝑐 because of 𝑘 ă𝐼 𝑖 ă𝐼 𝑗, again a
contradiction. Thus we have shown that 𝑎 ă 𝑐.

Case 𝑗 ă𝐼 𝑖. We have 𝑥𝑗 ­ď𝐿 𝑏, 𝑥𝑗 ď𝐿 𝑐 because of 𝑏 ă𝑗 𝑐. Due to 𝑗 ă𝐼 𝑖
it follows that 𝑥𝑗 ­ď𝐿 𝑎. Now if there were a 𝑘 P 𝐼, 𝑘 ă𝐼 𝑗 with 𝑥𝑘 ď𝐿 𝑎 and
𝑥𝑘 ­ď𝐿 𝑐, then 𝑥𝑘 ď𝐿 𝑏 would imply 𝑥𝑘 ď𝐿 𝑐 and 𝑥𝑘 ­ď𝐿 𝑏 would imply 𝑥𝑘 ­ď𝐿 𝑎,
analogously to the first case, a contradiction. Hence such a 𝑘 cannot exist and
𝑎 ă 𝑐.

Case 𝑖 “ 𝑗. This cannot occur since otherwise 𝑥𝑖 ď𝐿 𝑏, because of 𝑎 ă𝑖 𝑏, and
𝑥𝑖 ­ď𝐿 𝑏, because of 𝑏 ă𝑖 𝑐, a contradiction.

Overall we have shown that 𝑎 ă 𝑐 in any case and therefore ă is a transitive
relation.

Finally let 𝑎, 𝑏 P 𝐿 with 𝑎 ‰ 𝑏. Then because t𝑥𝑖 | 𝑖 P 𝐼 u is a generating set,
the set 𝛥𝑎,𝑏 is not empty, since otherwise 𝑎 “ 𝑏. With 𝑖 :“ min 𝛥𝑎,𝑏 we either
have 𝑎 ă𝑖 𝑏 if 𝑥𝑖 ď𝐿 𝑏 and 𝑏 ă𝑖 𝑎 otherwise.

Lemma 2. Let 𝑎, 𝑏 P 𝐿 with 𝑎 ď𝐿 𝑏. Then 𝑎 ď 𝑏. In particular, if 𝑎 ď𝐿 𝑐 and
𝑏 ď𝐿 𝑐 for 𝑎, 𝑏, 𝑐 P 𝐿, then 𝑎_ 𝑏 ď 𝑐.

Proof. We show 𝑥𝑖 ď𝐿 𝑎 ùñ 𝑥𝑖 ď𝐿 𝑏 for all 𝑖 P 𝐼. This shows 𝑏 ­ă 𝑎, hence
𝑎 ď 𝑏 by Lemma 1. Now if 𝑥𝑖 ď𝐿 𝑎, then because of 𝑎 ď𝐿 𝑏 we see that 𝑥𝑖 ď𝐿 𝑏
and the claim is proven.

The next step towards a general notion of Next-Closure is to provide a
generalization of ‘.

Definition 2. Let 𝑎 P 𝐿 and 𝑖 P 𝐼. Then define

𝑎‘ 𝑖 :“
ł

𝑗ă𝐼 𝑖
𝑥𝑗ď𝐿𝑎

𝑥𝑗 _ 𝑥𝑖.

With all these definitions at hand we are now ready to formulate and prove
the promised generalization. For this, we generalize the proof of Next-Closure as
it is given in [8, page 67].
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Lemma 3. Let 𝑎, 𝑏 P 𝐿 and 𝑖, 𝑗 P 𝐼. Then the following statements hold:

i) 𝑎 ă𝑖 𝑏, 𝑎 ă𝑗 𝑐, 𝑖 ă𝐼 𝑗 ùñ 𝑐 ă𝑖 𝑏.
ii) 𝑎 ă 𝑎‘ 𝑖 if 𝑥𝑖 ­ď𝐿 𝑎.

iii) 𝑎 ă𝑖 𝑏 ùñ 𝑎‘ 𝑖 ď 𝑏.
iv) 𝑎 ă𝑖 𝑏 ùñ 𝑎 ă𝑖 𝑎‘ 𝑖.

Proof. i) It is 𝑥𝑖 ­ď𝐿 𝑎 and due to 𝑖 ă𝐼 𝑗 we get 𝑥𝑖 ­ď𝐿 𝑐 as well. Furthermore,
𝑥𝑖 ď𝐿 𝑏 because of 𝑎 ă𝑖 𝑏. Now if there would exist a 𝑘 P 𝐼 with 𝑘 ă𝐼 𝑖
such that 𝑥𝑘 ď𝐿 𝑐, 𝑥𝑘 ­ď𝐿 𝑏, then 𝑥𝑘 ď𝐿 𝑎 because of 𝑘 ă𝐼 𝑖 and 𝑥𝑘 ­ď𝐿 𝑎
because of 𝑘 ă𝐼 𝑖 ă𝐼 𝑗, a contradiction. With the same argumentation a
contradiction follows from the assumption that there exists a 𝑘 P 𝐼, 𝑘 ă𝐼 𝑖
with 𝑥𝑘 ­ď𝐿 𝑐, 𝑥𝑘 ď𝐿 𝑏. In sum we have shown 𝑐 ă𝑖 𝑏, as required.

ii) We have 𝑥𝑖 ­ď𝐿 𝑎 and 𝑥𝑖 ď𝐿 𝑎 ‘ 𝑖. Furthermore, for 𝑘 P 𝐼, 𝑘 ă𝐼 𝑖 and
𝑥𝑘 ď𝐿 𝑎 we have 𝑥𝑘 ď𝐿 𝑎‘ 𝑖 by definition. This shows 𝑎 ă 𝑎‘ 𝑖.

iii) Let 𝑎 ă𝑘 𝑏 for some 𝑘 P 𝐼. Then
Ž

𝑗ă𝐼 𝑘,𝑥𝑗ď𝐿𝑎 𝑥𝑗 ď𝐿 𝑏 and 𝑥𝑘 ď𝐿 𝑏, hence
with Lemma 2 we get 𝑎‘ 𝑘 ď 𝑏.

iv) Let 𝑎 ă𝑖 𝑏. Then 𝑥𝑖 ­ď𝐿 𝑎 and with (ii) we get 𝑎 ă 𝑎‘ 𝑖. By (iii), 𝑎‘ 𝑖 ď 𝑏.
If for 𝑘 P 𝐼, 𝑘 ă𝐼 𝑖 it holds that 𝑥𝑘 ď𝐿 𝑎 ‘ 𝑖 and 𝑥𝑘 ­ď𝐿 𝑎, then we also
have 𝑥𝑘 ď𝐿 𝑎‘ 𝑖 ď𝐿 𝑏, i.e. 𝑥𝑘 ď𝐿 𝑏, contradicting the minimality of 𝑖.

Theorem 2 (Next-Closure for Semilattices). Let 𝑎 P 𝐿. Then the next
element 𝑎` P 𝐿 with respect to ă, if it exists, is given by

𝑎` “ 𝑎‘ 𝑖

with 𝑖 P 𝐼 being maximal with 𝑎 ă𝑖 𝑎‘ 𝑖.

Proof. Let
𝑎` “ minăt 𝑏 P 𝐿 | 𝑎 ă 𝑏 u

be the next element after 𝑎 with respect to ă. Then 𝑎 ă𝑖 𝑎` for some 𝑖 P 𝐼 and
by Lemma 3.iv we get 𝑎 ă𝑖 𝑎‘ 𝑖 and with Lemma 3.iii we see 𝑎‘ 𝑖 ď 𝑎`, hence
𝑎‘ 𝑖 “ 𝑎`. The maximality of 𝑖 follows from Lemma 3.i.

To find the correct element 𝑖 P 𝐼 such that 𝑎` “ 𝑎‘𝑖 we can utilize Lemma 3.ii.
Because of this result, only elements 𝑖 P 𝐼 with 𝑥𝑖 ­ď𝐿 𝑎 have to be considered, a
technique which is also known for the original form of Next-Closure.

However, to make the above theorem practical for enumerating the elements of
a certain semilattice, one has to start with some element, preferably the smallest
element in 𝐿 with respect to ď. This element must also be minimal in 𝐿 with
respect to ď𝐿, by Lemma 2. Since t𝑥𝑖 | 𝑖 P 𝐼 u is a generating set of 𝐿, and
𝑎 ď 𝑎_ 𝑏 for all 𝑎, 𝑏 P 𝐿, the minimal elements of 𝐿 with respect to ď𝐿 must be
among the elements 𝑥𝑖, 𝑖 P 𝐼. So to find the first element of 𝐿 with respect to ď,
find all minimal elements in t𝑥𝑖 | 𝑖 P 𝐼 u and choose the smallest element with
respect to ď from them. But because of 𝑥𝑖 ď 𝑥𝑗 if and only if 𝑗 ă𝐼 𝑖, one just
has to take the largest index 𝑗 with respect to ă𝐼 to find the smallest element in
𝐿 with respect to ď.
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As a final remark for this section note that the set t𝑥𝑖 | 𝑖 P 𝐼 u must always
include the _-irreducible elements of 𝐿. These are all those elements 𝑎 P 𝐿 that
cannot be represented as a join of other elements, or, equivalently,

t 𝑏 P 𝐿 | 𝑏 ă𝐿 𝑎 u “ H or
ł

𝑏ă𝐿𝑎

𝑏 ă𝐿 𝑎.

It is also easy to see that the set of _-irreducible elements of 𝐿 is also sufficient,
i. e. that it is a generating set of 𝐿.

4 Computing the Intents of a Formal Context

We have seen an algorithm that is able to enumerate the elements of a semilattice
from a given generating set. We have also claimed that this is a generalization of
Next-Closure, which we want to demonstrate in this section. Furthermore, we
want to give another example of an application of this algorithm, namely the
computation of the intents of a given formal context.

Firstly, let us reconstruct the original Next-Closure algorithm from Theorem 2
and the corresponding definitions. For this let 𝑀 be a finite set and let 𝑐 be a
closure operator on 𝑀 “ t 0, . . . , 𝑛´ 1 u, say. We then apply Theorem 2 to the
semilattice 𝑃 “ p𝑐rPp𝑀qs,_q. We immediately see that ď𝑃 “ Ď and that ă𝑖 is
the usual lectic order on 𝑃 . Then the set

t 𝑐pt 𝑖 uq | 𝑖 P 𝑀 u Y t 𝑐pHq u
is a finite generating set of 𝑃 and we can define 𝑥𝑖 :“ 𝑐pt 𝑖 uq and 𝑥𝑛 :“ 𝑐pHq,
i.e. 𝐼 “ t 0, . . . , 𝑛 u. For a closed set 𝐴 Ď 𝑀 and 𝑖 P 𝐼 then follows

𝐴‘ 𝑖 “
ł

𝑗ă𝑖
𝑥𝑗Ď𝐴

𝑥𝑖 _ 𝑥𝑖

“ 𝑐p
ď

𝑗ă𝑖
𝑥𝑗Ď𝐴

𝑥𝑗q _ 𝑥𝑖

“ 𝑐p
ď
t 𝑐pt 𝑗 uq | 𝑗 ă 𝑖, 𝑗 P 𝐴 uq _ 𝑐pt 𝑖 uq

“ 𝑐pt 𝑗 | 𝑗 ă 𝑖, 𝑗 P 𝐴 uq _ 𝑐pt 𝑖 uq
“ 𝑐pt 𝑗 | 𝑗 ă 𝑖, 𝑗 P 𝐴 u Y t 𝑖 uq

which is the original definition of ‘ for Next-Closure. Furthermore, it is 𝐴‘𝑛 “ 𝐴
since 𝑐pHq Ď 𝐴 for each closed set 𝐴. We therefore do not need to consider 𝑥𝑛

when looking for the next closed set, and indeed, the only reason why 𝑥𝑛 “ 𝑐pHq
has been included is that it is the smallest closed set in 𝑃 . All in all, we see that
Next-Closure is a special case of Theorem 2.

However, for a closure operator 𝑐 on a finite set 𝑀 it seems more natural to
consider the semilattice 𝑃 “ p𝑐rPp𝑀qs,Xq, because the intersection of two closed
sets of 𝑐 again yields a closed set of 𝑐. One sees that ď𝑃 “ Ě. As a generating
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set we take the set of X-irreducible elements t𝑋𝑖 | 𝑖 P 𝐺 u for some index set 𝐺.
Let 𝐴, 𝐵 P 𝑐rPp𝑀qs and let ă𝐺 be a linear ordering on 𝐺. Then 𝐴 ă 𝐵 if and
only if there exists 𝑖 P 𝐺 such that

𝑖 “ mint 𝑗 P 𝐺 | p𝑋𝑖 Ě 𝐴, 𝑋𝑖 Ğ 𝐵q or p𝑋𝑖 Ğ 𝐴, 𝑋𝑖 Ě 𝐵q u and 𝑋𝑖 Ě 𝐵

and ‘ is just given by
𝐴‘ 𝑖 “

č

𝑗ă𝐺𝑖
𝑋𝑗Ě𝐴

𝑋𝑗 X𝑋𝑖.

Now note that ‘ does not need the closure operator 𝑐 anymore. This means
that if the computation of 𝑐 is very costly and the X-irreducible elements (or
a superset thereof) is known, this approach might be much more efficient. In
general, however, it is not known how to efficiently determine the X-irreducible
closed sets of 𝑐. But if 𝑐 is given as the ¨2 operator of a formal context, these
irreducible elements can be determined quickly [8]. We shall describe this idea in
more detail.

Let 𝐺 and 𝑀 be two finite sets and let 𝐽 Ď 𝐺ˆ𝑀 . We then call the triple
K :“ p𝐺, 𝑀, 𝐽q a formal context, 𝐺 the objects of the formal context and 𝑀
the attributes of the formal context. For 𝑔 P 𝐺 and 𝑚 P 𝑀 we write 𝑔 𝐽 𝑚 for
p𝑔, 𝑚q P 𝐽 and say that object 𝑔 has attribute 𝑚.

Let 𝐴 Ď 𝐺 and 𝐵 Ď 𝑀 . We then define the derivations of 𝐴 and 𝐵 to be

𝐴1 :“ t𝑚 P 𝑀 | @𝑔 P 𝐴 : 𝑔 𝐽 𝑚 u
𝐵1 :“ t 𝑔 P 𝐺 | @𝑚 P 𝐵 : 𝑔 𝐽 𝑚 u.

Then the ¨2 operator is just the twofold derivation of a given set of attributes. It
turns out that this is indeed a closure operator, and that every closure operator
can be represented as a ¨2 operator of a suitable formal context [4,8]. The closed
sets of ¨2, i.e. all sets 𝐵 Ď 𝑀 with 𝐵 “ 𝐵2, are called the intents of K and shall
be denoted by IntpKq. It is clear from the previous remarks that pIntpKq,Xq is a
semilattice.

The advantage of representing a closure operator is that the X-irreducible
elements of pIntpKq,Xq can be directly read off from the format context. As
discussed in [8], the set

t t 𝑔 u1 | 𝑔 P 𝐺 u
contains the irreducible elements we are looking for, except 𝑀 (note that the order
relation on pIntpKq,Xq is Ě.) Furthermore, it is possible to omit certain objects
𝑔 from K without changing IntpKq. Every object 𝑔 P 𝐺 can be omitted from K
for which the set t 𝑔 u1 is either equal to 𝑀 or can be represented as a proper
intersection of other sets t 𝑔1 u1, . . . , t 𝑔𝑛 u1 for some elements 𝑔1, . . . , 𝑔𝑛 P 𝐺. It is
also clear that if there exist two distinct objects 𝑔1 and 𝑔2 with t 𝑔1 u1 “ t 𝑔2 u1,
that we can remove one of them without changing IntpKq. A formal context
for which no such objects exist is called object clarified and object reduced. If
K “ p𝐺, 𝑀, 𝐽q is an object clarified and object reduced formal context, then the

A Generalized Next-Closure Algorithm 15



Listing 1.1. Compute the Next Intent of a Formal Context
0 define next-intent(K “ p𝐺, 𝑀, 𝐽q ,𝐴)
1 for 𝑔 P 𝐺 , descending
2 i f t 𝑔 u1 Ğ 𝐴 then
3 let (𝐵 := 𝐴‘ 𝑔)
4 i f @ℎ P 𝐺, ℎ ă𝐺 𝑔, tℎ u1 Ğ 𝐴 : tℎ u1 Ğ 𝐵 then
5 return 𝐵
6 end if
7 end let
8 end if
9 end for

10 return nil
11 end

set t t 𝑔 u1 | 𝑔 P 𝐺 u is exactly the set of X-irreducible intents of K, except for the
set 𝑀 .

The algorithm described above now takes the following form when applied
to the semilattice pIntpKq,Xq. As index set we choose the set 𝐺 of object of the
given formal context, ordered by ă𝐺. For every object 𝑔 P 𝐺 we set 𝑥𝑔 :“ t 𝑔 u1.
Then the set t𝑥𝑔 | 𝑔 P 𝐺 u is a generating set of the semilattice pIntpKqzt𝑀 u,Xq,
which we want to enumerate (since we get the set 𝑀 for free). For 𝐴 being an
intent of K and 𝑔 P 𝐺 we have

𝐴‘ 𝑔 :“
č

tℎ u1Ě𝐴
ℎă𝐺𝑔

tℎ u1 X t 𝑔 u1

and as the first intent we take 𝑀 . For an intent 𝐴 Ď 𝑀 of K we then have to
find the maximal object 𝑔 P 𝐺 (with respect to ă𝐺) such that 𝐴 ă𝑔 𝐴‘ 𝑔. This
is equivalent to 𝑔 being maximal with t 𝑔 u1 Ğ 𝐴 and @ℎ P 𝐺, ℎ ă𝐺 𝑔 : tℎ u1 Ě
𝐴 ðñ tℎ u1 Ě 𝐴‘ 𝑔. However, the direction “ùñ” is clear, hence we only have
to ensure

@ℎ P 𝐺, ℎ ă𝐺 𝑔 : tℎ u1 Ğ 𝐴 ùñ tℎ u1 Ğ 𝐴‘ 𝑔.

All these considerations yield the algorithm shown in Listing 1.1. Of course, the
derivations of the form t 𝑔 u1 should not be computed every time they are needed
but rather stored somewhere for reuse.

Let us simplify Listing 1.1 a bit further. If 𝐴 is an intent of K, then for 𝑔 P 𝐺
it is true that

t 𝑔 u1 Ğ 𝐴 ðñ 𝑔 R 𝐴1.

This is because

t 𝑔 u1 Ě 𝐴 ùñ t 𝑔 u2 Ď 𝐴1

ùñ 𝑔 P 𝐴1
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Listing 1.2. Simplified version of Listing 1.1
0 define next-intent(K “ p𝐺, 𝑀, 𝐽q ,𝐴)
1 for 𝑔 P 𝐺 , descending
2 i f 𝑔 R 𝐴1 then
3 let (𝐵 := 𝐴‘ 𝑔)
4 i f 𝐵1 X𝐺𝑔 Ď 𝐴1 X𝐺𝑔 then
5 return 𝐵
6 end if
7 end let
8 end if
9 end for

10 return nil
11 end

and

𝑔 P 𝐴1 ùñ t 𝑔 u Ď 𝐴1

ùñ t 𝑔 u1 Ě 𝐴2 “ 𝐴,

and therefore t 𝑔 u1 Ě 𝐴 ðñ 𝑔 P 𝐴1, i. e. t 𝑔 u1 Ğ 𝐴 ðñ 𝑔 R 𝐴1. Using this, we
can simplify the condition

@ℎ P 𝐺, ℎ ă𝐺 𝑔, tℎ u1 Ğ 𝐴 : tℎ u1 Ğ 𝐵

to
@ℎ P 𝐺, ℎ ă𝐺 𝑔 : ℎ P 𝐵1 ùñ ℎ P 𝐴1

or equivalently to 𝐵1X𝐺𝑔 Ď 𝐴1X𝐺𝑔, where 𝐺𝑔 :“ tℎ P 𝐺 | ℎ ă𝐺 𝑔 u. This leads
to the algorithm of Listing 1.2.

Curiously enough, this algorithm is now very similar to Close-by-One. To
make this similarity more apparent, let us give a brief description of the algorithm
Close-by-One. In contrast to Next-Closure, which enumerates the intents of the
formal context K, Close-by-One enumerates the formal concepts of K. These are
pairs p𝐶, 𝐷q of sets 𝐶 Ď 𝐺, 𝐷 Ď 𝑀 such that 𝐶 1 “ 𝐷 and 𝐷1 “ 𝐶. The set of all
formal concepts of K is denoted by BpKq. The formal concepts BpKq of K can
be ordered by

p𝐶1, 𝐷1q ď p𝐶2, 𝐷2q ðñ 𝐶1 Ď 𝐶2p ðñ 𝐷2 Ď 𝐷1q.
It turns out that the set pBpKq,ďq forms a (complete) lattice, i. e. an ordered
set such that for each set of formal concepts there exists a smallest upper and a
largest lower bound. This lattice is also called the concept lattice of K.

Close-by-One now performs a depth-first search in this lattice to compute
all formal concepts of K. Following the description of [10], the main part of the
work is done by the function generate-from, as it is described in Listing 1.3.
To simplify the description of this function, we again assume that the set 𝑀 of
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Listing 1.3. Close-by-One [10]
0 define generate-from(K “ p𝐺, 𝑀, 𝐽q ,p𝐶, 𝐷q ,ℓ)
1 output p𝐶, 𝐷q
2

3 i f 𝐷 “ 𝑀 or ℓ ą |𝑀 | then
4 return
5 end if
6

7 for 𝑚 P t ℓ, . . . , 𝑛 u , ascending
8 i f 𝑚 R 𝐷 then
9 let (𝐸 := 𝐶 X t𝑚 u1 ,

10 𝐹 := 𝐸1 )
11 i f 𝐹 X𝑀𝑚 Ď 𝐷 X𝑀𝑚 then
12 generate-from(p𝐸, 𝐹 q ,𝑚` 1)
13 end if
14 end let
15 end if
16 end for
17 end
18

19 define all-concepts(K “ p𝐺, 𝑀, 𝐽q)
20 generate-from(K ,pH1,H2q ,1)
21 end

attributes of K is just the set 𝑀 “ t 1, . . . , 𝑛 u. Furthermore, if 𝑚 P 𝑀 , we define
𝑀𝑚 :“ t 1, . . . , 𝑚´ 1 u.

We can now spot some similarities between the functions next-intent from
Listing 1.2 and generate-from. The most striking similarity to note is the
occurrence of the same tests in both functions: “𝐵1 X𝐺𝑔 Ď 𝐴1 X𝐺𝑔” in line 4 of
Listing 1.2, and “𝐹 X𝑀𝑚 Ď 𝐷 X𝑀𝑚” in line 11 of Listing 1.3. If we substitute
the definitions of the involved variables, these tests get the following form:

next-intent: p𝐴X t 𝑔 u1q1 X𝐺𝑔 Ď 𝐴1 X𝐺𝑔

generate-from: p𝐶 X t𝑚 u1q1 X𝑀𝑚 Ď 𝐶 1 X𝑀𝑚

So except that we consider sets of objects in the function next-intent and sets
of attributes in the function generate-from, both test conditions are the same.

Still, the functions next-intent and generate-from are very different in
how they compute the next intent and formal concept, respectively. While
next-intent computes for a given intent just a new one, generate-from per-
forms a depth-first search and enumerate all formal concepts of K.

5 Conclusion

We have seen a natural generalization of the Next-Closure algorithm to enumerate
elements of a semilattice from a generating set. We have proven the algorithm to
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be correct and applied it to the standard task of computing the intents of a given
formal context, yielding a another algorithm to accomplish this. This algorithm
turned out to have a lot of similarity to Close-by-One.

There are still some interesting ideas one might want to look at.
Firstly, a variation of the original Next-Closure algorithm is able to compute

the canonical base of a formal context, a very compact representation of its impli-
cational knowledge. It would be interesting to know whether the generalization
given in this paper gives more insight into the computation, and therefore into
the nature of the canonical base. This is, however, quite a vague idea.

Secondly, the algorithm discussed above to compute the intents of a formal
context enumerates them in a certain order, which might or might not be a
lectic one. Understanding this order relation might be fruitful, especially with
respect to the complexity results obtained recently which consider enumerating
pseudo-intents of a formal context in lectic order [5].

Thirdly, there exists a variant of the Next-Closure algorithm that is able to
compute intents of a formal context up to symmetry [8, Theorem 51]. Given a set
𝛤 of automorphisms of a formal context, this variant is able to compute for each
orbit of intents under 𝛤 exactly one representative. It would be interesting to
know whether we can find a variant of our generalized Next-Closure algorithm
that accomplishes the same thing.

Finally, and more technically, it might be interesting to look for other ap-
plications of our general algorithm. As already mentioned in the introduction,
the enumeration of fuzzy concepts of a fuzzy formal context might be worth
investigating (and it might be interesting comparing it to [2]).
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{berry, sigayret}@isima.fr
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Abstract. Given a relation R ⊆ O × A on a set O of objects and a
set A of attributes, the Galois sub-hierarchy (also called AOC-poset)
is the partial order on the introducers of objects and attributes in the
corresponding concept lattice. We present a new efficient algorithm for
building a Galois sub-hierarchy which runs in O(min{nm, nα}), where
n is the number of objects or attributes, m is the size of the relation,
and nα is the time required to perform matrix multiplication (currently
α = 2.376).

1 Introduction

Galois lattices (also called concept lattices) are a powerful tool for data modeling.
Such a lattice is built on a relation between a set of objects and a set of attributes.
The main drawback of this structure is that it may have an exponential size in
the number n of objects or attributes. A canonical sub-order of the lattice, its
Galois sub-hierarchy (GSH, also called AOC-Poset), of much smaller size, is
recommended whenever possible. This GSH preserves only the key elements of
the lattice: object-concepts and attribute-concepts (also called introducers); the
number of these key elements is at most equal to the total number n of objects
and attributes.

Galois sub-hierarchies were introduced in software engineering by Godin et al.
[10] for class hierarchy reconstruction and successfully applied in later research
work (see e.g. [15]). The AOC-poset (Attribute/Object Concepts poset [9]) has
been used in applications of FCA to non-monotonic reasoning and domain theory
[12], and to produce classifications from linguistic data [18, 20]. Specific parts of
the GSH (mainly attribute-concepts) have been used in several works, including
approaches for refactoring a class hierarchy [14] and recently for extracting a
feature tree from a set of products in Software Product Lines [21].
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Three algorithms for building GSH already exist: Ares [7], Ceres [14], and
Pluton [1]. Each of them has a time complexity of O(n3), and they are some-
what complicated. Their comparative experimental running times were investi-
gated in [1].

In this paper, we present a new algorithm for building Galois sub-hierarchies,
which we call Hermes, with a better complexity. Hermes runs in O(nm) time,
where m is the size of the relation, and is very easy to understand and imple-
ment. With more effort invested in the implementation, Hermes can be made to
run in O(nα) (i.e. O(n2.376)) time, which is the time for performing matrix mul-
tiplication. Hermes works by simplifying and then extending the input relation
into a relation which contains in a compact fashion all the necessary information
on the elements of the GSH.

The paper is organized as follows: after this introduction, we give some no-
tations and definitions. Section 3 briefly outlines how previous algorithms work.
Section 4 proves some preliminary results and presents the algorithmic tools nec-
essary to ensure our good complexity. Section 5 describes and analyzes in detail
the successive steps of our algorithmic process. Section 6 gives the algorithm.
Section 7 describes the special case for chordal bipartite relations, where the
final relation can easily be obtained in O(n2) time. We conclude in Section 8.

2 Definitions and notations

The different communities handling Galois lattices and Galois sub-hierarchies
use various notations. Here, we will use algebraic notations detailed below.

Given two finite setsO (of ’objects’) andA (of ’attributes’), a binary relation
R ⊆ O × A indicates which objects of O are associated with which attributes
of A. O is called the starting set of the relation. We will denote n = |O|+ |A|
and m = |R|. For (x, y) ∈ R, we will say that x is an antecedent of y, and y is
an image of x. For x ∈ O, R(x) = {y ∈ A | (x, y) ∈ R} is the image set (row)
of x, and for y ∈ A, R−1(y) = {x ∈ O | (x, y) ∈ R} is the antecedent set
(column) of y. Note that notation x′ is used in FCA [9] for R(x) and R−1(x).
The term line will be indifferently used for row and column. The triple (O,A,R)
is called a context.

A maximal rectangle of R, also called a concept, is a maximal Cartesian
sub-product of R, i.e. X × Y such that ∀x ∈ X, ∀y ∈ Y , (x, y) ∈ R and
∀w ∈ O − X, ∃y ∈ Y | (w, y) 6∈ R and ∀z ∈ A − Y , ∃x ∈ X | (x, z) 6∈ R.
X is called the extent and Y the intent of concept X × Y , which is denoted
(X,Y ). In our examples, we may omit set brackets when the meaning is clear.
The extent and intent of concept C will be denoted Extent(C) and Intent(C).
The concepts, ordered by inclusion on their extents (or dually by inclusion on
their intents) form a lattice L(R) called a Galois lattice or a concept lattice.
For two concepts C and C ′, C <L(R) C

′ will denote Extent(C)⊂Extent(C ′). A
lattice is represented by its Hasse diagram, where reflexivity and transitivity
edges are omitted.
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An object-concept is a concept Cx which introduces some object x: x is in
the extent of Cx but is not in the extent of any smaller concept C ′ <L(R) Cx.
Dually, an attribute-concept is a concept Cy which introduces some attribute
y: y is in the intent of Cy but is not in the intent of any greater concept C ′ >L(R)

Cy. Thus, the intent of object-concept Cx is R(x), and the extent of attribute-
concept Cy is R−1(y). Object-concepts and attribute-concepts are also called
introducer concepts or simply introducers. Objects are introduced from
bottom to top and attributes from top to bottom in L(R). A given concept may
introduce several objects and/or attributes. Note that [9] uses arrow relations
to characterize the relationship between attribute-concepts and object-concepts,
but without referring to Galois sub-hierarchies.

A relation is said to be clarified when it has no identical lines. A relation is
said to be reduced when it is clarified and has no line which is the intersection
of several other lines. When a relation is reduced, the irreducible elements of the
lattice are exactly the introducers, whereas in a non-reduced relation there will
be extra introducers.
H(R) denotes the Galois sub-hierarchy (GSH) of relation R, defined by

the set of introducer concepts ordered as in L(R). H(R) is then a sub-order
of L(R). The elements of H(R) are generally labeled by the objects and/or
attributes they introduce, defining the simplified labeling. The same simplified
labeling applies to L(R), in which some concepts may have an empty label.
<H(R) will be used to compare two elements of H(R), as <L(R) is used for
L(R).

A linear extension of a partially ordered set P is a total order in which P
is included.

Running example. Figure 1 shows the Galois
lattice L(R) (as drawn by Context Explorer [24])
and the Galois sub-hierarchy H(R) of relation R. In
L(R), concept (1, acdeg) introduces 1 (simplified la-
bel: 1), concept (1346, c) introduces c (simplified la-
bel: c), and concept (3, abcdfg) introduces 3 and b
(simplified label: 3, b). All these concepts are inH(R);
concept (13, acdg) introduces nothing (simplified la-
bel empty) and as such is not in H(R).

R a b c d e f g

1 × × × × ×
2 × × × ×
3 × × × × × ×
4 × ×
5 ×
6 × ×
7 × × ×
8 × × × ×

3 Previous algorithms

We present a brief description of the existing algorithms for building Galois sub-
hierarchies; all run in O(n3) time, where n stands for the number of objects
and attributes in the input relation. The reader is referred to the corresponding
publications for detailed descriptions and to [1] for a comparative experimental
study of those algorithms.

Pruned lattice. [10]
Pruned lattice is the name given to a Galois sub-hierarchy by [10] which is, to our
best knowledge, the first paper defining this structure. [10] considers a specific
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L(R) H(R)

Fig. 1. Lattice L(R) and Galois sub-hierarchy H(R), both with the simplified labeling,
for our running example.

case where each object owns a specific attribute (not owned by the others). A
class inheritance hierarchy is flattened in a table that associates the classes with
their members (class attributes and methods). The hierarchy is then rebuilt in
a better factorized way, eliminating redundancy.

Pluton. [1]
This algorithm is composed of three successive processes: TomThumb, ToLinext,
and ToGSH. TomThumb [3] produces an ordered list of the simplified labels of
extents and intents, which maps to a linear extension of the GSH. ToLinext then
searches this list to merge consecutive pairs consisting of a simplified extent and
a simplified intent belonging to the same concept. Finally, ToGSH computes the
edges of the Hasse diagram of the GSH.

Ceres. [14]
This algorithm computes at the same time the elements of the GSH and its
Hasse diagram. The elements are computed in an order which maps to a linear
extension of the Galois sub-hierarchy. In a first stage, the columns of the rela-
tion are sorted by decreasing number of crosses to generate the introducers by
decreasing extent size. In the second stage, the strategy is twofold: compute the
attribute-concepts by groups sharing the same extent, and add object-concepts
when their intent is covered by the intents of the attribute-concepts already
computed. The edges of the hierarchy are determined on-the-fly.

Ares. [7]
This algorithm is incremental: given a Galois sub-hierarchy and a new object
with its attribute set S, the hierarchy is modified to include this new object.
For this, the initial GSH is traversed using a linear extension. If I denotes the
intent of the current (explored) concept, then four main cases may occur and
the GSH will be updated accordingly: I = S, I ⊂ S, I ⊃ S, or I and S are not
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comparable by set inclusion. If during exploration, the algorithm did not find an
initial concept whose intent is S, a new concept is created. For every modification
of the Hasse diagram, the algorithm removes newly created transitivity edges.
At the same time, for each modified intent, the algorithm checks if some concept
has a simplified label which is empty and removes such concept.

4 Preliminary results and algorithmic tools

4.1 Some preliminary results

The following theorem will help order the introducers:

Theorem 1.
Let Cx be the introducer of x ∈ O and Cy be the introducer of y ∈ A.
– Cx ≤H(R) Cy iff (x, y) ∈ R.
– Cx ≥H(R) Cy iff Intent(Cx)⊆Intent(Cy) iff Extent(Cx)⊇Extent(Cy).

In this case, (x, y) 6∈ R except if Cx = Cy.
– Otherwise, Cx and Cy are not comparable.

[22] introduced the notion of domination which originates from graph theory.
Domination in a relation stemmed from the concept of domination in the co-
bipartite graph which is the complement of the bipartite graph induced by the
relation.

An attribute y ∈ A is said to dominate an attribute z ∈ A in R if the
antecedent set of y is included in the antecedent set of z: R−1(y) ⊆ R−1(z);
the corresponding relation is denoted DomA. When the inclusion is strict, the
domination is said to be strict. For y ∈ A, DomA(y) = {z ∈ A |R−1(y) ⊆
R−1(z)}. This preorder defines the way attributes label the concepts of H(R)
from top (the dominating attributes) to bottom (the dominated attributes).

A domination relation, DomO, can also be defined between objects by inclu-
sion of their image sets: ∀w ∈ O, DomO(w) = {x ∈ O |R(w) ⊆ R(x)}. The label
of H(R) will be set from bottom (the dominating objects) to top (the dominated
objects), according to the dual behavior of objects and attributes in concepts.

Theorem 2. [4]
Endowed with domination relation DomA, the set of attribute-concepts of R
forms a sub-order of H(R): for y, z ∈ A, the introducer of y is smaller than or
equal to the introducer of z iff (y, z) ∈ DomA.
Endowed with domination relation DomO, the set of object-concepts of R forms
a sub-order of H(R) and L(R): for w, x ∈ O, the introducer of w is greater than
or equal to the introducer of x iff (w, x) ∈ DomO.

Example. In our running example, R−1(b) = {3} ⊂ R−1(a) = {1, 2, 3, 7, 8};
attribute b dominates attribute a and the introducer of b is smaller than the in-
troducer of a, as shown in Figure 1. DomA(b) = {a, b, c, d, f, g}. R(6) = {c, d} ⊂
R(1) = {a, c, d, e, g}; object 6 dominates object 1 and the introducer of 6 is
greater than the introducer of 1. DomO(6) = {1, 3}.
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4.2 Algorithmic tools

We will need two processes for our complexity results.

The first process is to rapidly recognize lines of a relation which are equal,
which corresponds to the clarification of context (O,A,R). This can be done
in linear time O(|R|) by a process of partition refinement, as proved by [13] for
undirected graphs, and detailed as applied to relations [2]. Thus, in linear time,
one can merge all sets of lines which are equal. Note that after this process, the
domination on attributes (resp. objects) will be a strict order.

The second tool we use extensively enables us to decide which lines (rows
or columns) are properly included in another, or in other words determines a
domination order. This can be done using the tripartite directed graph intro-
duced by Bordat [5]. Computing the transitive edges of this graph will result
into the domination order on objects or attributes, depending on how the graph
is initially defined [2]. Computing the transitive closure of a graph can be per-
formed in the same time as Matrix Multiplication, with a time complexity of
O(nα), where α is currently 2.376 [6]. However, the O(n2.376) algorithm [6] for
Matrix Multiplication is not often used, as it is difficult to implement. It is easy
to compute the domination order in O(nm) time, as each line can be compared
to all the other lines in linear time.

The last step of our algorithm requires a transitive reduction which consists
in removing all the transitivity edges of a partial order. This problem has the
same time complexity as the equivalent problem of transitivity closure and can
also be performed in the same time as matrix multiplication.

5 Algorithmic process

Our algorithm works in five simple steps:

1. Clarify the input relation R ⊆ O ×A into a relation Rc where no two lines
(rows or columns) are identical in order to avoid redundancy.

2. Compute the domination relation DomA between attributes (i.e. decide
which columns of Rc are included into which other columns).

3. Compute a new relation Rce, obtained by appending DomA to Rc, and
simplify Rce into Rces where no two rows are identical. (This simplification
merges an attribute and an object whenever they are introduced by the same
concept.)

4. Extract from Rces the elements of H(R), whose intents are in fact the rows
of Rces and whose simplified labels are the labels of these rows in Rces.

5. Construct the Hasse diagram of H(R) from these intents.

Note that as objects and attributes play symmetric roles, the algorithm can
dually use domination on objects instead of attributes. The choice may result
from an unbalanced number of objects with respect to the number of attributes.
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5.1 Clarifying R into Rc

Some objects (resp. attributes) may have the same image set (resp. antecedent
set) and will then appear in the same concepts and share the same introducer.
To simplify this redundancy, we will then merge identical lines of R to obtain
clarified relation Rc. This can be done in linear O(|R|) time, as discussed in
Subsection 4.2.

Example. In relation R of our running example,
attributes a and g have the same antecedent set
{1, 2, 3, 7}, objects 2 and 8 have the same image
set {a, e, f}. The corresponding clarified relation
Rc is presented. Rc and R have the same lattice
and the same Galois sub-hierarchy.

Rc a,g b c d e f

1 × × × ×
2,8 × × ×
3 × × × × ×
4 × ×
5 ×
6 × ×
7 × ×

5.2 Computing DomA from Rc

The domination relation on attributes DomA is computed using clarified relation
Rc as input. DomA has been proven to be a sub-order of the Galois sub-hierarchy
where only the elements having an attribute in their simplified label have been
preserved [4]. As discussed in Subsection 4.2, this can be done in O(|Attr|α) or
in O(|A|.|Rc|) time.

Example. The domination order DomA of Rc
is represented here as a sub-order of H(R). a
and g have been grouped by the clarification pro-
cess. Then b strictly dominates ag, f , d, and c:
DomA(b) = {ag, f, d, c, b}, and e strictly domi-
nates ag: DomA(e) = {ag, e}.

5.3 Constructing relation Rce and its simplification Rces

We now compute relation Rce, which is the juxtaposition of Rc with DomA.
The formal definition of Rce ⊆ (O ∪ A) × A is as follows: ∀x ∈ O, ∀y ∈ A,
(x, y) ∈ Rce iff (x, y) ∈ Rc, and ∀y, z ∈ A, (y, z) ∈ Rce iff (y, z) ∈ DomA.

Now relation Rce may have identical rows. As the input relation has already
been clarified, this can only occur when an object has the same image set (in
Rc) as an attribute (in DomA). We will merge these lines of Rce to obtain a
new relation Rces. We will show in the next section that this last process will
associate the rows of Rces with the elements of H(R).

This simplification, as the clarification of Step 1, can be obtained in linear
time; however, the process now only compares objects with attributes. Note that
the initial clarification into Rc could have been delayed and integrated into this
step, but the more redundancies the initial relation contains, the more time the

Hermes: an efficient algorithm for building Galois sub-hierarchies 27



computation of DomA will require; a better average time complexity is thus
obtained by separating these steps.

Example. Rc(3) = DomA(b), so 3 and b are merged in Rces, as 5 with d, and
7 with e.
Rc a,g b c d e f
1 × × × ×
2,8 × × ×
3 × × × × ×
4 × ×
5 ×
6 × ×
7 × ×

+
DomA a,g b c d e f
a,g ×
b × × × × ×
c ×
d ×
e × ×
f ×

=

Rc +DomA = Rce
Rce a,g b c d e f
1 × × × ×
2,8 × × ×
3 × × × × ×
4 × ×
5 ×
6 × ×
7 × ×
a,g ×
b × × × × ×
c ×
d ×
e × ×
f ×

→

Rce → Rces
Rces a,g b c d e f
1 × × × ×
2,8 × × ×
4 × ×
6 × ×
a,g ×
3,b × × × × ×
c ×

5,d ×
7,e × ×
f ×

5.4 Extracting the elements of H(R) from Rces

We will now prove that the starting set of Rces yields exactly the elements
of H(R), because of our two-step merging process. Step 1 grouped together
separately equivalent objects or equivalent attributes which trivially correspond
to objects or attributes having the same introducer. Step 3 grouped together an
object and an attribute whenever they have the same introducer, as proved in
Theorem 3. Thus the labels of the rows of Rces are the simplified labels of H(R),
and for each row, its elements yield the intent of the corresponding concept, as
proved in Theorem 4. No extra computation is thus needed for this step.

Example. The starting set of Rces is: { {1}, {2,8}, {4}, {6}, {a,g}, {3,b}, {c},
{5,d}, {7,e}, {f} }. Its elements correspond exactly to the simplified label of the
elements of H(R) presented in Figure 1. The rows represent the intents of these
elements: for example, the complete labeling of the introducer of 2 would be
({2,8},{a,g,e,f}).
Theorem 3. Given a relation R ⊆ O × A, the introducer of x ∈ O and the
introducer of y ∈ A are the same if and only if Rce(x) = Rce(y).

Proof.
– Suppose concept Cxy is the introducer of both x ∈ O and y ∈ A. The in-
tent of Cxy is by definition R(x), which includes y. Let z be an attribute of
R(x) = Rce(x) and Cz its introducer; as (x, z) ∈ R, Cxy ≤ Cz and then
Extent(Cxy)⊆Extent(Cz) (Theorem 1); therefore, (y, z) ∈ DomA and so z ∈
Rce(y); thus Rce(x) ⊆ Rce(y). Let t be an attribute in Rce(y) and Ct its intro-
ducer; (y, t) ∈ DomA, which implies Ct ≥ Cxy, and so the extent of Ct contains
x, which implies (x, t) ∈ R, i.e. t ∈ Rce(x); thus Rce(y) ⊆ Rce(x).
– Suppose Rce(x) = Rce(y), i.e. R(x) = DomA(y). For z ∈ DomA(y), (x, z) ∈
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R, so the introducers of z and x are comparable: Cz ≥ Cx (Theorem 1); in
particular, Cy ≥ Cx. By definition of the domination relation, R−1(y) ⊆ R−1(z)
for all z ∈ DomA(y) = R(x) and then, by definition of the ordering of L(R),
Cz ≥ Cy; the extent of Cy is included in the intersection of the extents of these
Cz. As we are dealing with elements of a lattice, the extent of Cx is the in-
tersection of the extents of all Cz, z ∈ R(x), which means Cx is the infimum
(greatest lower bound) of these Cz. Finally, Cy is the minimum concept of a set
of concepts of which Cx is the infimum, clearly Cx = Cy.
�

Consequently, the final relation Rces yields the elements of H(R):

Theorem 4. The rows of Rces are in a one-to-one correspondence with the ele-
ments of H(R). More precisely, each element of the starting set is the simplified
label of the corresponding element of H(R) and its image set is the intent of this
concept.

Proof.
Each object or attribute has an associated introducer. Two objects (resp. at-
tributes) have the same introducer if and only if their image sets (resp. an-
tecedent sets) are equal; the corresponding lines of R have been merged in Rc.
In the other hand, by Theorem 3, an object and an attribute have the same
introducer if and only if Rce(x) = Rce(y); the corresponding lines of Rce have
been merged in Rces. As a consequence, the starting sets of Rces are the sim-
plified labels of the elements of H(R). Their image sets are the corresponding
intents: for x ∈ O, Rces(x) = R(x) is the intent of the introducer of x; for
y ∈ A, Rces(y) = {z ∈ A | (y, z) ∈ DomA} which corresponds to the intent of
the introducer of y.
�

Note that the use of DomA gives the intent sets of the elements of H(R). The
use of DomO instead would have given the extent sets. The use of both DomA
and DomO, as proposed in [4], is less efficient for computing the elements of
H(R).

5.5 Constructing the Hasse diagram of H(R)

Now all we have left to do is construct the Hasse diagram ofH(R) by constructing
the ordering by inclusion on the intents. This can be done in O(|O|+ |A|)α) time
by removing all transitivity edges, as discussed in Subsection 4.2.
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6 The algorithm

Algorithm Hermes
Input: binary relation R ⊆ O ×A.
Output: H(R)

Compute clarified relation Rc; //merge all identical lines
Compute relation DomA; //determine column inclusions in Rc
Rce=Rc+DomA; //simple juxtaposition
Simplify Rce into Rces; //merge all identical rows
Extract the elements of H(R); //select the starting set of Rces
Order the elements of H(R); //by inclusion on their image sets.

The complexity of the algorithm is bounded by Steps 2 and 5 with a time in
O((|O|+ |A|).|R|) or O((|O|+ |A|)α), depending on the chosen implementation.

7 Specialized input: chordal-bipartite relations

A special class of relations should be mentioned in this context: relations which
correspond to ’chordal-bipartite graphs’, which are bipartite graphs containing
no chordless cycle of length six or more. This is a superclass of the relations
which have a planar lattice, but the lattice of chordal-bipartite relations remains
of polynomial size [8].

Relations whose corresponding bipartite graph is chordal-bipartite can be re-
ordered so that their matrix becomes ’Γ -free’. A Γ in a matrix is a sub-matrix
on 4 elements, with a unique zero in the right-hand lower corner (i.e. in matrix
M, there is a pair h,i of rows, h < i, and a pair j,k of columns, j < k, such that
M(h,j)=M(h,k)=M(i,j)=1 and M(i,k)=0).

This Γ -free form is obtained by computing a ’Double Lexical Ordering’
(DLO) [17]. A DLO is an ordering of the matrix such that the binary ’words’
read from bottom to top for columns are in increasing lexical order, and likewise
for rows, the binary words read from right to left are in increasing order from
bottom to top. In the example below, column a has word 10010 which is smaller
than the word of b, which is 00001, and likewise the word of object 2, 00001 is
smaller than the word of object 3, 00101.

Any matrix can be re-ordered to be DLO, and this is re-ordering can be done
in time O(min{mlogn, n2}) [19, 23]. The DLO matrix is Γ -free if and only if
the relation is chordal bipartite [17].

When a relation is in such a DLO and Γ -free form, it is easy to compute
DomA: take each attribute from left to right; for each attribute y, let x be the
first object (from top to bottom) in the column of y (i.e. the first x such that
(x, y) ∈ R); then y dominates exactly the attributes z which are to its right and
that are on row x (i.e. (x, z) ∈ R).

This a consequence of the DLO and Γ -free form: in a DLO matrix, a given
column can not be included in any column to its left; and in a Γ -free matrix,
if w is the first row with a one in column y, for any column z at the right of y
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which has a one in the row of w, if column y is not included in column z, as the
rows of y above w all have zeros, this might only be because of a row x after w
with a one in column y and a zero in column z, i.e. because of a Γ in the matrix
formed by rows w and x, and columns y and z.

Example. The following matrix is ordered in a double
lexical fashion and is Γ -free. Attribute a is processed
first; its first one is on row 1, so a dominates all the
attributes to its right which has a one on row 1: a
dominates d. Attribute b is processed next; its first one
is on row 5, which has ones at the right of b for c, d and
e, b dominates c, d and e. Attribute c: highest one in
row 3, c dominates e. Attribute d: highest one in row
1, no one at the right, no domination. Attribute e is
last and therefore can dominate no other attribute.

R a b c d e

1 1 1

2 1

3 1 1

4 1 1 1

5 1 1 1 1

When relation R is chordal-bipartite, Rces can then be constructed in O(n2).
We conjecture that the Hasse diagram can be extracted at no extra cost.

8 Conclusion

We have presented a new, simple, and more efficient algorithm, Hermes, for
building the Galois sub-hierarchy of a relation. It would be interesting to compare
its running time in practice to that of the other known algorithms; we conjecture
that Hermes will run faster in most cases.

Algorithm Hermes could be remodeled into an incremental algorithm, which
may prove interesting for on-line applications such as updating hierarchies in
object-oriented languages.
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{Lenka.Piskova, Stefan.Pero}@student.upjs.sk

Stanislav.Krajci@upjs.sk
2 ISMLL, University of Hildesheim, Germany

horvath@ismll.de

Abstract. Formal Concept Analysis aims at finding clusters (concepts)
with given properties in data. Most techniques of concept analysis require
a dense matrix with no missing values on the input. However, real data
are often incomplete or inaccurate due to the noise or other unforeseen
reasons. This paper focuses on using matrix factorization methods to
complete the missing values in the input data such that it can be used
with arbitrary concept analysis technique. The used matrix factorization
model approximates the sparse object-item data matrix by a product of
two dense factor matrices, thus, mapping objects and items to a common
latent space. The mentioned object-factor and item-factor matrices are
obtained by a simple stochastic gradient optimization method. We also
investigate how the amount of missing values influences the output of the
concept analysis. Two measures, well-known in the information retrieval
community, have been used for the evaluation of the proposed framework.
Real datasets from the UCI Machine Learning Repository were used in
our experiments.

Keywords: Formal Concept Analysis, matrix factorization, missing val-
ues completion, clustering

1 Introduction

Formal Concept Analysis (FCA) deals with data in the form of a table which
rows represent objects and columns represent attributes of objects. A table entry
corresponding to an object x and an attribute y indicates whether or not the
object x has the attribute y. The clusters on the output of FCA are called
concepts, each of which consists of a set of formal objects and a set of formal
attributes, called the extent and the intent, respectively, of the given concept.
The set of all concepts ordered by ≤ forms a concept lattice [1]. The data table
required on the input of FCA has to contain all information, i.e. should not
contain missing values.

However, real datasets are often incomplete or inaccurate due to the damage
or inconsistency in the data collection process. Incomplete context was first
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and academic purposes. Volume published and copyrighted by its editors.
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introduced by Burmeister and Holzer [2] and applied to attribute implications
and attribute exploration. The analysis of incomplete data in the field of FCA
can be accomplished in one of the following two ways: The first one is to adapt
concept techniques to cope with missing values. Some research was conducted,
recently, to generate a concept lattice of an incomplete context [7]. The approach
presented in [8] is based on many-valued contexts and conceptual scaling. The
second way of handling incomplete data in FCA is to complete the missing values
in a pre-processing step and use a concept analysis on the pre-processed data.

The contribution of this paper follows the latter case described above, namely,
to predict the missing values using a matrix factorization method (MF) in the
pre-processing step such that FCA can be used on the completed data. MF, one
of the useful techniques in data mining, allows the decomposition of a sparse1

matrix into two dense matrices such that the product of these two dense matrices
results in a dense matrix which is an approximation2 of the original, sparse
matrix. We use stochastic gradient descent matrix factorization method (SGD
MF) in this paper, which is fast and effective. It is important to note that we need
to adjust the predicted values since these should be from the input values. The
main reason of it is that the resulting dense matrix is just an approximation
of the original one with specific values, e.g. 0 and 1 or 1, 2, 3, 4, 5, etc. The
resulting dense matrix is then scaled [1] and feed to FCA.

We also address the problem of the robustness of formal concepts, i.e. the
ability to remain unaffected by small variations in an input table. As far as we
know, there is no related work investigating the issue that how the concepts
computed from a full table differs from those computed from a pre-processed
table, i.e. what happens when we remove some values from the original table,
complete them with a pre-processing method and compute the concepts on the
pre-processed table? We think that this question is quite important for a real-life
application of FCA.

2 Related Work

One direction of estimating missing values in an input matrix is by the use of
association rule mining techniques consisting of two approaches: The first one
discards instances which contain missing data and generate association rules
from the remaining complete data. However, excluding instances with missing
data can bias the result. The second approach takes into account the presence
of missing values in the rule mining process. Note that two or more association
rules may result to different predicted values, thus the so called conflict problem
have to be tackled here. The large number of association rules and the effort to
reduce the conflict problem have led to the usage of generic bases of association
rules. We refer to [3], [4] for details and further references. The percentage of
correctly completed missing values is affected by the number of missing values.

1 We will call a matrix with missing values sparse.
2 The difference of the values in the non-empty cells of the original matrix and the

predicted values for these cells is minimal.
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A “hidden” problem is the percentage of missing values that these approaches
permits to complete.

[5] and [6] show how to use extracted knowledge represented by formal con-
cepts for completing a relation or at least augmenting it in the case when we
do not get each missing value. They generate concepts from the sparse matrix
such that they remove rows (objects) containing missing values. However, these
approaches have two drawbacks, namely, that the large number of concepts (also
for a small relation) makes more difficult to predict missing values, and, more
missing values leads to more biased completion.

Combinations of MF and FCA are introduced in [9], [10] and [11], where sin-
gular value decomposition, semi-discrete decomposition and non-negative matrix
factorization are used for reducing the number of formal concepts. These works,
however, use matrix factorization for a different purpose (reduction of the num-
ber of concepts) and consider full input matrix.

A novel approach to combine matrix decomposition and factor analysis is
presented in [12], [13]. There are two main differences from ordinary factor anal-
ysis. First, a table entry represents a degree to which an object has an attribute
(table entries are from a bounded scale L). Second, the matrix composition
operator is a so-called t-norm-based product. The aim of this approach is not
the completion of missing values but finding a set of factors that correspond to
formal concepts.

3 Preliminaries

We will just briefly describe FCA, and focus instead on a more detailed descrip-
tion of the used MF technique in this section since we think it could be more
interesting to the FCA community.

3.1 Formal Concept Analysis

A formal context is a triple (X,Y, I) consisting of two non-empty sets X and Y
and a binary relation I between them. The elements of X are called the objects
and the elements of Y are called the attributes. (x, y) ∈ I means that the object
x has the attribute y.

For a set A ⊆ X and a set B ⊆ Y , define A′ = {y ∈ Y : (∀x ∈ A)(x, y) ∈ I}
and B′ = {x ∈ X : (∀y ∈ B)(x, y) ∈ I}. A′ is the set of attributes common to
the objects in A and B′ is the set of object which have all attributes in B.

A formal concept of the context (X,Y, I) is a pair (A,B) of a set A ⊆ X of
objects and a set B ⊆ Y of attributes such that A′ = B and B′ = A. A and B
are called the extent and the intent of the concept (A,B), respectively. Denote
the set of all concepts in (X,Y, I) by B(X,Y, I).

Introduce a relation ≤ on B(X,Y, I) by (A1, B1) ≤ (A2, B2))⇔ A1 ⊆ A2 ⇔
B2 ⊆ B1, (A1, B1) is called the subconcept of (A2, B2) and (A2, B2) is called the
superconcept of (A1, B1). The set of concepts B(X,Y, I) ordered by ≤ constitutes
the concept lattice (or Galois lattice) of the context (X,Y, I). The so-called main
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theorem of concept lattices characterizes the structure of concept lattices. For
further details we refer to [1].

3.2 Stochastic Gradient Descent Matrix Factorization

Stochastic gradient descent matrix factorization (SGD MF) is one of the most
popular factorization techniques [14] because of its scalability and good accuracy.

The goal of this approach is to approximate a sparse matrix X ∈ R|O|×|I|
with a product of two (much smaller) matrices W ∈ R|O|×K and H ∈ R|I|×K
such that

X ≈ X̂ = WHT , (1)

where |O|, |I| are the number of objects and items, respectively, and K is number
of (latent) factors. The ith row of the matrix W is a vector containing K latent
factors describing the object i, and the jth row in matrix H is a vector containing
K latent factors describing the item j [15].

The estimate x̂ij of a missing value at the row i and column j of the sparse
matrix X is computed as

x̂ij = (WHT )ij =
K∑

k=1

wikhjk (2)

where wik (hjk) is the value of W (H) at the ith (jth) row and kth column.

We are interested in such X̂ which estimates the missing values of X well.
Since we do not know the missing values, we use the following trick, well-known
in the machine learning community [18]: We split X into two complementary
parts, called the train set Xtrain and the test set Xtest. The model X̂ is then
approximated from Xtrain and it’s quality is assessed by the root mean squared
error (RMSE) loss computed on Xtest, defined as

RMSE =

√√√√
∑

xij∈Xtest

(xij − x̂ij)2

|Xtest| , (3)

where xij are the values of the non-empty cells of X belonging to Xtest. In this
way, we simulate the case when we have a sparse matrix (Xtrain) which missing
values (Xtest) are known, however.

Our goal is to find those parameters W and H of the model X̂ for which the
RMSE is minimal. However, we have to keep in mind that Xtest is “hidden”, i.e.
it represents the “unknown“ missing values, thus, we have to use3 the data we
know, i.e. the train set Xtrain. Since |Xtrain| is constant, minimizing RMSE (3)
on Xtrain is equivalent to minimizing the sum of errors

∑
xij∈Xtrain(xij − x̂ij)2.

Since RMSE is a (loss) function, we use a stochastic gradient descent (SGD)

3 Here we also expect that Xtest has similar statistical characteristics as Xtrain.
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optimization method [16] for searching those parameters W and H of RMSE
such that the following objective function is minimal:

∑

xij∈Xtrain

(xij − x̂ij)2 + λ(‖W‖2 + ‖H‖2) (4)

where x̂ij is defined as in (2) and λ is a regularization term to prevent the so-
called overfitting (i.e. when a model estimates very well the training data but
poorly the test data [18]). λ controls the magnitudes of the factor vectors such
that W and H would give a good approximation of the whole original input
matrix X (containing both Xtrain and Xtest). ‖W‖2 means square of the one
vector in matrix W.

In the training phase we first initialize two matrices W and H with some
random values (for example from the normal distribution N(0, σ2) with mean 0
and standard deviation 0.01) and compute the estimation error

err =
∑

xij∈Xtrain

e2ij (5)

where

e2ij = (xij − x̂ij)2 = (xij −
K∑

k=1

wikhjk)2 (6)

We minimize this error by updating the values of W and H in the following
way [16]: we randomly choose a value xij from Xtrain and compute the gradient
of the objective function (6) in this value w.r.t. the parameters4 wi and hj , i.e.

δ

δwik

e2ij = −2eijhjk = −2(xij − x̂ij)2hjk (7)

δ

δhjk

e2ij = −2eijwik = −2(xij − x̂ij)2wik (8)

In the next step we use the computed gradient to update the values of wik

and hjk:

w
(new)
ik = wik − β

δ

δwik

e2ij = wik + 2βeijhjk (9)

h
(new)
jk = hjk − β

δ

δhjk

e2ij = hjk + 2βeijwik (10)

where β is the learning rate controlling the step sizes.
We update W and H for each value of Xtrain in one iteration. The number

of iterations, i.e. the number of passes over the full Xtrain is a hyper-parameter
of the factorization technique as well as the regularization term λ, the learn rate
β and the number of factors K.

4 Only the vectors wi and hj contribute to e2ij , thus we treat the other vectors (rows
of W and H) as constants (which derivatives are zero).
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As we see, the quality of the model X̂ depends on the hyper-parameters
used in the learning phase. Also, it can happen that the split of the data into
the train and the test part was done in a way that these two parts have no
similar characteristics, e.g. one part contains large values while the other the
low ones. To prevent this phenomenon to happen we usually use n-fold cross
validation [18] in which we split X into n equal parts X1, . . . , Xn and for each
n and hyper-parameter combination (K,λ, β, iterations) do the following: train
a model X̂n with the given hyper-parameter combination on ∪i 6=nXi and com-

pute its RMSE on Xn. The resulting RMSE of X̂ with the hyper-parameters
(K,λ, β, iterations) is then the average RMSE over all X̂n. After trying some
hyper-parameter combinations with n-fold cross validation, we choose the best
combination (K,λ, β, iterations)best which has the smallest average RMSE over
all folds. Finally, we train the model X̂ again using the whole input matrix X.

It can happen, that the input matrix X contains an empty line or column
with no values. For those objects (rows) or items (columns) we will not update
the parameters W and H (it follows from the algorithm of SGD MF). In such
cases, estimated missing values could be the global average of non-missing values.
More advanced and sophisticated methods that can improve the estimation in
such cases are listed in [17].

4 Illustrative example

To illustrate our approach we present a small toy example. Our purpose is to
cluster students into groups with respect to their success in solving the tasks.
The key problem is that not every student have solved all of the tasks. We will
proceed as follows. We predict the success of students in tasks that they have
not solved yet (empty values in the input table). After the process of conceptual
scaling is completed, we find formal concepts.

The table in the left side of the figure 1 contains five students who have per-
formed several tasks. The total marks that can be scored are 9; 3 marks for each
task. Table values represent students’ marks for tasks. The matrix represents a
relation between objects and items (which are students and tasks in our case).

Figure 1 shows an example of how we can factorize the students and tasks.
After the training phase with K = 2 latent factors (F1 and F2), we get the
student-factor matrix W and the factor-task matrix H. Suppose we would like to
predict Tom’s (3rd row) performance for the task 2 (2nd column). The prediction
is performed using equation 2

x̂32 =

K∑

k=1

w3kh2k = 1.80 ∗ 1.20 + 0.13 ∗ 1.08 = 2.30.

Since the predicted value should be included in the input matrix, we round
this value to one of the values 1, 2 and 3. We have predicted Tom will achieve
average results in task 2. Similarly, we can predict the performance of other
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X T1 T2 T3

Katie 3 3

Dean 2 2 1

Tom 2 2

Sam 2

Adam 2 3 2

W F1 F2

Katie 1.18 1.52

Dean 1.24 0.31

Tom 1.80 0.13

Sam 0.91 1.57

Adam 1.68 0.49

H T1 T2 T3

F1 0.98 1.20 0.85

F2 1.35 1.08 0.54

Fig. 1. Factorization of the input matrix.

students in tasks which they have not done yet. The full matrix is depicted in
the left side of the figure 2.

Now, we would like to cluster students according to their results in solving the
tasks. The table in the left side of the figure 2 represents many-valued context.
Since values are ordered and each value implies the weaker one, we use the ordinal
scale in the right side of the figure 2. Performing a task at the highest level implies
performing the task at the average level, too. The table in the figure 3 is the
result of the conceptual scaling process. For details on many-valued contexts and
conceptual scaling we refer to [1].

T1 T2 T3

Katie 3 3 2

Dean 2 2 1

Tom 2 2 2

Sam 3 2 2

Adam 2 3 2

3 2 1

3 × × ×
2 × ×
1 ×

Fig. 2. The many-valued context and the ordinal scale S for all attributes of the many-
valued context.

The obtained concept lattice contains 6 concepts (clusters) and is depicted in
the figure 3. A labeling is simplified by putting down each object and attribute
only once. The extent of each concept is formed by collecting all objects which
can be reached by descending line paths from the concept. The intent of each
concept consists of all attributes located along ascending line paths.

We interpret some of the clusters, here: Each student solved the task 1 and
task 2 at least at average level (the top element of the lattice). All students
except for Dean achieved at least average results in solving all tasks. Nobody
performed good results in every task (the bottom element of the lattice).

5 Experiments

Experiments were conducted on computing cluster with 7 computing nodes, each
of which has 16 cores, running Red Hat Linux.
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T1 T2 T3

1 2 3 1 2 3 1 2 3

Katie × × × × × × × ×
Dean × × × × ×
Tom × × × × × ×
Sam × × × × × × ×

Adam × × × × × × × Katie

Sam Adam

Tom

Dean T10.0,T10.5

T20.0,T20.5,T30.0

T30.5

T21.0T11.0

T31.0

u
u

u
u

u

u
Fig. 3. The one-valued context as the derived context of the many-valued context in
figure 2 and the corresponding concept lattice.

5.1 Data

For these experiments, we consider a complete database to act as a reference
database, and we randomly introduce missing values with the following different
rates : 10%, 20% and 30%. Benchmark datasets used for this experiments are
from the UCI Machine Learning Repository5. Characteristics of these datasets
are depicted in the table 1.

Table 1. Datasets characteristics

Dataset Objects Attributes Attribute types FCA attributes

Wine 178 13 Integer, Real 68
SPECT Heart 267 22 Categorical 46

Tic-tac-toe 958 9 Categorical 29

The data conversion into FCA format was done as follows. Categorical (many-
valued) attributes were converted by creating a formal context attribute for each
of the values. Attributes with integer or real types were scaled to create context
attributes with ranges of values.

5.2 Matrix factorization model settings

We implemented matrix factorization model in Java described in the section 3.2
on our own. We have used 3-fold cross-validation for testing the proposed model:
In each of the 3 iterations, one fold was used for testing. The remaining two folds
were used for tuning hyper-parameters of the model. Hyper-parameters (number

5 http://www.ics.uci.edu/mlearn/MLRepository.html.
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of factors, number of iterations, learn rate and regularization term) were tuned
using grid search [19] (a systematic search over different combinations). The
best hyper-parameter combinations for our model and the root mean squared
error (RMSE) was measured on the test fold for each dataset. The best hyper-
parameters are reported in the table 2.

Table 2. The best hyper-parameters found by grid search

Dataset Missing values (%) Factors Iterations Learn rate Reg. term

Wine
10 12 30 0.055 0.1
20 12 40 0.055 0.05
30 12 50 0.055 0.05

SPECT Heart
10 22 50 0.055 0.05
20 42 40 0.055 0.05
30 72 40 0.055 0.05

Tic-tac-toe
10 42 70 0.005 0.05
20 12 60 0.005 0.05
30 32 90 0.005 0.1

5.3 Results

Concept lattices from complete data sets were computed, the number of concepts
is shown in the table 3.

Table 3. Datasets and the number of concepts computed from the full matrix.

number of concepts

Wine 24423

SPECT Heart 2135549

Tic-tac-toe 59505

Table 4 presents the comparison of the RMSE measured over 3 folds and
average of success rates of the prediction for all datasets. Using matrix factor-
ization model we correctly predicted from 30% to 80% missing values. If we did
not predict a missing value correctly then the predicted value was close to the
original value.

In order to evaluate methods for completing missing values to mine formal
concepts, one have to compare concepts generated from the original data table
(initial context) with concepts generated from the data table containing esti-
mated values (predicted context).
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Table 4. RMSE and the average of success rates of the prediction

Dataset Missing values (%) RMSE Average of the success rates (%)

Wine
10 0.6944168 53.18
20 0.7345221 66,46
30 0.6972556 48,84

SPECT Heart
10 0.37255815 78,61
20 0.3785878 78,09
30 0.38591003 77,37

Tic-tac-toe
10 0.88052654 31,72
20 0.9031108 31,56
30 0.9076978 33,71

We propose to use two measures for evaluating the performance of the pro-
posed approach for the missing values completion with respect to mined con-
cepts. Both are well-known in the information retrieval (IR) community. The
first one indicates how many concepts of the initial context occur in the set of
concepts of the estimated context. The second one determines how many con-
cepts of the estimated context are in the set of concepts of the initial context.

Let (X,Y, I) be the initial formal context and (X,Z, J) be the estimated
formal context. Let O be the set of formal concepts of the initial context and
E be the set of formal concepts of the estimated one (O = B(X,Y, I) and
E = B(X,Z, J)). We propose to use the following two measures:

precision =
|O ∩ E|
|E| and recall =

|O ∩ E|
|O| .

Precision is the fraction of concepts of the estimated context that are in
the set of concepts of the initial context. Recall is the fraction of concepts of
the initial context that are in the set of concepts of the estimated context. The
higher the precision, the more concepts of the estimated context are in the set
of concepts of the initial context. The higher the recall, the more concepts of the
initial context are in the set of concepts of the estimated context.

Two formal concepts are equal when any formal object in the extent of one is
in the extent of the other and vice versa, the same for formal attributes. In this
case, precision and recall are computed. From the extent-ional point of view:
two concepts are equal when they have the same extent. Analogously, from the
point of view of intent, two concepts are equal when they have the same intent. In
these cases, we calculate precisione, recalle and precisioni, recalli, respectively.

The results of our experiments are shown in the table 4 and 5.

It is noteworthy that there is a huge difference between precisione and
precisioni. We assume that the gap between precisione and precisioni is caused
by the fact that the number of objects is greater than the number of attributes.

Moreover, the precision and recall are quite small. The reason is how we have
measured the equality of the sets: the sets are not equal if they differ even only
in one element. Nevertheless, the proposed measures are useful for experimental
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Table 5. Precision and recall.

Dataset Missing values (%) prec prece preci rec rece reci

Wine
10 0,0005 0,0277 0,2603 0,0005 0,0311 0,2920
20 0,0004 0,0246 0,2603 0,0004 0,0272 0,2883
30 0,0002 0,0194 0,2187 0,0002 0,0198 0,2238

SPECT Heart
10 6× 10−5 0,0107 0,3775 4× 10−6 0,0007 0,0257
20 4× 10−5 0,0063 0,3667 3× 10−6 0,0005 0,0279
30 2× 10−5 0,0039 0,3346 2× 10−6 0,0003 0,0267

Tic-tac-toe
10 0,0011 0,0239 0,3969 0,0002 0,0032 0,0524
20 0,0011 0,0132 0,3899 0,0001 0,0009 0,0258
30 0,0008 0,0139 0,3477 0,0001 0,0011 0,0282

comparisons of various techniques used in the pre-processing step. We will focus
on finding other measures. We suppose that if we modify measures to use the
similarity (of extents, intents and concepts) better results could be achieved.

6 Conclusion and future research directions

In this paper we have introduced framework for mining concepts from incom-
plete datasets. The proposed framework uses stochastic gradient descent matrix
factorization (SGD MF) in the pre-processing step and after completing the
missing values a formal concept analysis (FCA) is deployed. Using SGD MF
we are able to quite precisely predict values from a sparse data matrix without
having any background knowledge about the data. Two measures (precision and
recall) have been used for evaluating the presented framework.

The experiments on three datasets (with 10, 20 and 30 percent of missing
values) showed that the percentage of missing values does not influence the
prediction rate, and, that there is a large difference in the precision and recall
measures when computed on the extents and the intents of the resulting concepts,
respectively.

Our further research will focus on modifying the (precision and recall) mea-
sures with using the similarity of extents, intents and concepts instead of their
equality. The generation of all concepts from the huge incidence matrix is time
consuming and the number of concepts is very large. Using our matrix factoriza-
tion model we transform input matrix into more smaller latent factor matrices
W and H. These matrices describe objects and items according to latent factors.
We want to explore these matrices and to use them for reducing the number of
concepts.

Even if there are some remaining issues to investigate, experimental results
show that the proposed approach is promising and worth of further research.

Acknowledgements: This work was supported by the grants VEGA 1/0832/12
and VVGS-PF-2012-22 at the Pavol Jozef Šafárik University in Košice, Slovakia.
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Abstract. In Model-Driven Engineering (MDE), model transformations
are basic and primordial entities. An efficient way to assist the defini-
tion of these transformations consists in completely or partially learning
them. MTBE (Model Transformation By-Example) is an approach that
aims at learning a model transformation from a set of examples, i.e. pairs
of transformation source and target models. To implement this approach,
we use Formal Concept Analysis as a learning mechanism in order to ex-
tract executable rules. In this paper, we investigate two learning strate-
gies. In the first strategy, transformation rules are learned independently
from each example. Then we gather these rules into a single set of rules.
In the second strategy, we learn the set of rules from all the examples.
The comparison of the two strategies on the well-known transformation
problem of class diagrams to relational schema showed that the rules
obtained from the two strategies are interesting. Besides the first one
produces rules which are more proper to their examples and apply well
compared to the second one which builds more detailed rules but larger
and more difficult to analyze and to apply.

1 Introduction

Model Driven Engineering is a recent paradigm emphasizing the use of models
in the development process of an application. The models may be graphical or
not, but they are all structured conforming to particular models named meta-
models. In Model-Driven Development, several kinds of models are successively
handled (e.g. requirements, use cases, classes, etc.) and models may be obtained
one from each other, in an automated way, thanks to model transformations. A
Model Transformation is a program that takes as input a model conforming to a
source meta-model and produces as output another model conforming to a target
meta-model. Implementing a model transformation requires a strong knowledge
about model driven engineering (meta-modeling and model-transformation envi-
ronments) and about the specification of the transformation: the input domain,
? This work has been supported by project CUTTER ANR-10-BLAN-0219

c© 2012 by the paper authors. CLA 2012, pp. 45–56. Copying permitted only for private
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the output domain and the transformation rules by themselves. Moreover, the
transformation rules are usually defined at the meta-model level, which requires
a clear and deep understanding about the abstract syntax and semantic interre-
lationships between the source and target models [7].

Domain experts generally do not have sufficient skills in model driven en-
gineering. An innovative approach called Model Transformation By Example
(MTBE) [12] is proposed to let them design model transformation by giving
an initial set of examples. An example consists of an input model, the corre-
sponding transformed model and links explaining which target element(s) one
or several source model elements are transformed into. From these examples,
transformation rules are deduced using a learning approach.

In this context, we presented a Model Transformation By Example approach
that goes from examples to transformation patterns. The proposed learning
mechanism is based on Relational Concept Analysis (RCA) [5], one of the ex-
tensions of Formal Concept Analysis [3], that considers links between objects in
the concept construction. This approach results in a lattice of transformation
patterns. Those patterns are filtered to keep the more relevant ones, and are
made operational using a rule engine. In this paper, we analyze and compare
two strategies for learning the transformation patterns with RCA. In the first
one, each example is used alone to learn transformation patterns, and the trans-
formation patterns obtained from all the examples are then gathered. In the
second strategy, the examples are first gathered into a single large example, that
is then used to learn the transformation patterns. The obtained transformation
patterns are inspected and applied to test examples.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the approach. Section 3 briefly explains how RCA is used to gen-
erate transformation patterns from examples. Section 4 details how the pattern
lattices are filtered and refined. Section 5 describes the two learning strategies,
and an experimentation to compare them on a case study. Section 6 positions
our work w.r.t. related work, and Section 7 concludes the paper and describes
future work.

2 Learning and executing model transformation rules

A model transformation is a program handling and transforming models. We
focus here on transformations that take a model as input and result in another
model as output. Model transformations are usually written in languages ded-
icated to model handling, or generic languages using adequate frameworks to
handle models. Those transformations implement transformation rules, express-
ing for each kind of elements from an input model which kind of elements of
the output model they will be transformed into. Model-Transformation By Ex-
ample (MTBE) consists in learning those transformation rules from examples:
instead of programming the model transformation, the user designs examples
illustrating the behavior of the transformation, and the transformation rules are
automatically learned from those examples.
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Usually, an example is composed of a source model, the corresponding trans-
formed model, and transformation links between those two models. To illustrate
MTBE, we consider the well-known case of transforming UML class diagrams
into entity relationship. An example for this transformation is thus composed
of a UML model (the input model), a Relational model (the output model) and
transformation links making explicit from which elements of the UML model,
the elements of the entity relationship model stem from. Such an example is
given in Figure 1. The input UML model is on the l.h.s., and is composed of
two classes named Text and Style, each one owning an attribute (respectively
named Title and Name) and linked with an association named Has a. The out-
put model (on the r.h.s. of Figure 1) has two entities Text and Style, each one
described by an attribute, linked with a relation named Has a. The dotted lines
show some of the transformation links. For instance, there is a transformation
link specifying that the class Text is mapped into the entity Text.

Title

Text

Name

Style Text Has a Style

Title
Name

(1..1) (0..n)

* 1

Has a

input model (UML) output model (ER)

transformation links

Fig. 1. Example for the UML2ER transformation: input model (l.h.s), output model
(r.h.s.) and transformation links (dotted lines)

An MTBE process analyzes the examples and learns from them transfor-
mation rules such as a class is transformed into an entity, or a UML property
linked to a class (i.e., an attribute and not a role) is transformed into a role of
an entity.

We proposed an MTBE approach in which the learning mechanism relies on
Relational Concept Analysis [2]. The abstract learned rules are named transfor-
mation patterns, they are obtained in a transformation patterns lattice, and are
then filtered so as to select the more relevant ones. To make those transforma-
tion patterns operational so as to be able to execute the learned transformation,
we designed a transformation from the transformation patterns to Jess rules [6],
Jess being a rule engine [11].

3 RCA and transformation patterns discovery

As stated in Section 2, a key step in our MTBE approach consists in generating
transformation patterns. Such patterns describe how a source model element is
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transformed into a target model element, within a given source context and a
given target context. To derive patterns from examples, a data analysis method
is used, namely Formal Concept Analysis (FCA) [3] and its extension to rela-
tional data, the Relational Concept Analysis (RCA) [5]. Both Formal and Re-
lational Concept Analysis, also used for data mining problems, group entities
described by characteristics into concepts, ordered in a lattice structure. While
FCA produces a single classification from one formal context, RCA computes
several connected classifications from several formal contexts linked by relational
contexts.

Definition 1 (Relational Context Family). A Relational Context Family
R is a couple (K,R). K is a set of Object-Attribute Contexts Ki = (Oi, Ai, Ii)
where Oi is a set of objects, Ai is a set of attributes and Ii ⊆ Oi × Ai. R is
a set of Object-Object contexts Rj = (Ok, Ol, Ij , Sj) where (Ok, Ak, Ik) ∈ K,
(Ol, Al, Il) ∈ K, Ij ⊆ Ok×Ol, and Sj is a scaling operator, i.e. a boolean function
taking as parameter an object from Ok, a concept extent e ⊆ Ol and the binary
relation Ij.

RCA considers a Relational Context Family R = (K,R) as input of the
lattice building process. This process applies iteratively FCA on each Object-
Attribute Context from K extended with the Object-Object contexts of R scaled
with the lattices of the previous iteration.

Initialization step At the first step, FCA is applied on each Object-Attribute
Context Ki = (Oi, Ai, Ii) to produce a lattice L0i. The output of this step is a
Concept Lattice Family L0.

Step n+1 At step n+1, from each context Rj = (Ok, Ol, Ij , Sj) from R and
the lattice Lnl we compute an Object-Attribute Context C(n+1)j = (Ok, {j} ×
Lnl, J(n+1)j) where J(n+1)j = {(o, (j, c))|o ∈ Ok ∧ c ∈ Lnl ∧ Sj(o, extent(c), Ij)}.
Then each context Ki = (Oi, Ai, Ii) from K is extended to obtain K(n+1)i =
(Oi, A(n+1)i, I(n+1)i) where A(n+1)i = Ai

⋃
{p,q|∃Rq=(Oi,Op,Iq,Sq)∈R}{q}×Lnp and

I(n+1)i = Ii
⋃

{q|∃Rq=(Oi,Op,Iq,Sq)∈R} J(n+1)q. The lattice L(n+1)i is then obtained
by applying FCA on K(n+1)i.

The process stops when an iteration does not add any new concept and we
consider the last lattice family obtained as the output of the process.

We use RCA to classify: the source model elements, the target model elements
and the transformation links. Which means that every one of them will be mod-
elled as an Object-Attribute context in RCA. Those contexts will be linked by
Object-Object contexts modelled after the following relations. Source and target
model elements are classified using their metaclasses and relations. The trans-
formation link classification relies on model element classifications and groups
links that have similarities in their source and target ends: similar elements in
similar contexts. From the transformation link classification, we derive a lattice
of transformation patterns. Figure 2 shows an excerpt of the obtained pattern
lattice for the transformation of UML class diagrams into relational models. The
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transformation patterns are represented by rectangles, and are named with the
prefix TPatt, the number of the transformation pattern, and then the number
of the corresponding concept.

In each concept representing a transformation pattern, we have two types in
two ellipses connected by a bold edge. The source ellipse of the bold edge repre-
sents the type Ts of the element to transform by the pattern. It can be seen as
the main type of the premise. For instance, in Concept TPatt_17-Concept_67,
we see that the pattern aims at transforming generalizations (note that in the
UML meta-model, there is a meta-class named Generalization, which represents
an inheritance relationship, and which is linked to two classes (in fact: classi-
fiers, Classifier being a superclass of the meta-class Class) : the specific one
and the general one). This main type of the premise is linked, with non-bold
edges, to the environment that an element of type Ts must have in order to be
transformed by the pattern. Those edges are named according to the relation-
role names between the type Ts and its environment in the meta-model. Those
edges also have a cardinality defining the cardinality of the environment. Such
an environment corresponds to the rest of the premise. For instance, in Concept
TPatt_17-Concept_67, Generalization is linked to a specific Class and a gen-
eral Class with a cardinality [1..*], meaning that the Generalization must have
a specific and a general classes. The target ellipse of the bold edge represents
the main type Tt of the conclusion of the pattern, i.e., a Ts will be transformed
into a Tt (with a specific environment). For example, in the transformation pat-
tern TPatt_17-Concept_67, the conclusion corresponds to a role, connected to
a relationship, an entity, and zero or one cardinalities. Note that the conclusion
of this pattern is quite long: this will be discussed in the next section.

4 Patterns lattices simplification

The obtained lattice of transformation patterns has to be filtered to keep only
the useful/relevant patterns or pattern fragments.

First, the empty concepts are removed. They do not contain information
about the transformation. They are present in the lattice to link other concepts
(representing patterns). We only keep the Bottom and Top to maintain the order
structure. For the same reason, when an empty concept is removed, its children
are connected with the Top concept.

Secondly, we noticed that some patterns contain a deep premise or conclusion,
i.e., a long chain of linked objects. After observing many patterns of this type for
many transformation problems, we found that after a certain depth, the linked
elements are not useful. For instance, in the pattern TPatt_17-Concept_67 in
Figure 2, the important information is that a generalization linked to two classes
(specific and general) must be transformed into a role linked to a relationship, an
entity and a cardinality. The other elements are details specific to some examples,
that are not relevant to the transformation. Starting from this observation, we
implemented a simplification heuristic that prunes the premises and conclusions
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Fig. 2. An excerpt of the obtained hierarchy for the example UML class diagrams
to entity-relationship model. Grey boxes indicate the part of the patterns that will
be removed during the filtering phase, red crosses indicate the patterns that will be
removed.

after the first level (key element and its immediate neighbors). In Figure 2, the
grey boxes indicate the part of the patterns that will be removed.

After pruning the patterns according to the depth heuristic, some patterns
could become identical. This is the case of patterns TPatt_17-Concept_67 and
TPatt_18-Concept_89). In Figure 2, we see the kept part of those two patterns
(that is not in grey rectangles) is identical. For those redundant patterns, only
the highest in the lattice is preserved, and all others removed. For removed
concepts, their children are linked to their parents. Note that by doing so, we
may lose the lattice structure.

5 Experimentation

In this section we experimentally compare transformation patterns obtained from
distinct examples to transformation patterns obtained by the union of all exam-
ples. Our case study concerns the transformation of class diagrams into relational
schema. The rule generation is performed starting from a set of 30 examples of
class diagrams and their corresponding relational models. Some of them were
taken from [7], the others were collected from different sources on the Internet.
We ensured by manual inspection that all the examples conform to valid trans-
formations. To take the best from the examples, a 3-fold cross validation was
performed. We divide the j (j ∈ 1..30) examples into three groups of 10. For
each fold i (i ∈ 1..3), we use two strategies to produce transformation rules:
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– In the first one, we use the experimentation of [11] which consists of using two
groups (20 examples) separately for generating 20 pattern lattices (denoted
lij). The lij lattices are analyzed and simplified, as explained in Section 4, to
select automatically the relevant transformation patterns. Then, we trans-
form them into operational rules written for Jess. The remaining third group
is used for testing them. Testing consists in executing the generated rules
on the source models of the testing examples and in comparing the obtained
target models with those provided in the examples.

– In the second one, we gather two groups (20 examples) for generating only
one lattice of patterns (denoted Li). Li is analyzed and simplified to select
automatically the relevant patterns. Those patterns are then transformed
into operational rules. The remaining third group is used for testing them.

The goal is to compare in each fold i the results obtained from the two
strategies. First, we compare the lattices generated from examples (lij), and the
lattice generated from the union of those examples (Li). Then, we compare the
results of executing the rules obtained from each strategy on the source models
provided in the testing examples.

5.1 lij vs Li

Compared to the first strategy, which produces small size lattices (from each
lij we have about 9 patterns before simplification and 4 patterns after simpli-
fication), the second one produces large ones (from each Li we have about 100
patterns before simplification and 50 patterns after simplification). Although the
lattices Li are larger and more difficult to analyze, they have more specific and
complete transformation patterns compared to lij which are simple to analyze
but contain transformation patterns that are proper to their examples. A single
pattern of Li can combine several patterns that exist in lij .

Figure 3 shows examples of different patterns obtained from l1j . For instance,
in the pattern of Fig. 3(a), a transformation link is given to specify that a class
linked to an aggregation is mapped into a table linked to primary foreign key.
Pattern of Fig. 3(b) shows that a class linked to a property is transformed into
a table linked to a column. In the last pattern of Fig. 3(c), the transformation
specifies that a class linked to a property and a generalization are transformed
into a table linked to a column and a foreign key.

If we compare these patterns with the pattern of lattice L1 in Figure 4, we
note that the information contained in the three patterns exist in the pattern of
Figure 4. It is more complete. It combines all the informations of transformation
existing in Fig. 3(a), Fig. 3(b) and Fig. 3(c).

So, if we combine various examples together, the generated lattice contains
patterns which are more specific and combine different information. But, if we
test each example separately, the obtained lattice contains less information. In
addition, Li contains all the patterns needed to transform a class diagram to
a relational schema. The lattices lij contain just the transformation pattern
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TPatt_8 - Concept_87

Class
Aggregation

aggregation [1..*]

Table PFKey
pfkey [1..*]

(a)

TPatt_3 - Concept_83

Class
Property

property [1..*]

Table Column
column [1..*]

(b)

TPatt_4 - Concept_88

Class

Generalization
generalization [1..*]

Property
property [1..*]

Table

Column
column [1..*]

FKey

fkey [1..*]

(c)

Fig. 3. Examples of transformation patterns extracted from lattices Ll1

TPatt_1 - Concept_77

Class

Property

property [1..*]

Generalization
generalization [1..*]

Aggregation

aggregation [1..*]

Table

Columncolumn [1..*]

FKey
fkey [1..*]

PFKey

pfkey [1..*]

Fig. 4. Example of transformation pattern extracted from lattice L1

proper to the transformation examples used. So, we need to merge several trans-
formation examples to obtain all transformation rules of a class diagram into a
relational schema.

Furthermore, in each fold, a Li lattice contains about 50 transformation
patterns and the union of lij produces about 40 ones (4 transformation patterns
* 20 minus the redundant ones which exist). If we examine the patterns as an
expert, we note that Li contains about 12 relevant transformation patterns which
are useful to the transformation. But they are less detailed and not applicable
for all examples types. On the other side, the union of lij contains about 10
relevant transformation patterns. Those patterns are easy to read and to apply
because each one contains a piece of information of the transformation compared
to Li’rules which combine several pieces of information in the same pattern.
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5.2 lij’s rules execution vs Li’s rules execution

In this section, we compare the result of executing the rules obtained from the
two strategies, which are transformed into Jess rules, on the source models pro-
vided in the testing examples. This comparison allows calculating the recall
(Equation 1) and the precision (Equation 2) measures for each T. T represents
the type of elements in the target meta-model (table, column, foreign key...)

R(T ) =
number of T with correct transformation

total number of initial T
(1)

P (T ) =
number of T with correct transformation

total number of generated T
(2)

Table 1 shows precision and recall averages on all element types of the 10
generated transformations for the 3-folds. As mentioned in [11], the precision
and recall averages are higher than 0.7 in the first strategy. Some models were
perfectly transformed (precision=1 and recall=1). Precision and recall decrease
in the case of elements which have more than one transformation possibility. For
example, if we have a generalization between two classes, we can transform it
into two tables or into a simple table which contains the attributes of general
and specific classes. In this case, two rules are applied on the same example and
this affects the performance results.

In the second strategy, precision and recall averages are low (less than 0.5)
in the 3-folds. This is due to the fact that the generated rules are very large and
contain different informations from different examples. Thus, the premises of
the rules can not be matched for most of the examples because the examples are
simple and do not contain all the transformation cases that have been learned.
So, the Jess rule engine does not apply a part of the rule premise when it is
executed on an example, it searches for each example its corresponding rule and
this decreases the precision and the recall.

5.3 Discussion

The study presented in this section is a comparison of two strategies for gener-
ating transformation rules using RCA. The first consists to generate from each
example its rule lattice and the second consists to gather all the examples and
generate only one rule lattice. Each one has its advantages and disadvantages:

– The first strategy produces simple and small transformation patterns which
are easy to analyze and to manipulate, but they are proper to their examples.
On the other side, the second one produces larger patterns but they are more
specific and more complete. They combine different information about the
transformation. An analysis on those patterns shows that the two strategies
have the same number of relevant patterns (about 12 transformation pat-
terns). The relevant ones of the first strategy are simple and applicable for
each example. On the contrary, the relevant patterns of the second strategy
are larger and mainly applicable for larger examples.
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Examples Fold1
Recall Average Precision Average

First Strategy Second Strategy First Strategy Second Strategy
1 1 0.5 1 0.5
2 0.77 0.45 0.75 0.43
3 0.70 0.5 0.75 0.43
4 0.94 0.43 0.75 0.32
5 1 0.45 1 0.43
6 1 0.5 0.77 0.23
7 0.88 0.43 0.77 0.40
8 1 0.6 0.77 0.43
9 0.90 0.5 0.77 0.44
10 0.90 0.5 0.85 0.45

Examples Fold2
Recall Average Precision Average

First Strategy Second Strategy First Strategy Second Strategy
1 0.78 0.5 0.79 0.4
2 0.90 0.45 0.75 0.31
3 0.85 0.45 0.77 0.43
4 0.77 0.43 0.79 0.40
5 1 0.5 0.80 0.34
6 1 0.43 0.77 0.47
7 0.85 0.4 0.77 0.37
8 0.85 0.45 0.80 0.43
9 1 0.5 0.75 0.34
10 1 0.5 0.80 0.33

Examples Fold3
Recall Average Precision Average

First Strategy Second Strategy First Strategy Second Strategy
1 0.80 0.49 0.75 0.33
2 1 0.44 1 0.34
3 1 0.5 0.85 0.44
4 1 0.45 0.80 0.44
5 0.77 0.40 0.75 0.35
6 1 0.5 0.77 0.40
7 1 0.4 1 0.33
8 1 0.33 0.80 0.23
9 0.85 0.35 0.77 0.3
10 0.88 0.4 0.80 0.39

Table 1. Result of 3-fold cross validation

54 H. Saada, X. Dolques, M. Huchard, C. Nebut and H. Sahraoui



– The execution of the rules of the first strategy gives good results in our
experiment. The rule engine searches and finds for each example the set of
rules to apply. On the contrary the rules of the second strategy are more
large and contain more information. Thus the rule engine does not find a
rule to apply for the simple examples. We can work again on the obtained
rules of Li to execute them on all types of examples (for example by sepa-
rating into smaller pieces), but as we found good results with the union of
lij , it is not a promising track. We obtained a non-intuitive result: before
the experimentation, we thought the best rules would be obtained with the
second strategy.

Although the example used is a classical one, it is a good example of typical
model transformations that we aim to learn. To confirm what is the best strategy
to produce transformation rules, additional experiments have to be conducted
with other model transformation kinds. Besides, the obtained result depends on
the models on which we execute the rules. If we use larger models, the second
strategy may have better results.

6 Related Work

Writing model transformations requires time and specific skills: the transforma-
tion developer needs to master the transformation language and both transfor-
mation source and target meta-models. Model Transformation by Example is a
recent field of research that intends to use models as artifacts of development of
the transformation.

Most of the research works consider all the examples at once. In [1], the au-
thors use inductive logics programming to derive transformation rules, and al-
though they consider an iterative process where examples are added to complete
the derived transformation, they don’t consider the examples independently. The
same remark applies to [13], whose work uses the constraints explicitly applied by
the transformation from the concrete syntax of a language to its abstract syntax
and for [4] who proposes an algorithm to produce many to many transformation
rules.

Another track in MTBE consists in using the analogy to perform transfor-
mations using examples [8,9,10]. The provided examples are decomposed into
transformation blocks linking fragments of source models to fragments of target
models. When a new source model has to be transformed, its elements are com-
pared to those in the example source fragments to select the similar ones. Blocks
corresponding to the selected fragments, coming from different examples, are
composed to propose a suitable transformation. Fragment selection and com-
position are performed through a meta-heuristic algorithm. Compared to the
above-mentioned approaches, the analogy-based MTBE does not produce rules.
Here the examples are considered differently as they are added separately and
not as a whole, influencing incrementally the system.
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7 Conclusion

In this paper, we studied an approach for inferring model transformations (com-
posed of transformation rules) from transformation examples. We compare two
strategies for applying this approach: inferring the rules from the example taken
separately (then gathering the rules), or inferring the rules from the gathering
of the examples. Although we thought the second strategy would produce better
rules (more detailed), it appeared that the rules (less detailed) produced by the
first approach execute better. Future work includes learning rules whose premise
and conclusion have several main elements and design heuristics to determine
the best rule to apply when several rules are candidate.
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Abstract Context and lattice orbifolds have been discussed by M. Zick-
wolff [1,2], B. Ganter and D. Borchmann[3,4]. Preordering the folding
automorphisms by set inclusion of their orbits gives rise to further devel-
opment. The minimal elements of this preorder have a prime group order
and any group element can be dissolved into the product of group ele-
ments whose group order is a prime power. This contribution describes
a way to compress an orbifold annotation to sets of such minimal au-
tomorphisms. This way a hierarchical annotation is described together
with an interpretation of the annotation. Based on this annotation an
example is given that illustrates the construction of an automaton for
certain pattern matching problems in music processing.

Key words: formal concept lattice, lattice orbifold, annotation, auto-
morphism group

1 Introduction

Lattice orbifolds have been described by Monika Zickwolff [1,2] as a useful tool
for the compression of formal concept lattices. Daniel Borchmann has extended
this theory in his diploma thesis to context orbifolds [3,4]. A binary relation
orbifold can be considered as a mathematical structure on the sets of orbits
of a given group of automorphisms of a binary relation structure that allows
to reconstruct the original relation. Thus, it can provide deeper insight into
the structure of such a relation. On the other hand it provides the means for
compressing a relational structure in a way that preserves the possibility for
certain algorithms to act on it.

In the work of Zickwolff, Ganter and Borchmann together with the theory also
a method of data compression by means of the stabilisers in the automorphism
group has been provided. This abridged annotation contains the automorphisms
that violate a certain kind of symmetry which can be described by the stabilisers
of the equivalence classes. Thus, it provides an insight how the lattice violates
the symmetry reflected by the folding group.

The latter approach starts from a global view at the orbifold and cuts out re-
dundant information treating all nodes in the Hasse diagram equally. Properties
like direction are not used for this kind of annotation.

c© 2012 by the paper authors. CLA 2012, pp. 57–68. Copying permitted only for private
and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



The work presented here, starts from a local view (a pair of neighbours) and
uses both direction and transitivity of the relation to minimise the annotation.
In this way it spares the necessity to save the stabilisers increasing the informa-
tion provided by the edge annotation in comparison with the classical abridged
annotation.

After some theoretical section an example is given that provides further in-
sight into applications of the theory provided in this article.

2 Preliminaries

If not stated otherwise algebraic structures are be denoted by double stroke
letters, the base set of an algebraic structure A by the same letter A in nor-
mal font. AutA is its automorphism group and 1 :=

(
{(1)}, ·, (1)

)
the trivial

group. For any permutation group G on a set A we denote the set of its or-
bits by A \\G := {xG | x ∈ A}. Obviously, for any group element g ∈ G and
any orbit U ∈ A \\G also its adjoint gUg−1 is an orbit. Throughout this pa-
per we refer to the set of volatile points of an automorphism g ∈ AutA as
Var g := {x ∈M | xg 6= x} and to its set of fixed points using the notation
Fix g := {x ∈M | xg = x}. Obviously, for any element g ∈ AutA the equation
A = Fix g ∪Var g holds. We say that a permutation g ∈ G acts semiregular on
a set M ⊆ A, iff M \Var g ∈ {∅,M} is true. Note that Var g is not restricted
to be a subset of M .

If (M,≤) is an ordered set and N ⊆ M then the corresponding order ideal
is defined by the set ↓≤N := {1 ∈ M | ∃y ∈ N : x ≤ y} and we write ↓≤ x
for ↓≤{x} if the context is clear. The neighbourhood relation is denoted by the
symbol ≺.

As defined in [3] an orbifold of an ordered set (M,≤M ) will be denoted
by a triple (M \\G,≤, λ) where xG ≤ yG :⇔ ∃g ∈ G : x ≤M yg and λ is
an annotational function which carries additional information that allows to
reconstruct the relation ≤M . The most generic choice of λ is defined in the same
article as a mapping λ : (M \\G) × (M \\G) → PG which fulfils the condition
λ(xG, yG) = {g ∈ G | x ≤M yg} for any x, y ∈ M . In this setting the stabiliser
Gx of an Element x can be retrieved from its annotation λ(xG, xG).1

A simplified description of order orbifolds is defined utilizing the fact

λ(xG, yG) \
⋃

xG<zG<yG

λ(xG, zG) · λ(zG, yG) =
⋃

g∈λ(x,y)
g 6∈λ(xG,zG)·λ(zG,yG)

xG<zG<yG

Gx · g ·Gy.

This consists of a transversal T of M \\G and an abridged annotaton function
λabr : T × T → PG, where λabr(x, y) is a set of double coset representatives,
i. e. it is a minimal set such that Gx · λabr(x, y) ·Gy = λ(x, y).

It is well known that orbits of automorphisms of a finite ordered set are
always antichains in this set.
1 For other settings see [1,2,4].
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3 Minimal Acting Automorphisms

Let A be an algebraic structure. The orbits of the cyclic subgroups of AutA can
be used to preorder the automorphism group. If we refer to some group G or its
base set G without further notice it is always meant to be G ≤ AutA.

Lemma 1. Let AutA the automorphism group of a finite algebraic structure A.
Then the binary relation v ⊆ AutA× AutA defined by

g v h :⇔ ∀U ∈ (A \\ 〈g〉)∃U ′ ∈ (A \\ 〈h〉) : U ⊆ U ′

is a preorder.

Proof. This follows directly from the definition: Reflexivity is obivious as the
equation A \\ 〈g〉 = A \\ 〈g〉 holds. Given three automorphisms f, g, h ∈ AutA
such that for each orbit U ∈ (A \\ 〈f〉) there exists an orbit U ′ ∈ (A \\ 〈g〉) with
U ⊆ U ′. If the same condition is true for the pair (g, h) we can find an orbit
U ′′ ∈ (A \\ 〈h〉) such that U ⊆ U ′ ⊆ U ′′. Thus transitivity holds, too. ut

As in any cyclic subgroup the implication 〈gn〉 ⊆ 〈g〉 ⇒ x〈g
n〉 ⊆ x〈g〉 holds, we

can fix the following corollary:

Corollary 1. For any group element g ∈ AutA and any natural number we get:
gn v g

In particular, this means that g ∈ AutA and n ∈ N imply Var gn ⊆ Var g.
On the other hand, the so defined relation v is usually no order relation

as for any g ∈ AutA we have A \\〈g〉 = A \\〈g−1〉, but in general the equation
g = g−1 does not hold.

If A is finite, then the preordered set (AutA,v) has minimal elements.

Definition 1. Let A be a finite algebraic structure. The minimal elements of
the preordered set (AutA,v) are called automorphisms with minimal action.

Corollary 2. Let g be minimal in (G,v), then the cyclic group 〈g〉 acts semireg-
ular on Var g.

Proof. Suppose 〈g〉 does not act semiregular on Var g. Then there exist elements
∃x, y ∈ Var g and a positive integer n ∈ N \ {0} such that xgn = x, yg

n 6= y.
This implies x〈gn〉 = {x} 6= x〈g〉. Thus, x〈gn〉 6∈ A \\ 〈g〉. Consequently, gn v g
and g 6v gn. Thus, g is not minimal. ut

Corollary 3. Let g ∈ G be minimal in (G,v). Then for any element h ∈ G :
huh−1 is minimal, too.

Proof. Suppose the existence of an element v ∈ G such that the set of its orbits
A \\〈v〉 is a refinement of A \\〈gug−1〉. Then, A \\〈g−1vg〉 = (A \\〈v〉)g is a refine-
ment of A \\〈u〉, as A = Ag

−1 . This means that u is not minimal. ut
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The set containing the minimal nontrivial automorphisms of (G,v) will be de-
noted by Min(G,v), in particular we define

(1) ∈Min(G,v) iff Min(G,v) \ {(1)} = ∅ and G 6= ∅.

Corollary 4. The subgroup 〈Min(G,v)〉 is a normal subgroup in G.

Hall’s theorem [5] tells us that we can dissolve each cyclic subgroup of G into a
product of cyclic groups whose orders are prime powers. Thus, we can generate
each cyclic group by a set of elements with pairwise coprime orders. This leads
us to the following corollary:

Corollary 5. Let G ≤ AutA. Then the set

P :=
{
g ∈ G

∣∣ |〈g〉| is a prime power
}

is a generating set of G.

For the construction of the Sylow groups, we can use the following lemma:

Lemma 2. Let g ∈ AutA an automorphism of finite order n ∈ N \ {0} and
g1, g2 ∈ 〈g〉 with |〈g1〉| = m1 and |〈g2〉| = m2. Then 〈ggcd(n/m1,n/m2)〉 ≤ 〈g1, g2〉.

Proof. As cyclic groups are Abelian, there exist integers a, b ∈ Z such that
gcd( n

m1
, n
m2

) = a n
m1

+ b n
m2

. Since g1 ∈ 〈gn/m1〉 and g2 ∈ 〈gn/m2〉, w. l. o.g. we
can assume g1 = gn/m1 and g2 = gn/m2 . Thus, we get ggcd(n/m1,n/m2) = ga1g

b
2.
ut

Consequently, the generating set of Corollary 5 contains all minimal elements
Min(G,v).

Lemma 3. Let G ≤ AutA be a finite automorphism group. Then the elements
of Min(G,v) have prime order.

Proof. Let |〈g〉| = pn where p is prime. Then
∣∣〈gpn−1〉∣∣ = p. As 〈g〉 is cyclic, its

order is the least common multiple of the sizes of its orbits. Thus, it has at least
one orbit of size pn, while the orbits in 〈gn−1〉 have either one or p elements.
Corollary 1 tells us, that the minimal Elements of (G,v) are those of prime
orders. ut

4 Automorphisms of ordered sets

Let G ≤ AutA and U1, U2 ≤ G such that U1 · U2 = G. Considering the implied
action of G on PA, a straight forward calculation shows for all X ⊆ PA that
X ∈ (A \\U1) \\U2 iff

⋃
X ∈ A \\G.

Let us consider some additional properties of automorphisms of finite lattices.
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Definition 2. Let (M,≤) be an ordered set, G ≤ Aut(M,≤), and x ∈ M . The
set

G↓≤ x := {g ∈ G | Var g ∩ ↓≤ x = ∅} (1)

is called downwards stabiliser of x in G.

Obviously the downwards stabiliser of a maximal element in a complete lattice
is 1. In fact G↓≤ x is a subgroup of the stabiliser Gx of x.

Corollary 6. Let V = (V,≤) be a finite lattice ordered set. And let x ∈ V
while y, z ∈ V are upper neighbours of x. Furthermore, if there exist two au-
tomorphisms g, h ∈ G↓≤ x with the property zg = y = zh, then the equation
(↓≤ y)h−1g = ↓≤ y holds.

Proof. We know that yh−1g = y. So for any a ∈ ↓≤ y we know ah
−1g ≤ y as g

and h are automorphisms. ut

Thus, if two elements are in the same orbit their downwards stabilisers are related
by conjugation. This proves the following lemma:

Lemma 4. Let V = (V,≤) a finite lattice ordered set, G ≤ AutV, and let
x, y, z ∈ V while y and z are upper neighbours of x. Any automorphism g with
zg = y is an automorphism mapping V \ ↓≤ z to V \ ↓≤ y, while the equation
G↓≤ y = g−1G↓≤ zg holds.

Proof. Let g ∈ G↓≤ x with zg = y and let h ∈ G↓≤ z. Then for any a ∈ V \↓≤ z and
any b ∈ V \↓≤ y we get ag ∈ V \↓≤ y and bg

−1 ∈ V \↓≤ z as g is an automorphism.
As V \ ↓≤ y and V \ ↓≤ z are isomorphic by g, for any automorphism h ∈ G↓≤ z
the mapping f := g−1hg is an automorphism on V \ ↓≤ y and even f ∈ G↓≤ y,
as it is constant for any c ∈ ↓≤ y. Finally, we get gfg−1 = h. Thus, G↓≤ z is a
conjugate of G↓≤ y. The other direction of the implication is obvious. ut

As an immediate conclusion, we get that the downwards stabiliser of an element
is contained in the union of the downwards stabilisers of its upper neighbours:

Corollary 7. Let V = (V,≤) a finite lattice ordered set, G ≤ AutV, and let
x ∈ V and N = {y ∈ V | x ≺ y} the set of upper neighbours of x. Let further T a
transversal of N \\G and S ⊆ G such that TS = N . Then S ·⋃t∈T G↓≤ t ⊆ G↓≤ x.

In other words: At any point in the lattice we can restrict ourselves to a local
view. These considerations can be easily extended to finite ordered sets.

5 Orbifolds

In this section we define an orbifold representation using minimisations according
to the preorder discussed in Section 3.
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Definition 3. Let λ : T × T → PG be a mapping that assigns to each pair of
elements from a finite set T to a subset of another set G. A contiguous chain
of λ from x ∈ T to y ∈ T is defined as a subset C ⊆ T such that the relation
ρ := {(z, z′) ∈ T × T | λ(z, z′) 6= ∅} forms the neighbourhood relation of a
linear order with minimal element x and maximal element y. The set of all
such contiguous chains of λ between two elements x and y will be denoted by
CT,λ(x, y).

Further let the relation ≺′ ⊆ T × T be defined by x ≺′ y :⇔ ∃g ∈ G : x ≺ yg.
Using the non-commutative complex product

∏
in largest-left order, the operator

Λλ : T × T → PG is defined by Λ(x, x) = 1, and for x 6= y by

Λλ(x, y) :=
〈⋃





|C|∏

i=2
λ(zi−1, zi)

∣∣∣∣∣∣
C ∈ CT,λ(x, y), zi−1 ≺ zi,
{z1, z2, . . . , z|C|} = C





〉
∩Gx,y. (2)

Theorem 7 will provide us with another kind of annotation of an orbifold:

Definition 4. Let V = (V,≤) be a finite lattice ordered set, G ≤ AutV, T a
transversal of V \\G, and the relation ≺′ defined as above.

A mapping λhier : T × T → PG is called hierarchical annotation (of V , T
and G), if it fulfils the following conditions for all x, y ∈ T :
1. λhier(x, y) ⊆ G↓≤ x,
2. λhier(x, y) = ∅ if ∀y′ ∈ yG : x 6≺′ y′, and
3. x ≺′ y implies yλhier(x,y) = y

G↓≤ x

4. yλhier(x,y)Λλhier (0,x) = yGx .

Corollary 8. Let V = (V,≤) be a finite lattice ordered set, G ≤ AutV, and λ
a hierarchical annotation. Then the equation

〈⋃
x,y∈T λ(x, y)

〉
≤ G holds.

Example 1. Figure 1 shows a simple example of a lattice and its orbifold anno-
tated with three different annotations. Besides the hierarchical annotation the
annotations from Borchmann, Ganter and Zickwolff [1,2,3,4] have been included.

Before we explore some basic properties of hierarchical annotations we must
assure their existence:

Lemma 5. Let V = (V,≤) be a finite lattice ordered set, G ≤ AutV a group of
automorphisms, and T a transversal of V \\G. Then there exists a hierarchical
annotation λ : T × T → PG.

Proof. For any x, y ∈ T and any z ∈ V with x ≺ y, x ≺ z, if z ∈ y
G↓≤ x we

fix an arbitrary gx,y,z ∈ G↓≤ x such that z = ygx,y,z . In that case we define
λ1(x, y) := {gx,y,z | z ∈ y

G↓≤ x}. If z ∈ yGx \ yG↓≤ x and G↓≤ x = ∅ then the
orbits of y are predefined by all automorphisms that act below x thus, we define
λ1(x, y) := 1.

In any case where z ∈ yGx \yG↓≤ x , there exists an automorphism hx,y,z ∈ Gx
such that z ∈ yλ1(x,y)hx,y,z . Then there exist two elements x̂z, ŷz ∈ ↓≤′ x such
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1

2 3

8 4 9

5 6

7

(a) Original order
1

2

8 4

5

7

G

E

E

E

E

E

(b) Hierarchical
annotation.

1

2

8 4

5

7

G

G

G

G

E

E

(c) Full annota-
tion.

1

2

8 4

5

7

E

E

E

E

E

E

(d) Abridged an-
notation.

Figure 1. The lattice is folded by the group G = {(1), (2 3)(5 6)(8 9)}. As you can see
in 1(b), G4 = G, but λhier(4, 5) = {(1)}. The singleton E is defined by E := {(1)}.

that x̂z ≺′ ŷz and there is an automorphism hx,y,z ∈ G↓≤ x̂z \ Gŷz and an-
other automorphism ĥx,y,z ∈ Λ(x̂, x). Using this we define a second preliminary
annotation λ2(x̂z, ŷz, x, y) := {hx,y,zĥ−1

x,y,z | z ∈ yG \ yG↓≤ x}.
For all other combinations of elements x̂, ŷ, x, y we set λ1(x, y) := ∅ and

λ2(x̂, ŷ, x, y) := ∅. Finally we define:

λhier(x, y) := λ1(x, y) ∪
⋃

x̃,ỹ∈T,z̃∈ỹGx
λ2(x, y, x̃, ỹ, z̃).

Obviously such a function exists and fulfils the conditions of Definition 4. ut

Now, as we know how to describe the automorphism group G ≤ AutV by means
of automorphisms acting locally, we will use automorphisms that are minimal
under certain restrictions. The corresponding operator is defined as follows:

Definition 5. Let V = (V,≤) be a finite lattice ordered set, and G ≤ AutV an
automorphism group of V, while U ⊆ G is one of its subsets. For any x, y, z ∈ V
the elements of the set

Minx,y 7→z U := Minv{g ∈ U | xg = x, yg = z} (3)

are called minimal annotating automorphisms (fixing x and mapping y to z).
The elements of the set

Min↓ x,y 7→z U :=





Minx,y 7→z U ∩G↓≤ x Minx,y 7→z U ∩G↓≤ x 6= ∅
1 Minx,y 7→z U ∩G↓≤ x = ∅ and

Minx,y 7→z U 6= ∅
∅ else

(4)

are called upper minimal automorphisms.
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For applications it would be interesting to have an annotation that consists only
of minimal acting automorphisms. Unfortunately, that is not generally possible.
Nevertheless when Irred∨≤ : V → PV maps each element to the set of supremum
irreducible elements less or equal to it, we can proof the following lemma:

Lemma 6. For any finite lattice ordered set V = (V,≤), any automorphism
group G ≤ Aut(V,≤), and any transversal T ⊆ V of V \\G there exists a hi-
erarchical annotation that consists of upper minimal automorphisms, if for all
elements x, y ∈ T with x ≺ y and z ∈ Irred∨≤ y \Irred∨≤ x the following condition
holds:

(Irred∨≤ y \ Irred∨≤ x)G = zG (5)

Proof. It is a well-known fact, that for each automorphism g ∈ G and every
element x ∈ V the equation xg =

∨(
(Irred∨≤ x)g

)
.

Let x ≺′ y a pair of neighbours in (T,≤′) and x ≺ z a pair of neighbours in
(V,≤) such that z ∈ yG. Then we can modify the proof of Lemma 5 with the
following refinements:

1. If y ∈ Irred∨≤ y then choose for any z ∈ y
G↓≤ x a minimal automorphism

gx,y,z ∈Minx,y 7→z G and define λ1 as in Lemma 5.
2. For y ∈ Irred∨≤ y and z 6∈ yG↓≤ x there exist an automorphism g ∈ Gx \G↓≤ x

and an automorphism h ∈ λ1(x, y) such that z = yhg where g 6= (1). In that
case the action of 〈g〉 on z depends on the action on ↓≤ x. As (↓≤ x)〈g〉 ⊆ ↓≤ x
and the action of 〈g〉 on ↓≤ x is defined by the irreducibles also the ac-
tion on z depends on the irreducibles below it (everything else we have
already collected in λ1(x, y). Let 0 = x̂0 ≺′ x̂1 ≺′ . . . ≺′ x̂l = x be a
maximal chain from 0 to x of elements of V . Then there exists a chain
x0 ≺ x1 ≺ . . . ≺ xl such that xi ∈ x̂Gi . For each pair (xi, xi+1) we define
I(xi, xi+1) := Irred∨≤ xi+1 \ Irred∨≤ xi. Let g0 = (1). Given x̂gii = xi chose a
minimal automorphism mi from λ(x̂i, x̂i+1) that maps x̂i to x

gg−1
i

i+1 . This is
always possible as |I(xi, xi+1)G ∩ T | = 1. Then define gi+1 := migi. Finally
we get an automorphism gl that acts on ↓≤ x, implying glg−1 ∈ G↓≤ x.

3. If y 6∈ Irred∨≤ y there exist a unique irreducible ŷ ∈ T and an element x̂ ∈ T
such that ŷ ∈ (Irred∨≤ y \ Irred∨≤ x)G, x̂ ≺′ ŷ and x̂ < x hold. Obviously
ŷ 6≤ x. In that case we define λ1(x, y) := λ1(x̂, ŷ).

Induction over the height (the size of the longest chain) leads to the desired
annotation. Obviously we don’t need to define any λ2 to something different
than the empty set. Thus we can define λ := λ1 which fulfils the conditions of
Definition 4 and provides a labelling using upper minimal automorphism. ut

Definition 6. Let V = (V,≤) a finite lattice and G ≤ AutV a group of au-
tomorphisms. Let further T ⊆ V a transversal of the orbit partition V \\G and
λ : T×T → PG a minimal acting annotation. Let further ≤′ defined by x ≤′ y iff
there exists an automorphism g ∈ G such that x ≤ yg. Then the triplet (T,≤′, λ)
is called minimal acting orbifold of V by G.
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Theorem 1 (Unfolding). Let V = (V,≤) a finite lattice and G ≤ AutV a
group of automorphisms and (T,≤′, λ) a hierarchical (minimal acting) orbifold
of V by G. Let further for C : T × T → PT the mapping that assigns a pair
x ≤′ y to the set of all contiguous chains of λ from x to y, and to the empty set
otherwise (i. e. if x 6≤′ y).

Then the ordered set (L,2) with the relation 2 ⊆ L× L defined by

L :=
⋃
{xΛ(0,x) | x ∈ T}, and (6)

x 2 y :⇔ ∃z, ẑ ∈ T, g ∈ Λ(0, ẑ) : zg = x, ẑg = y, z ≤′ ẑ (7)

equals (V,≤).

Proof. We prove this theorem by induction. As any finite lattice is also a com-
plete lattice the orbit of the minimal element 0 of (V,≤) is a singleton. That
implies that 0 ∈ T .

Let us start with the set L0 := {0} containing the infimum of the lattice and
the relation 20:= {(0, 0)}.

Let y ∈ V and suppose that for any x < y we have already proved that
↓2 x = ↓≤ x ⊆ V . Thus, for each x ∈ {x′ ∈ V | x′ ≺ y} there exists an
automorphism gx ∈ G such that xgx ∈ T . W. l. o. g. gx ∈ Λ(0, xgx) (otherwise
there exists g′ ∈ Λ(0, xgx) with xg′ = ygx). As T is a transversal of V , there is
also an automorphism gy ∈ G such that ygy ∈ T . From x ≤ y we know xgx ≤′ ygy
and thus, if gy ∈ λ(xgx , ygy ) · Λ(0, xgx) then also x 2 y.

Note that for any z the equation Λ(0, z) =
⋃
ẑ≺′z

(
λ(ẑ, z)Λ(0, ẑ)

)
holds. If

there exists an automorphism h ∈ λ(xgx , ygy ) such that ygx = (ygy )h then the
condition h · g−1

x ∈ h · Λ(0, xgx) ⊆ λ(xgx , ygy ) · Λ(0, xgx) holds. Thus, y ∈ L and
x 2 y. If there is no such element in λ(xgx , ygy ), then by Definition 4 we can
find an automorphism h ∈ λ(x, y) · Λ(0, x) which maps ygy to ygx . Thus, y ∈ L
and x 2 y hold in this case, too. As we had chosen x arbitrarily below y we have
proved ↓≤ y ⊆ ↓2 y.

Since L is constructed by automorphisms of V which map certain elements
of V to other elements of V , we know L ⊆ V . Suppose that for any two elements
x, y ∈ L the inequality x 2 y holds. Then we know that in equation (7) the
condition λ(z, ẑ) · Λ(0, z) ⊆ λfull(z, ẑ) holds if λfull is the full annotation as
discussed in [1,2,3,4]. Thus, we know that for any automorphism g ∈ λ(z, ẑ) ·
Λ(0, z) the inequality x = zg ≤ ẑg = y holds. Thus also x ≤ y.

As we have proved the condition ↓2 y = ↓≤ y ⊆ V , induction proves the
equation (L,2) = (V,≤) for y = 1 ∈ T . ut

6 An Example with Musical Background

In many parts of computational music theory pitches and notes are represented
by integers. This has been proved to be useful especially in technical applications.
As there are well-documented mathematical models available (see e. g., [6,7,8,9])
and an applied description is available in [10], here only the technically necessary
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parts are described. Let Z be considered as tone system. Then each subset C ⊆ Z
can be considered as a chord. In music theory it is not very common to talk
about tones. It is more common to talk about scales that consist of chromas.
Let o ∈ Z be an interval which we will call octave. Two tones which are an octave
apart are considered to have the same chroma. The transitive continuation of
this procedure leads to a structure of chromas that is isomorphic to Zo. Each
of its subsets is called harmony. For certain applications (e. g. in the software
“Mutabor” [11]) the form of harmonies of incoming streams of music (e. g. a
MIDI stream [12]) are of special interest. Two harmonies have the same form if
there exists a transposition that transforms one into the other.

Let H ⊆ Zo a harmony. Then for some chromatic interval i ∈ Zo the
mapping ti : PZo → PZo : H 7→ {p + i | p ∈ H} is called a transposi-
tion. The harmonic form F (H) of some harmony H is defined as the mapping
F : PZo → P(PZo) : H 7→ {ti(H) | i ∈ Zo}.

As for each interval i ∈ Zo there exists a transposition ti. These transpo-
sitions can be considered as automorphisms of the ordered set (PZo,⊆), the
transposition group will be denoted by T. In fact this ordered set is a com-
plete lattice which is invariant under transposition. The harmonic forms can be
considered as the set of the orbits of the transpositions PZo \\T.

If we want to recognise a certain set of harmonies H we can build an au-
tomaton that can be described by a concept lattice. Let H = K(G,M, I) be the
context defined by

G :=
⋃

H∈H
PH, M := Zo, and I := {(H, p) ∈ G×M | p ∈ H}. (8)

Then BH can be considered as automaton that recognises all finite words that
consist of letters which are included in one of the harmonies of H. Starting in
the concept (G, ∅), with each pitch p ∈ Zo the automaton switches state (A,B)
to state

(
(B ∪ {p})I , B ∪ {p}

)
. The latter is a state as with every Harmony H

the set of objects G includes each of its subsets H ′ ⊆ H. If such a state doesn’t
exist the automaton won’t recognise the word.

The naive approach to recognise harmonic forms uses the same idea. Let
F := {F (H) | H ∈ H} a set of harmonic forms. Then we define the lattice as
follows: F = K(G′,M ′, I ′) with

G := {ti(H), H ∈ H, i ∈ Zo}, M := Zo, and I := {(H, p) ∈ G×M | p ∈ H}.
(9)

The concept lattice B(F) has all transpositions as automorphisms. Figure 6
shows a concept lattice that can be used to recognise the major seventh chord
F ({0, 4, 7, 10}), the minor triad F ({0, 3, 7}) and all of their harmonic subforms.
The nodes are arranged orbit-wise. That means, each cluster is an orbit of
B(F) \\T. Thus, the automorphisms can be seen as cyclic permutations of the
endpoints of the edges. In comparison with the number of orbits the lattice is
large: 14 orbits are formed by 140 concepts.
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Figure 2. Concept lattice describing patterns to be matched

For an automaton that recognises harmonic forms it would be interesting to
compress the data as the generation of the lattice can be very time and space
consuming if the chroma system contains more chromas. E. g. considering the
pitch bend parameter as part of a pitch in standard MIDI environments the
number of pitches increases from 12 to 12 · 214. In such a case an orbifold based
representation of the lattice does not necessarily increase in size. Starting by a
hierarchical annotation of minimal acting automorphisms we can enhance the
annotation by replacing each automorphism by a pair consisting of the automor-
phism and the character (pitch) that triggers its action. To avoid unnecessary
operations the automaton could save the automorphism that must be applied to
the pattern rather than applying it. In many cases (e. g., classification) it does
not need to be applied at all.

This approach provides two additional advantages: As we know the context
automorphisms, we can use a folded context to compute the order relation of
the concept orbifolds as described in [4]. On the other hand changing the size
of the chroma system can be done in several ways. The orbifold based approach
provides a promising base for analysing such operations in order to provide fast
algorithms that can be used in real time.
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7 Outlook
We have seen that orbifolds of certain lattices can be described using hierarchi-
cal annotations, and that it is possible to minimise the action of the annotating
automorphisms without losing the possibility of unfolding such hierarchical orb-
ifolds.

Nevertheless there are open topics that can improve the theory. In Lemma 6
Restriction (5) has technical reasons. At the moment it is an open question how
to deal with arbitrary lattices. It might be helpful to use systems of generators for
the annotation λ. That should be straight forward if care is taken on conjugated
subgroups.

Another easy extension would be to elaborate the idea for arbitrary ordered
sets.
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Abstract. The most general algebraic structure of truth-values consid-
ered in the theory of fuzzy concept analysis to evaluate the attributes
and objects has been a lattice. However, in some examples arises the
necessity of a more general structure. In this paper we investigate the
use of multilattices as underlying set of truth-values for these attributes
and objects.

1 Introduction

The study of reasoning methods to work out with uncertainty, imprecise data
or incomplete information has been a trending topic in the recent years in order
to explain, in a better way, observed facts, specify statements, reasoning and/or
execute programs.

One important and powerful mathematical tool that has been used for this
purpose at theoretical level is fuzzy logic. From the applicative side, neural net-
works have a massively parallel architecture-based dynamics which are inspired
by the structure of human brain, adaptation capabilities, and fault tolerance.
The recent paradigm of soft computing promotes the use and integration of
different approaches for the problem solving.

Formal concept analysis, introduced by Wille in [23], is a useful tool for
qualitative data analysis and has become an appealing major research topic,
from both the theoretical and applied perspectives. What we pretend in this
paper is to present the multilattices as a basis on the area of formal concept
analysis and, specifically, what will lead us to what we have called fuzzy formal
concept multilattice.

There has been many approaches in order to generalise the classical con-
cept lattices given by Ganter and Wille [12] allowing some uncertainty in data.
The first fuzzy approach was proposed by Burusco and Fuentes-González [4]
where fuzzy concept lattices were first presented, and later further developed
by Pollandt [22] and Bělohlávek [1]. Other approaches emerge trying to work
with non-commutative fuzzy logic and similarity as we can see in the work of
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Georgescu and Popescu [13]. This approach, consisting in generalizing the equal-
ity relation and considering an alternative similarity relation, underlies in the
works of Bělohlávek [2], which considered L-equalities to extend the fuzzy con-
cept lattice. This approach was extended in an asymmetric way, although only
for the case of classical equality (L = {0, 1}) by Krajči, who introduced the
so-called generalized concepts lattices in [16,15].

Recently, a new approach has been proposed by Medina et al in [20,19] who
introduced the multi-adjoint concept lattices, joining the multi-adjoint philoso-
phy with concept lattices. To do this the authors needed to generalize the adjoint
pairs into what they called adjoint triples [6]. This new structure directly gen-
eralizes almost all the approaches previously cited.

On the other hand, the theory of multilattices arose trying to weaken the re-
strictions imposed on a (complete) lattice, namely, the “existence of least upper
bounds and greatest lower bounds” is relaxed to “existence of minimal upper
bounds and maximal lower bounds”. In this direction, several definitions have
been proposed in the mathematical literature of the structure so-called multi-
lattice [3,14].

Later on, an alternative notion of multilattice, with better properties re-
garding substructures than the previous definitions, has been introduced [5,17].
Moreover, this structure has proved to be an important tool in order to obtain
some advances in the theory of mechanized deduction in temporal logics.

Multilattices, in the sense of the paragraph above, also arise in a natural man-
ner in the research area concerning fuzzy extensions of logic programming [18].
For instance, one of the hypotheses of the main termination result for sorted
multi-adjoint logic programs [7] has been weakened only when the underlying
set of truth-values is a multilattice [8]; as far as we know, the question of pro-
viding a counter-example on a lattice remains open.

The main result introduced here is the presentation of multilattices as un-
derlying set where to evaluate the attributes, the objects and the relation in a
fuzzy environment to formal concept analysis, indeed, this leads us to see that
the set of “multilattice concepts” is a multilattice. We can see as well that if we
evaluate the objects or the attributes in a lattice and the other in a multilattice
what we have again a lattice not a multilattice as we could think at first.

The idea of using multilattices as underlying set of truth values arises us
since in real life many thigns are ordered in a way that we we know that some
objects are better than others but sometimes we can not choose which is the
best of them because they can have different properties. This idea can be seen
in the example we give in the last section of this paper where we consider a
group of hotels. It is logical to think that four-star hotels are better than three
star hotel, but sometimes we can not decide if a four-star hotel is better than
another four-star hotel since these can have different properties to be considered
like acommodation, location, price, etc., and one can be better in one property
and worse in other. This, as we have already said, is what have lead up to
consider multilattices because this structure deals better with objects which are
uncomparable.
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The plan of this paper is the following: in Section 2 we present the main
definitions and results to understand the paper. Section 3 presents the formal
concept multilattice; we also provide an example where this new structure can
be used in Section 4; the paper ends with some conclusions and prospects for
future work.

2 Preliminaries

In this first section we will set the basic notions required to the complete under-
standing of the paper. We will start with a bit of lattice and multilattice theory
and finished with concept lattice analysis.

One of the most structures used when hanging with fuzziness is a lattice,
this has been a very suitable in order to develop many theories. Although the
following definitions are well known, we will recall them here in order to make
this paper as selfcontained as possible. The definition of a lattice is given bellow.

Definition 1. By a complete lattice is understood a poset, (L,�), where every
subset of L has supremum and infimum.

When instead of the existence of both supremum and infimum for every
subset we only ask for the existence of one of them the notion of semilattice
arised.

Definition 2. By a complete lower semilattice is understood a poset, (L,�),
where every non-empty subset of L has infimum.

Definition 3. By a complete upper semilattice is a poset, (L,�), where every
non-empty subset of L has supremum.

Nevertheless, there is a closed relationship between lattices and semilattices,
indeed, if we have the existence of a top element in lower semilattices or a bottom
element in upper semilattices we have that they become lattices as the following
theorem states.

Theorem 1. A complete upper (lower) semilattice (L,�) with a minimum ele-
ment (maximum element ) is a complete lattice.

Once we have reminded the notions of lattice and semilattice we will pass to
define what a multilattice is. To get this we will start with some preliminaries
notions.

Definition 4. Let (P,≤) be a poset and K ⊆ P , we say that:

– K is called a chain if for every two elements x, y ∈ K we have that x ≤ y
or y ≤ x.

– K is called an antichain if none of its elements are comparable, i.e., for
every x, y ∈ K we have that x � y and y � x.
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Definition 5. A poset (P,≤) is called coherent if every chain has supremum
and infimum.

Once we have introduced these notions we can give the definition of a com-
plete multilattice.

Definition 6. A complete multilattice is a coherent poset without infinite an-
tichains, (M,≤), where for each subset, the set of its upper (lower) bounds has
minimal (maximal) elements.

Each minimal(maximal) element of the upper (lower) bounds of a subset is called
multisupremum(multinfimum). The set of all multisuprema(multinfima) will be
denoted by multisup(multinf).

Example 1. An example of a multilattice is given in figure 1.

•
⊥
�
�
�
• b

@
@
@
•
a

• d@
@
@

•c

��
��
��HHHHHH

•
>

�
�
�

Fig. 1. Multilattice M6

In this multilattice we have that if we consider the subset {a, b} we have that
multinf{a, b} = ⊥ and multisup{a, b} = {c, d} while if we consider as subset
{c, d} we have that multinf{c, d} = {a, b} and multisup{a, b} = >

We will remind now the notion of adjoint pair we will use later [11,21].

Definition 7. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
← : P3 × P2 → P1, be mappings, then (&,←), is called an adjoint pair with
respect to P1, P2, P3 if:

– & is increasing in both arguments;
– ← are increasing in the first argument and decreasing in the second;
– x ≤1 z ← y iff x& y ≤3 z for all x ∈ P1, y ∈ P2 and z ∈ P3;

Now, we will pass to introduce a bit of fuzzy concept analysis. We will remind
first the notions of Galois connection and concept [9,10].

Definition 8. Let ↓ : P → Q and ↑ : Q → P be two maps between the posets
(P,≤) and (Q,≤). The pair (↑, ↓) is called a Galois connection if:

– p1 ≤ p2 implies p2
↓ ≤ p1↓ for every p1, p2 ∈ P ;

– q1 ≤ q2 implies q2
↑ ≤ q1↑ for every q1, q2 ∈ Q;
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– p ≤ p↑↓ and q ≤ q↓↑ for all p ∈ P and q ∈ Q;

An interesting property of a Galois connection (↑, ↓) is that ↓ = ↓↑↓ and
↑ = ↑↓↑.

Definition 9. A pair (p, q) is called a concept if p↓ = q and q↑ = p.

If P and Q are lattices we have as well the following result:

Theorem 2. [9] Let (L1,�1) and (L2,�2) be two complete lattices and (↑, ↓)
a Galois connection between them, then we have that the set C = {(x, y) | x ∈
L1, y ∈ L2, x

↓ = y, y↑ = x} is a complete lattice with the following ordering
(x1, y1) � (x2, y2) if and only if x1 �1 x2 (or equivalently y2 �2 y1), where the
supremum and the infimum are given bellow:

∧

i∈I
(xi, yi) =

(∧

i∈I
xi, (

∨

i∈I
yi)
↑↓
)

∨

i∈I
(xi, yi) =

(
(
∨

i∈I
xi)
↓↑,
∧

i∈I
yi

)

With all this notions now we can pass to the following section where we will
present concept multilattices.

3 Fuzzy formal concept multilattices

When working in concept analysis theory we always have two sets A and B
representing the attributes and the objects together with a relation between
them. In order to reach the concept multilattices these ones will be evaluated in
complete multilattices.

The first result we obtain concerning concept analysis in multilattices will be
crucial for our purpose. We will denote by MA

1 and MB
2 the sets of all mappings

from A to M1 and from B to M2 respectively.

Theorem 3. Let (M1,≤1) and (M2,≤2) be two complete multilattices, A and
B two sets and (↑, ↓) a Galois connection between MA

1 and MB
2 . If {(gi, fi)}i∈I

is a set of concepts we have that

multinf{fi↓ | i ∈ I} ⊆ (multisup{fi | i ∈ I})↓ (1)

multinf{gi↑ | i ∈ I} ⊆ (multisup{gi | i ∈ I})↑ (2)

where (multisup{fi | i ∈ I})↓ = {f↓mult | fmult ∈ multisup{fi | i ∈ I}} and
(multisup{gi | i ∈ I})↑ is given similarly.

Fuzzy FCA via multilattices: first prospects and results 73



Proof. We will prove (1). Item (2) is proved in a similar way.
Let g ∈ multinf{fi↓ | i ∈ I} we have that g ≤1 fi

↓ for every i ∈ I. As ↑ is

decreasing we have that f↓↑i ≤2 g
↑, but the pair (↑, ↓) is a Galois connection so

we have that:

fi ≤2 (fi)
↓↑ ≤2 g

↑

Then there is fmult ∈ multisup{fi | i ∈ I} such that fmult ≤2 g↑. As ↓ is

decreasing we have that g↑↓ ≤1 f
↓
mult using again that (↑, ↓) is a Galois connection

we obtain that:

g ≤1 g
↑↓ ≤1 f

↓
mult (3)

On the other hand, we have that fmult ∈ multisup{fi | i ∈ I}, so fi ≤2 fmult for

every i ∈ I then, as ↓ is decreasing f↓mult ≤1 f
↓
i , for every i ∈ I, then f↓mult is a

lower bound of the set {fi↓ | i ∈ I}, but g ∈ multinf{fi↓ | i ∈ I} and g ≤1 f
↓
mult,

by (3). Therefore, by maximality of g we have that g = f↓mult.
Thus, we have proved that for every g ∈ multinf{fi↓ | i ∈ I} there is fmult ∈

multisup{fi | i ∈ I} such that g = f↓mult, which leads us to the result. ut
We cannot get always the equality in this theorem as we can see in the next

example:

Example 2. If we consider the multilattice of Fig. 1 and the folowing Galois
connection, ↑ = ↓ : M6→M6 defined as:

⊥↑ = > ; a↑ = b↑ = c↑ = c ; d↑ = ⊥ ; >↑ = ⊥

It is routine to prove that the pair (↑, ↓) is a Galois connection.
On one hand, we obtain that

multinf{a↑, b↑} = multinf{c} = c

However, on the other hand:

(multisup{a, b})↑ = ({c, d})↑ = {c↑, d↑} = {c,⊥}

which proves that we cannot get the equality always.

As a consequence of the previous theorem, we have that, given the set of
all concepts C = {(g, f) | f ∈ MA

1 , g ∈ MB
2 , g

↑ = f, f↓ = g}, and the ordering
defined as (g1, f1) ≤ (g2, f2) if and only if g1 ≤1 g2 (if and only if f2 ≤2 f1), then
(C,≤) is a complete multilattice which is a result similar to Theorem 2, but now
with respect to multilattices.

Theorem 4. If (M1,≤1) and (M2,≤2) be two complete multilattices, A and B
two sets and (↑, ↓) a Galois connection between MA

1 and MB
2 , then we have that

(C,≤) is a complete multilattice where for every set of concepts {(gi, fi)}i∈I :

multinf{(gi, fi)} = (multinf{gi}, (multinf{gi})↑) (4)

multisup{(gi, fi)} = ((multinf{fi})↓,multinf{fi}) (5)
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Proof. If we prove that they are concepts, then it is obvious that they are the
multisuprema and the multinfima due to the definition of the ordering in C.

By Theorem 3, we have that

multinf{gi} ⊆ (multisup{fi})↓ (6)

Hence, given g ∈ multinf{gi}, there exist f ∈ multisup{fi}, such that g = f↓.
Therefore, since (↑, ↓) is a Galois connection, g↑↓ = f↓↑↓ = f↓ = g.

Consequently, it is trivial that they are concepts. For the multisuprema the
proof is similar. The proof of coherence and the non-existence of anti-chains
comes directly from the definition of the ordering consider. ut

At this point we could think what would happen whether the set of objects
or the set of attributes are evaluated in a lattice while the other in a multilattice.
The answer to this is given by the following corollary.

Proposition 1. Considering the framework of the previous theorem, if M1 or
M2 is a lattice, then we have that C is a lattice.

Proof. If M1 is a lattice in the first equality of (4) the multinfimum becomes a
singleton so it is indeed an infimum. Hence, every set has an infimum and so
(C,≤) is a complete lower semilattice. Therefore, we only have to prove that
there is a maximum element >C in C.

Let g> ∈ MA
1 the map which sends every element of A to the maximum

element > of M1 and consider the pair (g>, g
↑
>). If we prove that it is a concept

then we have finished, since it is obvious that this element would be the maximum
element in C.

We only have to prove that g> = g↑↓> . As (↑, ↓) a Galois connection we have

that g> ≤1 g
↑↓
> and, as g>(a) = > for every element a ∈ A, we have that the

equality holds, i.e., g> = g↑↓> .
The proof for M2 being a lattice is similar. ut

The following section introduces a simple and particular context where we
can get a Galois connection from an adjoint pair what allows us to obtain a
concept multilattice.

4 A worked out example

The multilattice considered for the calculation in this example is the one given
in Fig. 2 together with the following adjoint pair (&,←).

x& y =





x if y = >
y if x = >
⊥ if x ∈ {⊥, b} or y ∈ {⊥, b}
a otherwise
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Fig. 2. Multirret́ıculo M6*

z ← y =





> if y ≤ z
z if y = >
b if y /∈ {⊥, b,>} and z ∈ {⊥, b}
e otherwise

It is routine calculation that (&,←) is, indeed, an adjoint pair, in which & is
commutative.

Imagine that we are going to travel to a city and we have to decide which
hotel is the best for us. In this example, in order to no complicate the calcula-
tion we will taking into account seven different hotels, as objects, and two at-
tributes, which will be price and situation. Hence, we have as set of objects B =
{H1, H2, H3, H4, H5, H6, H7} and as set of attributes A = {price, situation},
both evaluated in M6∗ and the M6-fuzzy relation, R : A× B → M6∗, between
them, defined in Table 1

Table 1. Relation R

R price situation

H1 d ⊥
H2 c a
H3 > b
H4 a d
H5 b e
H6 a b
H7 d c

Evaluating the hotels in a multilattice comes from the idea that the hotels
are ordered thinking of the number of stars they have. We can state, for example
that any four-star hotel is better than any three-star hotel, but if both hotels
are four-star ones we cannot distinguish between them at the beginning.
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In the case of the situation, we have that we can say one situations are
better than other but we cannot compare a situations that are for example one
kilometer from the downtown but in different directions.

In the case of prizes, happens more or less the same because we cannot
distinguish between prizes which are very similar.

If we see the relationship we have that R(H5,price) = b, R(H6,price) = a
means that the fifth and the sixth hotels have more or less the same prices but
we cannot decide which is best taking into account only their prizes.

For these reasons we have chosen multilattices for their evaluation.

We are trying to choose a hotel to stay in according to our preferences in
prizes and situation.

It is easy to check that for the adjoint pair (&,←) and for any mapping
f : A→M6∗ or g : B →M6∗ the following sets has infimum.

{R(a, b)← g(b) | b ∈ B}
{R(a, b)← f(a) | a ∈ A}

Hence, we can define the next Galois connection

g↑(a) = inf{R(a, b)← g(b) | b ∈ B}
f↓(b) = inf{R(a, b)← f(a) | a ∈ A}

The proof of (↓, ↑) being a Galois connection follows directly from the existence
of the infimum of these sets, that & is commutative and that the implication are
decreasing in the second argument.

Therefore, from Theorem 4 we have an fuzzy concept multilattice and if our
preferences are the following g(price) = a and g(situation) = d we have that for
H1.

g↑(H1) = inf{d← a,⊥ ← d} = inf{>, b} = b

And for the others:

g↑(H2) = e , g↑(H3) = b , g↑(H4) = > , g↑(H5) = b , g↑(H6) = b , g↑(H7) = e

On the other hand we have that

f↓↑(price) = inf{d← b, c← e,> ← b , a← > b← b, a← b, a← e}
= inf{>,>, a,>, e, e} = a

In a similar way we obtain that

f↓↑(situation) = d

Thus, according to out preference stablished by f , we have that our best choice
is H4, although H2 and H7 are really good ones too.
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5 Conclusions and future work

A first approach to fuzzy formal concept multilattices has been presented. This
paradigm arises as a more flexible setting than formal concept analysis frame-
work, as the introduced motivating example shows.

Moreover, several properties have been proved. For example, we have checked
that the concepts in the new framework form a complete multilattice and that if
we impose that one of the set of attributes or objects are evaluated in a lattice
and the other in a multilattice, then we obtain a complete lattice.

In the future, we will study general Galois connections which allows us to
get more concept multilattices. We will focus as well, when we have these Galois
connections, on getting a representation theorem for them to be able to get which
multilattices are isomorphic to concept multilattices.
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Abstract. In this work we are going to set up a new relationship be-
tween the L-fuzzy Concept Analysis and the Fuzzy Mathematical Mor-
phology. Specifically we prove that the problem of finding fuzzy images or
signals that remain invariant under a fuzzy morphological opening or un-
der a fuzzy morphological closing, is equal to the problem of finding the
L-fuzzy concepts of some L-fuzzy context. Moreover, since the Formal
Concept Analysis and the Mathematical Morphology are the particular
cases of the fuzzy ones, the showed result has also an interpretation for
binary images or signals.

Keywords: L-fuzzy Concept Analysis, Fuzzy Mathematical Morphol-
ogy, Morphological Image Processing

1 Introduction

The L-fuzzy Concept Analysis and the Fuzzy Mathematical Morphology were
developed in different contexts but both use the lattice theory as algebraic frame-
work.

In the case of the L-fuzzy Concept Analysis, we define the L-fuzzy concepts
using a fuzzy implication and a composition operator associated with it. In the
Fuzzy Mathematical Morphology, a fuzzy implication is also used to define the
erosion but a t-norm also appears to introduce the dilation.

On the other hand, both theories have been used in knowledge extraction
processes in data bases [14–16].

Next, we will show a brief description of them.
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2 Antecedents

2.1 L-fuzzy Concept Analysis

The Formal Concept Analysis of R. Wille [28, 17] extracts information from a
binary table that represents a formal context (X,Y,R) with X and Y finite sets
of objects and attributes respectively and R ⊆ X × Y . The hidden information
is obtained by means of the formal concepts that are pairs (A,B) with A ⊆ X,
B ⊆ Y verifying A∗ = B and B∗ = A, where ∗ is the derivation operator that
associates the attributes related to the elements of A to every object set A, and
the objects related to the attributes of B to every attribute set B. These formal
concepts can be interpreted as a group of objects A that shares the attributes
of B.

In previous works [11, 12] we have defined the L-fuzzy contexts (L,X, Y,R),
with L a complete lattice, X and Y sets of objects and attributes respectively
and R ∈ LX×Y a fuzzy relation between the objects and the attributes. This is
an extension of the Wille’s formal contexts to the fuzzy case when we want to
study the relationship between the objects and the attributes with values in a
complete lattice L, instead of binary values.

In our case, to work with these L-fuzzy contexts, we have defined the deriva-
tion operators 1 and 2 given by means of these expressions:

∀A ∈ LX ,∀B ∈ LY A1(y) = inf
x∈X

{I(A(x), R(x, y))}

B2(x) = inf
y∈Y

{I(B(y), R(x, y))}

with I a fuzzy implication operator defined in the lattice (L,≤) and where A1

represents the attributes related to the objects of A in a fuzzy way, and B2, the
objects related to all the attributes of B.

In this work, we are going to use the following notation for these derivation
operators to stand out their dependence to relation R:

∀A ∈ LX , ∀B ∈ LY , we define DR : LX → LY , DRop : LY → LX

DR(A)(y) = A1(y) = inf
x∈X

{I(A(x), R(x, y))}

DRop(B)(x) = B2(x) = inf
y∈Y

{I(B(y), Rop(y, x))}

where we denote by Rop the opposite relation of R, that is, ∀(x, y) ∈ X × Y,
Rop(y, x) = R(x, y).

The information stored in the context is visualized by means of the L-fuzzy
concepts that are some pairs (A,A1) ∈ (LX , LY ) with A ∈ fix(ϕ), set of fixed
points of the operator ϕ, being defined from the derivation operators 1 and 2 as
ϕ(A) = (A1)2 = A12. These pairs, whose first and second components are said
to be the fuzzy extension and intension respectively, represent a set of objects
that share a set of attributes in a fuzzy way.

The set L = {(A,A1)/A ∈ fix(ϕ)} with the order relation ≤ defined as:

82 Cristina Alcalde, Ana Burusco and Ramón Fuentes-González



∀(A,A1), (C,C1) ∈ L, (A,A1) ≤ (C,C1) if A ≤ C( orA1 ≥ C1)

is a complete lattice that is said to be the L-fuzzy concept lattice [11, 12].
On the other hand, given A ∈ LX , (or B ∈ LY ) we can obtain the associated

L-fuzzy concept. In the case of using a residuated implication, as we do in this
work, the associated L-fuzzy concept is (A12, A1) (or (B2, B21)).

Other important results about this theory are in [1, 10, 25, 13, 24, 5].
A very interesting particular case of L-fuzzy contexts appears trying to ana-

lyze situations where the objects and the attribute sets are coincident [2, 3], that
is, L-fuzzy contexts (L,X,X,R) with R ∈ LX×X , (this relation can be reflexive,
symmetrical . . . ). In these situations, the L-fuzzy concepts are pairs (A,B) such
that A,B ∈ LX .

These are the L-fuzzy contexts that we are going to use to obtain the main
results of this work. Specifically, we are going to take a complete chain (L,≤)
as the valuation set, and L-fuzzy contexts as (L,Rn,Rn, R) or (L,Zn,Zn, R).
In the first case, the L-fuzzy concepts (A,B) are interpreted as signal or image
pairs related by means of R. In the second case, A and B are digital versions of
these signals or images.

2.2 Mathematical Morphology

The Mathematical Morphology is a theory concerned with the processing and
analysis of images or signals using filters and operators that modify them. The
fundamentals of this theory (initiated by G. Matheron [22, 23] and J. Serra [26]),
are in the set theory, the integral geometry and the lattice algebra. Actually this
methodology is used in general contexts related to activities as the information
extraction in digital images, the noise elimination or the pattern recognition.

Mathematical Morphology in binary images and grey levels images In
this theory images A from X = Rn or X = Zn (digital images or signals when
n=1) are analyzed.

The morphological filters are defined as operators F : ℘(X) → ℘(X) that
transform, symplify, clean or extract relevant information from these images
A ⊆ X, information that is encapsulated by the filtered image F (A) ⊆ X.

These morphological filters are obtained by means of two basic operators,
the dilation δS and the erosion εS , that are defined in the case of binary images
with the sum and difference of Minkowski [26], respectively.

δS(A) = A⊕ S =
⋃

s∈S

As εS(A) = A	 S̆ =
⋂

s∈S̆

As

where A is an image that is treated with another S ⊆ X, that is said to be struc-
turing element, or with its opposite S̆ = {−x/x ∈ S} and where As represents
a translation of A: As = {a+ s/a ∈ A}.
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The structuring image S represents the effect that we want to produce over
the initial image A.

These operators are not independent since they are dual transformations with
respect to the complementation [27], that is, if Ac represents the complementary
set of A, then:

εS(A) = (δS(Ac))c,∀A,S ∈ ℘(X)

We can compose these operators dilation and erosion associated with the
structuring element S and obtain the basic filters morphological opening γS :
℘(X) → ℘(X) and morphological closing φS : ℘(X) → ℘(X) defined by:

γS = δS ◦ εS φS = εS ◦ δS
The opening γS and the closing φS over these binary images verifies the

two conditions that characterize the morphological filters: They are isotone and
idempotent operators, and moreover it is verified, ∀A,S ∈ ℘(X):

a) γS(A) ⊆ A ⊆ φS(A)

b) γS(A) = (φS(Ac))c

These operators will characterize some special images (the S-open and the
S-closed ones) that will play an important role in this work.

This theory is generalized introducing some tools to treat images with grey
levels [26]. The images and the structuring elements are now maps defined in
X = Rn and with values in R = R∪ {−∞,+∞} or defined in X = Zn and with
values in finite chains as, for instance, {0, 1, . . . , 255}.

The previous definitions can be immersed in a more general framework that
considers each image as a point x ∈ L of a partially ordered structure (L,≤)
(complete lattice), and the filters as operators F : L → L with properties related
to the order in these lattices [26, 19].

Now, the erosions ε : L → L are operators that preserve the infimum
ε(infM) = inf ε(M),∀M ⊆ L and the dilations δ : L → L, the supremum:
δ(supM) = sup δ(M),∀M ⊆ L. The opening γ : L −→ L and the closing
φ : L −→ L are isotone and idempotent operators verifying γ(A) ≤ A ≤ φ(A) .

Fuzzy Mathematical Morphology In this new framework and associated
with lattices, a new fuzzy morphological image processing has been developed [6,
7, 4, 8, 9, 21, 20] using L-fuzzy sets A and S (with X = R2 or X = Z2) as images
and structuring elements.

In this interpretation, the filters are operators FS : LX → LX , where L is
the chain [0, 1] or a finite chain Ln = {0 = α1, α2, ..., αk−1, 1} with 0 < α1 <
... < αk−1 < 1.

In all these cases, fuzzy morphological dilations δS : LX → LX and fuzzy
morphological erosions εS : LX → LX are defined using some operators of the
fuzzy logic [4, 6, 9, 21].
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In general, there are two types of relevant operators in the Fuzzy Mathemat-
ical Morphology. One of them is formed by those obtained by using some pairs
(∗, I) of adjunct operators related by:

(α ∗ β ≤ ψ) ⇐⇒ (β ≤ I(α,ψ))

The other type are the morphological operators obtained by pairs (∗, I) re-
lated by a strong negation ′ : L → L:

α ∗ β = (I(α, β′))′,∀(α, β) ∈ L× L

An example of one of these pairs that belongs to both types is the formed
by the t-norm and the implication of Lukasiewicz.

In this paper, we work taking as (X,+) the commutative group (Rn,+) or the
commutative group (Zn,+), and as (L,≤,′ , I, ∗), the complete chain L = [0, 1]
or a finite chain as L = Ln = {0 = α1, α2, ..., αk−1, 1} with the Zadeh negation
and (∗, I) the Lukasiewicz t-norm and implication.

We interpret the L-fuzzy sets A : X → L and S : X → L as n-dimensional
images in the space X = Rn (or n-dimensional digital images in the case of
X = Zn).

In the literature, (see [4, 6, 18, 21]), erosion and dilation operators are intro-
duced associated with the residuated pair (∗, I) as follows:

If S : X → L is an image that we take as structuring element, then we
consider the following definitions associated with (L,X, S)

Definition 1. [6] The fuzzy erosion of the image A ∈ LX by the structuring
element S is the L-fuzzy set εS(A) ∈ LX defined as:

εS(A)(x) = inf{I(S(y − x), A(y))/y ∈ X} ∀x ∈ X

The fuzzy dilation of the image A by the structuring element S is the L-fuzzy
set δS(A) defined as:

δS(A)(x) = sup{S(x− y) ∗A(y)/y ∈ X} ∀x ∈ X

Then we obtain fuzzy erosion and dilation operators εS , δS : LX → LX .
Moreover, it is verified:

Proposition 1. (1) If ≤ represents now the usual order in LX obtained by the
order extension in the chain L, then the pair (εS , δS) is an adjunction in the
lattice (LX ,≤), that is:

δS(A1) ≤ A2 ⇐⇒ A1 ≤ εS(A2)

(2) If A′ is the negation of A defined by A′(x) = (A(x))′,∀x ∈ X and if S̆
represents the image associated with S such that S̆(x) = S(−x),∀x ∈ X, then it
is verified:

εS(A′) = (δS̆(A))′, δS(A′) = (εS̆(A))′, ∀A,S ∈ LX
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Proof. (1) Suppose that δS(A1) ≤ A2. Then δS(A1)(x) ≤ A2(x) ∀x ∈ X. That
is, S(x− y) ∗A1(y) ≤ A2(x) ∀(x, y) ∈ X ×X.

From these inequalities and from the equivalence α ∗ β ≤ γ ⇔ β ≤ I(α, γ) :

A1(y) ≤ I(S(x− y), A2(x)),∀(x, y) ∈ X ×X

and interchanging x and y, we have:

A1(x) ≤ I(S(y − x), A2(y)),∀(x, y) ∈ X ×X

and consequently

A1(x) ≤ inf{I(S(y − x), A2(y))/y ∈ X},∀x ∈ X

That is: A1(x) ≤ εS(A2)(x),∀x ∈ X that shows that A1 ≤ εS(A2).

We can prove the other implication in a similar way.

(2) Let be x ∈ X.

εS(A′)(x) = inf{I(S(y − x), A′(y))/y ∈ X} = inf{I(S̆(x− y), A′(y))/y ∈ X}
= inf{(S̆(x− y) ∗A(y))′/y ∈ X} = (sup{(S̆(x− y) ∗ (A(y))/y ∈ X})′

= (δS̆(A)(x))′ = (δS̆(A))′(x)

The second equality is proved analogously. ut

3 Relation between both theories

The erosion and dilation operators given in Definition 1 are used to construct
the basic morphological filters: the opening and the closing (see [4, 6, 18, 21]).

Definition 2. The fuzzy opening of the image A ∈ LX by the structuring ele-
ment S ∈ LX is the fuzzy subset γS(A) that results from the composition of the
erosion εS(A) of A by S followed by its dilation:

γS(A) = δS(εS(A)) = (δS ◦ εS)(A)

The fuzzy closing of the image A ∈ LX by the structuring element S ∈ LX

is the fuzzy subset φS(A) that results from the composition of the dilation δS(A)
of A by S followed by its erosion:

φS(A) = εS(δS(A)) = (εS ◦ δS)(A)

It can be proved that the operators γS and φS are morphological filters, that
is, they preserve the order and they are idempotent:

A1 ≤ A2 =⇒ (γS(A1) ≤ γS(A2)) and (φS(A1) ≤ φS(A2))
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γS(γS(A)) = γS(A), φS(φS(A)) = φS(A),∀A ∈ LX ,∀S ∈ LX

Moreover, these filters verify that:

γS(A) ≤ A ≤ φS(A) ∀A ∈ LX ,∀S ∈ LX

Analogous results that those obtained for the erosion and dilation operators
can be proved for the opening and closing:

Proposition 2. If A′ is the negation of A defined by A′(x) = (A(x))′ ∀x ∈ X,
then:

γS(A′) = (φS̆(A))′, φS(A′) = (γS̆(A))′ ∀A,S ∈ LX

Proof. γS(A′) = δS(εS(A′)) = δS((δS̆(A))′) = (εS̆(δS̆(A)))′ = (φS̆(A))′.
The other equality can be proved in an analogous way. ut

Since the operators γS and φS are increasing in the complete lattice (LX ,≤),
by Tarski’s theorem, the respective fixed points sets are not empty. These fixed
points will be used in the following definition:

Definition 3. An image A ∈ LX is said to be S-open if γS(A) = A and it is
said to be S-closed if φS(A) = A.

These S-open and S-closed sets provide a connection between the Fuzzy
Mathematical Morphology and the Fuzzy Concept Theory, as we will see next.

For that purpose, given the complete chain L that we are using, and a com-
mutative group (X,+), we will associate with any fuzzy image S ∈ LX , the
fuzzy relation RS ∈ LX×X such that:

RS(x, y) = S(x− y),∀(x, y) ∈ X ×X

It is evident that RS′ = R
′
S and, if Rop

S represents the opposite relation of
RS , then Rop

S = RS̆ .

In agreement with this last point, we can redefine the erosion and dilation as
follows:

εS(A)(x) = inf{I(RS(y, x), A(y))/y ∈ X}
= inf{I(Rop

S (x, y), A(y))/y ∈ X},∀x ∈ X

δS(A)(x) = sup{RS(x, y) ∗A(y)/y ∈ X},∀x ∈ X

With this rewriting, given the structuring element S ∈ LX , we can interpret
the triple (L,X, S) as an L-fuzzy context (L,X,X,R′

S) where the sets of objects
and attributes are coincident. The incidence relation R′

S ∈ LX×X is at the same
time the negation of an interpretation of the fuzzy image by the structuring
element S.

We will use this representation as L-fuzzy context to prove the most impor-
tant results that connect both theories:
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Theorem 1. Let (L,X, S) be the triple associated with the structuring element
S ∈ LX . Let (L,X,X,R

′
S) be the L-fuzzy context whose incidence relation R

′
S ∈

LX×X is the negation of the relation RS associated with S. Then the operators
erosion εS and dilation δS en (L,X, S) are related to the derivation operators
DR′

S
and DR′op

S
in the L-Fuzzy context (L,X,X,R

′
S) by:

εS(A) = DR′
S
(A′) ∀A ∈ LX

δS(A) = (DR′op
S

(A))′ ∀A ∈ LX

Proof. Taking into account the properties of the Lukasiewicz implication, for
any x ∈ X, it is verified that:

εS(A)(x) = inf{I(RS(y, x), A(y))/y ∈ X} = inf{I(A′(y), R
′
S(y, x))/y ∈

X} = DR′
S
(A′)(x)

Analogously,
δS(A)(x) = sup{RS(x, y) ∗A(y)/y ∈ X} = sup{(I(RS(x, y), A′(y)))′/y ∈ X} =

(inf{I(RS(x, y), A′(y))/y ∈ X})′ = (inf{I(A(y), R
′
S(x, y))/y ∈ X})′ =

(inf{I(A(y), R
′op
S (y, x))/y ∈ X})′ = ((DR′op

S
(A))(x))′ = (DR′op

S
(A))′(x). ut

As a consequence, we obtain the following result which proves the connection
between the outstanding morphological elements and the L-fuzzy concepts:

Theorem 2. Let be S ∈ LX and let be RS ∈ LX×X its associated relation. The
following propositions are equivalent:

1. The pair (A,B) ∈ LX×LX is an L-fuzzy concept of the context (L,X,X,R
′
S),

where R
′
S(x, y) = S′(x− y) ∀(x, y) ∈ X ×X.

2. The pair (A,B) ∈ LX × LX is such that the negation A′ of A is S-open
(γS(A′) = A′) and B is the S-erosion of A′ (that is, B = εS(A′)).

3. The pair (A,B) ∈ LX × LX is such that B is S-closed (φS(B) = B) and A
is the negation of the S-dilation of B (that is, A = (δS(B))′).

Proof.

1 =⇒ 2) Let be S ∈ LX and RS ∈ LX×X its associated relation. Let us
consider an L-fuzzy concept (A,B) of the L-fuzzy context (L,X,X,R

′
S) in

which R
′
S is the negation of RS . Then, it is verified that B = DR′

S
(A) and

A = DR′op
S

(B), and, by the previous proposition, εS(A′) = DR′
S
(A) = B.

Moreover, it is fulfilled that γS(A′) = δS(εS(A′)) = δS(B) = (DR′op
S

(B))′ =

A′ which proves that A′ is S-open.

2 =⇒ 3) Let us suppose that the hypothesis of 2 are fulfilled. Then, φS(B) =
εS(δS(B)) = εS(δS(εS(A′))) = εS(γS(A′)) = εS(A′) = B, which proves that
B is S-closed. On the other hand, from the hypothesis B = εS(A′) can be
deduced that δS(B) = δS(εS(A′)) = γS(A′), and consequently, taking into
account that A′ is S-open, that δS(B) = A′, and finally, A = (δS(B))′.
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3 =⇒ 1) Let (A,B) be a pair fulfilling the hypothesis of 3. Let us consider the
L-fuzzy context (L,X,X,R

′
S). Then, by the previous theorem we can deduce

that (DR′op
S

(B)) = (δS(B))′ = A. On the other hand, applying the previous

theorem and the hypothesis, DR′
S
(A) = εS(A′) = εS(δS(B)) = φS(B) = B,

which finishes the proof. ut
Let us see now some examples.

Example 1. Interpretation of some binary images as formal concepts.

In the referential set X = R2, if x = (x1, x2) ∈ R2, w is a positive number
and if S is the structuring binary image

S = {(x1, x2) ∈ R2/x2
1 + x2

2 ≤ w2}
then the associated incidence relation Rc

S ⊂ R2 × R2 is such that:

xRc
Sy ⇐⇒ ((x1 − y1)

2 + (x2 − y2)
2 > w2)

which is irreflexive and transitive. The pair (A,B) showed in Figure 1 is a concept
of the context (R2,R2, Rc

S), because γS(Ac) = Ac and B = εS(Ac).

A

( )C

S AB e=

X

Formal Concept (A,B) = ( , )

Fig. 1. A formal concept of the context (R2, R2, Rc
S).

Example 2. Interpretation of some open digital signals as fuzzy concepts.

It is known that the erosion εS(A) of an image A by a binary structuring
element S can be rewritten in terms of infimum of the traslations ofA by elements
of S [27]:

εS(A) =
∧

s∈S

A−s where Ak(x) = A(x− k)
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If X ⊆ Z and L = {0, 0.1, 0.2, ..., 0.9, 1} then, the maps A : X → L can be
interpret as 1-D discrete signals. In Figure 2 there are some examples of discrete
signals.

The signal in Fig 2(c) is the erosion of A′ in Fig 2(b), using a line segment
of three pixels as a structuring element, the middle pixel being its origin (S is a
crisp set).

0
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(a) Discrete signal A as an L-Fuzzy set
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(b) Negation A′ of the discrete signal A
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S=
-1           1

(c) Discrete signal B = εS(A′)

Fig. 2. Discrete signals

Here, we can also find the erosions in terms of intersections of image trasla-
tions: εS(A′) =

∧{A′
−1, A

′
0, A

′
+1}.

It can be proved that A′ verifies γS(A′) = A′. So, with A in Fig 2 the pair
(A,B) with B = εS(A′) is a fuzzy concept of the context (L,Z,Z, Rc

S) with the
crisp incidence relation xRc

Sy ⇔ (x− y) /∈ S, (that is, |x− y| > 1).
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( , )

Fig. 3. L-Fuzzy concept (A, B) of the L-Fuzzy context (L, Z, Z, Rc
S)

4 Conclusions and Future work

The main results of this work show an interesting relation between the L-fuzzy
Concept Analysis and the Fuzzy Mathematical Morphology that we want to
develop in future works. So, we can apply the algorithms for the calculus of
L-fuzzy concepts in Fuzzy Mathematical Morphology and vice versa.

On the other hand, we are extending these results to other type of operators
as other implications, t-norms, conjunctive uninorms etc... and to some L-fuzzy
contexts where the objects and the attributes are not related to signal or images.
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Abstract. We show a relationship between two theoretical approaches
of Formal Concept Analysis working with so-called heterogeneous formal
context i.e. such context in which each object and attribute can have
own data-type. One of them is presented in [19]; each value in a formal
context is some Galois connection between the lattices corresponding
to the appropriate object and attribute. Another approach is presented
in our paper [1] and it is a unifying platform of approaches from [14]
and [11], [12]. In this paper, we prove that each of them can be derived
from another.

Keywords: Formal Concept Analysis, Galois connection, G-ideal

1 Introduction

The Formal Concept Analysis is a well-known data-mining method on a rect-
angle matrix of data where each row corresponds to some object, each column
corresponds to some attribute and a matrix field value expresses the presence of
the column attribute to the row object. One of the goals of this method is to find
so-called concepts – the stable (in some sense) pairs of subsets of objects and
attributes. This method can be considered as a nice application of the algebraic
notion of a Galois connection. The Formal Concept Analysis is based and deeply
described in the classical Ganter & Wille’s book [9] where authors concentrate
mainly to the so-called crisp case with binary data in the matrix. The natural
question arose: What if the matrix data have a non-binary character?
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Beside the conceptual scaling from [9] which returns concepts with crisp sub-
sets in both coordinates, some other answers arose which return concepts with
fuzzy subsets at least in one coordinate: The first one was done by Burusco &
Fuentes-Gonzalez [8] and it was improved (independently) by Bělohlávek [2], [3]
and Pollandt [21], [22] which use values from the same residual lattice for values
of the matrix and for the fuzziness of subsets of the objects and the attributes.
Another approach independently (and with slight differences) given by Ben Yahia
& Jaoua [7], Bělohlávek, Sklenář, & Zacpal [4], and Krajči [10] was not so sym-
metric – it considers fuzzy subsets in one coordinate and crisp (binary) subsets
in another one. All these approaches where covered by a common platform – so-
called generalized concept lattices [12], [13] which diversifies fuzziness of subsets
of the attributes, fuzziness of subsets of the objects and moreover fuzziness of
the matrix values.

Then Medina and Ojeda-Aciego brought the idea of multi-adjointness used in
logic-programming [16], [17], [18] to the Formal Concept Analysis too [14], [15].
Because of this novelty and originality, this approach is not (at least immedi-
ately) covered by the above-mentioned generalized concept lattices.

This fact has inspired us to modify our old approach in such a way that this
will work with different mutual relationships between the objects and the at-
tributes. Moreover we work with different lattices for different rows and columns
and for the matrix data. To compare with the till known approaches which works
with attributes and objects of the same type, an important advantage of this
new, totally diversifying, approach is the possibility to apply the Formal Con-
cept Analysis to heterogeneous data too. This is the reason why we will call this
new approach heterogeneous. We have described this approach in [1] and recall
it in Section 2.

Another answer to the problem of data heterogeneity was given by [19] and
[20]. In this approach, each datum in a formal context are not a simple number
or other singular value but (sic!) a Galois connection which describes in a some
way the behavior between the corresponding object and attribute. We recall this
approach in Section 3.

2 Heterogeneous formal context

In this section we recall the basic definitions and results from [1].
Let A and B be non-empty sets. Let P = ((Pa,b,≤Pa,b

) : a ∈ A, b ∈ B) be
a system of posets and let R be a function from A×B such that R(a, b) ∈ Pa,b, for
all a ∈ A and b ∈ B. Let C = ((Ca,≤Ca

) : a ∈ A) and D = ((Db,≤Db
) : b ∈ B)

be systems of complete lattices. (For simplicity, we will omit the indices of all
noticed ≤?, it will be always clear which of one is used.)

Let � = ((•a,b) : a ∈ A, b ∈ B) be a system of operations such that •a,b is
from Ca × Db to Pa,b and it is isotone and left-continuous in both arguments,
i. e.

1a) c1 ≤ c2 implies c1 •a,b d ≤ c2 •a,b d for all c1, c2 ∈ Ca and d ∈ Db,
1b) d1 ≤ d2 implies c •a,b d1 ≤ c •a,b d2 for all c ∈ Ca and d1, d2 ∈ Db,
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2a) if c •a,b d ≤ p for some d ∈ Db, p ∈ Pa,b and for all c ∈ X ⊆ Ca then
supX •a,b d ≤ p,

2b) if c •a,b d ≤ p for some c ∈ Ca, p ∈ Pa,b and for all d ∈ Y ⊆ Db then
c •a,b supY ≤ p.

Then the tuple 〈A,B,P, R, C,D,�〉 will be called a heterogeneous formal context.
Notice that if Ca = Db and •a,b is commutative these conditions can be

reduced to these two:

1) c1 ≤ c2 implies c1 •a,b d ≤ c2 •a,b d for all c1, c2, d ∈ Ca = Db,
2) if c •a,b d ≤ p for some d ∈ Ca = Db, p ∈ P and for all c ∈ X ⊆ Ca = Db

then supX •a,b d ≤ p.
Let F be the set of all functions f with the domain A such that f(a) ∈ Ca, for

all a ∈ A (i. e., more formally, F =
∏

a∈A Ca) and G be the set of all functions
g with the domain B such that g(b) ∈ Db, for all b ∈ B. (i. e. G =

∏
b∈B Db).

Define the following mapping↗ : G→ F : If g ∈ G then↗(g) ∈ F is defined
by

(↗(g))(a) = sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)}.
Symmetrically define the mapping ↙ : F → G: If f ∈ F then ↙(f) ∈ G is
defined as following:

(↙(f))(b) = sup{d ∈ Db : (∀a ∈ A)f(a) •a,b d ≤ R(a, b)}.

Theorem 1. Let f ∈ F and g ∈ G. Then the following conditions are equiva-
lent:

1) f ≤ ↗(g).
2) g ≤ ↙(f).
3) f(a) •a,b g(b) ≤ R(a, b) for all a ∈ A and b ∈ B.

Corollary 1. Mappings ↗ and ↙ form a Galois connection.

Corollary 2.

1a) g1 ≤ g2 implies ↗(g1) ≥ ↗(g2).
1b) f1 ≤ f2 implies ↙(f1) ≥ ↙(2).
2a) g ≤ ↙(↗(g)).
2b) f ≤ ↗(↙(f)).
3a) ↗(g) =↗(↙(↗(g))).
3b) ↙(f) =↙(↗(↙(f))).

We use a Galois connection (↗,↙) for the concept lattice construction via
classical Ganter-Wille’s approach from [9].

Lemma 1. 1) Let {gi : i ∈ I} ⊆ G. Then

↗
(∨

i∈I

gi

)
=
∧

i∈I

↗(gi).
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2) Let {fi : i ∈ I} ⊆ F . Then

↙
(∨

i∈I

fi

)
=
∧

i∈I

↙(fi).

By a concept we will understand a pair 〈g, f〉 from G×F such that↗(g) = f
and ↙(f) = g.

Lemma 2. If 〈g1, f1〉 and 〈g2, f2〉 are concepts then g1 ≤ g2 iff f1 ≥ f2.

This lemma allows to define the following ordering of concepts: 〈g1, f1〉 ≤
〈g2, f2〉 iff g1 ≤ g2 (or equivalently f1 ≥ f2).

The poset of all such concepts ordered by ≤ will be called a heterogeneous
concept lattice and denoted by HCL(A,B,P, R, C,D,�,↙,↗,≤).

The following theorem shows that the word lattice in its name corresponds
with reality.

Theorem 2. (The Basic Theorem on Heterogeneous Concept Lattices)

1) A heterogeneous concept lattice HCL(A,B,P, R, C,D,�,↙,↗,≤) is a com-
plete lattice in which

∧

i∈I

〈gi, fi〉 =

〈∧

i∈I

gi,↗
(
↙
(∨

i∈I

fi

))〉

and
∨

i∈I

〈gi, fi〉 =

〈
↙
(
↗
(∨

i∈I

gi

))
,
∧

i∈I

fi

〉
.

2) For each a ∈ A, b ∈ B, let Pa,b have the least element 0Pa,b
such that

0Ca
•a,b d = c •a,b 0Db

= 0Pa,b
, for all c ∈ Ca, d ∈ Db. Then a complete

lattice L is isomorphic to HCL(A,B,P, R, C,D,�,↙,↗,≤) if and only if
there are mappings α :

⋃
a∈A({a} × Ca) → L and β :

⋃
b∈B({b} ×Db) → L

such that:
a) α does not increase in the second argument (for the fixed first one).
b) β does not decrease in the second argument (for the fixed first one).
c) Rng(α) is inf-dense in L.
d) Rng(β) is sup-dense in L.
e) For every a ∈ A, b ∈ B and c ∈ Ca, d ∈ Db

α(a, c) ≥ β(b, d) if and only if c •a,b d ≤ R(a, b).

3 Galois connectional approach

In this section, we recall the basic definitions and results of approach from [19],
[20] which is inspired by the (homogeneous) approach from [23].
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Let A and B be non-empty sets. Let C = ((Ca,≤Ca
) : a ∈ A) and

D = ((Db,≤Db
) : b ∈ B) be systems of complete lattices. Let G = ((φa,b, ψa,b) :

a ∈ A, b ∈ B) be a system of (antitone) Galois connection s.t. (φa,b, ψa,b) is a
Galois connection from (Ca,≤Ca

) to (Db,≤Db
). (Again we will omit the indices

of all noticed ≤?.)

Define the following mapping ↑ : G → F : If g ∈ G then ↑(g) ∈ F is defined
by

(↑(g))(a) =
∧

b∈B

ψa,b(g(b)).

Symmetrically define the mapping ↓ : F → G: If f ∈ F then ↓(f) ∈ G is defined
as following:

(↓(f))(b) =
∧

a∈A

φa,b(f(a)).

Theorem 3. (↑, ↓) is a Galois connection.

Hence the classical Ganter-Wille’s process can be used for the concept lattice
construction, so it can be obtained the following.

By a concept in this approach it will be understand a pair 〈g, f〉 from G×F
such that ↑(g) = f and ↓(f) = g.

Lemma 3. If 〈g1, f1〉 and 〈g2, f2〉 are concepts then g1 ≤ g2 iff f1 ≥ f2.

This lemma allows to define the following ordering of concepts: 〈g1, f1〉 ≤
〈g2, f2〉 iff g1 ≤ g2 (or equivalently f1 ≥ f2).

The poset of all such concepts ordered by ≤ will be called a connectional
concept lattice and denoted by CCL(A,B, C,D,G, ↓, ↑,≤).

Theorem 4. (The Basic Theorem on Connectional Concept Lattices)

1) A connectional concept lattice CCL(A,B, C,D,G, ↓, ↑,≤) is a complete lattice
in which

∧

i∈I

〈gi, fi〉 =

〈∧

i∈I

gi, ↑
(
↓
(∨

i∈I

fi

))〉

and
∨

i∈I

〈gi, fi〉 =

〈
↓
(
↑
(∨

i∈I

gi

))
,
∧

i∈I

fi

〉
.

2) A complete lattice L is isomorphic to CCL(A,B, C,D,G, ↓, ↑,≤) if and only
if there are mappings α :

⋃
a∈A({a}×Ca)→ L and β :

⋃
b∈B({b}×Db)→ L

such that for every a ∈ A, b ∈ B and c ∈ Ca, d ∈ Db

α(a, c) ≥ β(b, d) iff d ≤ φa,b(c) iff c ≤ ψa,b(d).
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4 Heterogeneous approach can be expressed by
connectional one

In this section, we modify method from [19] which was used for the proof that
connectional approach covers a generalized approach from [11] and [12]. It used
a notion of G-ideals defined in [24].

Let (L,≤L), (M,≤M ) be complete lattices. Then J ⊆ L × M is called a
G-ideal of L×M when the following conditions hold:

1) If (`,m) ∈ J and (`′,m′) ≤ (`,m) (coordinate-wise, i.e. `′ ≤ ` and m′ ≤ m)
then (`′,m′) ∈ J .

2) If {(`i,mi) : i ∈ I} ⊆ J then (
∨

i∈I `i,
∧

i∈I mi), (
∧

i∈I `i,
∨

i∈I mi) ∈ J .
If I = ∅ then (0L, 1M ), (1L, 0M ) ∈ J .

Theorem 5. [24] Let (L,≤L), (M,≤M ) be complete lattices.

1) If (φ, ψ) is an (antitone) Galois connection from (L,≤L) to (M,≤M ) then

{(`,m) : φ(`) ≥M m} = {(`,m) : ψ(m) ≥L `}

is a G-ideal on L×M .
2) If J is a G-ideal on L ×M then the mappings φ : L → M and ψ : M → L

defined by

φ(`) =
∨
{m ∈M : (`,m) ∈ J}

and
ψ(m) =

∨
{` ∈ L : (`,m) ∈ J}

form a Galois connection from (L,≤L) to (M,≤M ).

Moreover, this correspondences between Galois connections and G-ideals are each
other inverse.

The paper [19] uses these facts in the following way:

Lemma 4. Let (L,≤L), (M,≤M ) be complete lattices, (P,≤P ) be poset and
• : L×M → P is isotone and left-continuous in both arguments. Then

{(`,m) : ` •m ≤ p}

is a G-ideal.

Assume that we have a heterogeneous concept lattice HCL(A,B,P, R, C,D,�,
↙,↗,≤). For each a ∈ A and b ∈ B define

Ja,b = {(c, d) ∈ Ca ×Db : c •a,b d ≤ R(a, b)},

by the previous Lemma 4 we know that Ja,b is a G-ideal on Ca × Db. Then
again for each a ∈ A and b ∈ B define the mappings φa,b : Ca → Db and
ψa,b : Db → Ca defined by

φa,b(c) =
∨
{d ∈ Db : (c, d) ∈ Ja,b}
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and
ψa,b(d) =

∨
{c ∈ Ca : (c, d) ∈ Ja,b}

and we know by Theorem 5 that (φa,b, ψa,b) is a Galois connection from Ca to
Db. Finally, we define mappings ↓ and ↑ as before:

(↑(g))(a) =
∧

b∈B

ψa,b(g(b)), (↓(f))(b) =
∧

a∈A

φa,b(f(a)).

Theorem 6. (↑, ↓) = (↗,↙).

Proof. We prove ↑ = ↗ only, the second equality can be proved dually. Let
g ∈ G and a ∈ A, we are going to prove (↑(g))(a) = (↗(g))(a).

By the definition we have

(↑(g))(a) =
∧

b∈B

ψa,b(g(b)) =
∧

b∈B

∨
{c ∈ Ca : (c, g(b)) ∈ Ja,b}

=
∧

b∈B

∨
{c ∈ Ca : c •a,b g(b) ≤ R(a, b)}

and
(↗(g))(a) = sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)}.

Denote
X = {c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)}

and, for each b ∈ B,

Xb = {c ∈ Ca : c •a,b g(b) ≤ R(a, b)},

then we want to prove
∧

b∈B supXb = supX.

≥ For each b ∈ B we have Xb ⊇ X hence supXb ≥ supX. It follows that∧
b∈B supXb ≥ supX.

≤ Let b ∈ B. Then for each c ∈ Xb we have c •a,b g(b) ≤ R(a, b). By the left-
-continuity of •a,b in the first argument we have supXb •a,b g(b) ≤ R(a, b).
Because clearly

∧
b′∈B supXb′ ≤ supXb, by the isotonity of •a,b in the first

argument
∧

b′∈B supXb′ •a,b g(b) ≤ R(a, b). This holds for each b ∈ B, which
means that

∧
b′∈B supXb′ ∈ X, hence

∧
b′∈B supXb′ ≤ supX.

ut

5 Connectional approach can be expressed by
heterogeneous one

In this section we show opposite direction to the previous one, namely that the
heterogeneous approach covers the connectional one, moreover by the surpris-
ingly simply way.

Firstly, one fact from [24] analogous to Lemma 1:

Rel. between Two FCA Approaches on Heterog. Formal Contexts 99



Lemma 5. Let (L,≤L), (M,≤M ) be complete lattices and (φ, ψ) be a Galois
connection from (L,≤L) to (M,≤M ).

1) For arbitrary subset {`i : i ∈ I} of L

φ

(∨

i∈I

`i

)
=
∧

i∈I

φ(`i).

2) For arbitrary subset {mi : i ∈ I} of M

ψ

(∨

i∈I

mi

)
=
∧

i∈I

ψ(mi).

We use it in the following way:

Theorem 7. Let (L,≤L), (M,≤M ) be complete lattices and (φ, ψ) be a Galois
connection from (L,≤L) to (M,≤M ). Let • : L×M → ({0, 1},≤) be defined in
the following way:

` •m =

{
0 if φ(`) ≥ m (iff ψ(m) ≥ `),

1 elsewhere.

Then • is isotone and left-continuous in both arguments.

Proof. Because of duality, it is enough to prove isotonity and left-continuity in
the first argument.

– Let `1, `2 ∈ L where `1 ≤ `2 and m ∈ M . We want to prove that `1 •m ≤
`2 •m.

– If `2 •m = 1, the inequality is trivial.
– If `2•m = 0, then by the definition φ(`2) ≥ m. Because (φ, ψ) be a Galois

connection and `1 ≤ `2, we have φ(`1) ≥ φ(`2) which by transitivity
implies φ(`1) ≥ m. So, by the definition `1 •m = 0 hence `1 •m ≤ `2 •m.

– Let m ∈ M , X ⊆ L and ` • m ≤ p for all ` ∈ X. We want to prove that
supX •m ≤ p.

– If p = 1, the inequality is trivial.
– If p = 0, then by the definition φ(`) ≥ m for all ` ∈ X which means∧

`∈X φ(`) ≥ m. Because (φ, ψ) is a Galois connection, by Lemma 5 we
have

∧
`∈X φ(`) = φ(sup`∈X `). This implies φ(sup`∈X `) ≥ m, so, by the

definition sup`∈X ` •m = 0.

Assume that we have a connectional concept lattice CCL(A,B, C,D,G, ↓, ↑,≤).
For each a ∈ A and b ∈ B take the same Pa,b = ({0, 1},≤), R(a, b) = 0 (sic!)
and •a,b : Ca ×Db → Pa,b such that for all c ∈ Ca and d ∈ Db,

c •a,b d =

{
0 if φa,b(c) ≥ d (iff ψa,b(d) ≥ c),
1 elsewhere.

By Theorem 7 •a,b is isotone and left-continuous in both arguments, so we have
a frame for heterogeneous approach a we can define the mappings ↗ and ↙ as
before.
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Theorem 8. (↗,↙) = (↑, ↓).

Proof. We prove ↗ = ↑ only, the second equality can be proved dually. Let
g ∈ G and a ∈ A. Then by the definitions we have

(↗(g))(a) = sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)} =

= sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ 0} =

= sup{c ∈ Ca : (∀b ∈ B)ψa,b(g(b)) ≥ c} =

= sup{c ∈ Ca :
∧

b∈B

ψa,b(g(b)) ≥ c} =
∧

b∈B

ψa,b(g(b)) = (↑(g))(a).

ut

6 Conclusions

In this paper we recall two rather new common platform for till-known fuzzifi-
cations of the Formal Concept Analysis which work on the context without lim-
itation of the same data-types of objects and/or attributes. The first one arises,
defined in [1], as rather straightforward extension of the previous so-called gen-
eralized approach from [11] and [12] to such heterogeneous context. The second
one, from [19] and [20] is based on interesting idea to put some Galois connection
to each field of the table. We show that each of these two approaches covers and
is covered by the other one (in some canonical way).

In the end, let us say one “philosophical” aspect about our approach (that
from Section 2). In this case, a pair consisting of some • and some value is put
into each field of the table. The part • can be understood as behavior of the
corresponding object with respect to the corresponding attribute. This behavior
can be known long before than data come to the table, hence it can be thought
as metadata. Data can change through the time but this metadata are fixed. In
other words, we divide information on relationship of an object and an attribute
to the stable and dynamic part. (Of course, this division has meaning only in the
case that we consider possible changing of the data in the table.) In our opinion,
the connectional approach has not this advantage, because it mixes metadata
and data parts.

Then we can formulate this problem: In Section 5 we can see a surprising (and
maybe suspicious) transformation of connectional approach to heterogeneous
with the data part constantly equal to 0, i.e. all this is transformed to metadata
part. The question is: Is there some other (natural, canonical) transformation
which is not constant?
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Concepts and Types – An Application to Formal
Language Theory
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Abstract. We investigate how formal concept analysis can be applied in
a type-theoretic context, namely the context of λ-terms typed à la Curry.
We first show some general results, which reveal that concept lattices
generally respect and reflect the type structure of terms. Then, we show
an application of the results in formal language theory, where we vastly
generalize existing approaches of capturing the distributional structure
of languages by means of formal concept analysis. So type theory is
interesting to formal concept analysis not only as a particular context,
but also because it allows to generalize existing contexts.

1 Introduction

Formal concept analysis (FCA) operates within what is called a context, that is
typically a set of objects, a set of attributes and a relation between them. We
will have a closer look at formal concept analysis over terms in a type theoretic
context, and show how this can be applied to formal language theory. Our first
contribution1 is that we consider the case not of an atomic typing, but rather
recursive, Curry-style typing. Our objects are λ-terms, which have to be assigned
types according to their syntactic structure. We show some interesting correlations
between the type theoretic structure of sets of terms, their principal typing, and
how this these interact with FCA and its lattice-theoretic operations. Our second
main contribution is that we show an application to formal language theory.
There exist interesting approaches to the distributional structure of languages
using FCA over the relation of strings and the contexts in which they occur.
However, all of these have some major limitations, as they only work with simple
string concatenation, but cannot cope with, for example, the concept of string
duplication in a language. We use a type theoretic encoding of strings as terms,
and show that this allows us to vastly generalize existing approaches.

2 A Simple Type Theory

Type theory starts with a (usually) finite set of basic types, and a finite, (usually)
small set of type constructors. Types are usually interpreted as sets; we denote the

1 There is considerable work on FCA in a typed context, see, for example, [8]).

c© 2012 by the paper authors. CLA 2012, pp. 103–114. Copying permitted only for
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set of all objects of type τ by ‖τ‖. We will consider only a single type constructor,
the usual →, where for types σ, τ , σ → τ is the type of all functions from ‖σ‖ to
‖τ‖. Basic objects are assigned some type, and all new objects we can construct
in our universe must be constructed in accordance with a typing procedure, that
is, we have to make sure that they can be assigned at least one type. Objects
which are not well-typed do not exist in the typed universe.

Given a non-empty set A of atomic types, the set of types Tp(A) is defined
as closure of A under type constructors: A ⊆ Tp(A), and if σ, τ ∈ Tp(A), then
σ → τ ∈ Tp(A). The order of a type is defined as ord(σ) = 0 for σ ∈ A,
ord(σ → τ) = max(ord(σ) + 1, ord(τ)).

We define a higher order signature as Σ := (A,C, φ), where A is a finite set
of atomic types, C is a set of constants, and φ : C → Tp(A) assigns types to
constants. The order of Σ is max({ord(φ(c)) : c ∈ C}). Let X be a countable
set of variables. The set Tm(Λ(Σ)), the set of all λ terms over Σ, is the closure
of C ∪X under the following rules: 1. C ∪X ⊆ Tm(Λ(Σ)); 2. if m, n ∈ Tm(Λ(Σ)),
then (mn) ∈ Tm(Λ(Σ)); 3. if x ∈ X, m ∈ Tm(Λ(Σ)), then (λx.m) ∈ Tm(Λ(Σ)).

We omit the outermost parentheses (, ) for λ terms, and write λx1...xn.m for
λx1.(. . . (λxn.m)...); furthermore, we write m1m2 . . . mi for (. . . (m1m2) . . . mi). The
set of free variables of a term m, FV (m), is defined by 1. FV (x) = {x} : x ∈ X, 2.
FV (c) = ∅ : c ∈ C, 3. FV (mn) = FV (m)∪FV (n), and 4. FV (λx.m) = FV (m)−{x}.
m is closed if FV (m) = ∅. We write m[n/x] for the result of substituting n for
all free occurrences of x in m. α conversion is defined as λx.m  α λy.m[y/x]. A
β-redex is a term of the form (λx.m)n. We write  β for β reduction, so we have
(λx.m)n β m[n/x]. The inverse of β reduction is β expansion. Let [m]β denote the
β normal form of m, that is, the term without any β redex. This term is unique up
to α conversion for every term m. We denote by =αβ the smallest congruence
which contains both  α and  β . We thus write m =αβ n, if n can be derived
from m with any finite series of steps of β-reduction, expansion or α-conversion
of any of its subterms.

We now come to the procedure of assigning types to terms.2 A type environ-
ment is a (possibly empty) set {x1 : α1, . . . xn : αn} of pairs of variables and types,
where each variable occurs at most once. A λ-term m with FV (m) = {x1, . . . , xn}
can be assigned a type α in the signature Σ = (A,C, φ) and type environment
{x1 : α1, . . . xn : αn}, in symbols

(1) x1 : α1, . . . xn : αn `Σ m : α,

if it can be derived according to the following rules:

(cons) `Σ c : φ(c), for c ∈ C;

(var) x : α `Σ x : α, where x ∈ X and α ∈ Tp(A);

2 We adopt what is known as Curry-style typing: in Church-style typing, terms cannot
be constructed without types; in Curry-style typing, terms are first constructed and
then assigned a type; so there might be the case that there is no possible assignment.
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(abs)

Γ `Σ m : β

Γ − {x : α} `Σ λx.m : α→ β, provided Γ ∪ {x : α} is a type environment;

(app)

∆ `Σ n : α Γ `Σ m : α→ β

Γ ∪∆ `Σ mn : β , provided Γ ∪∆ is a type environment.

An expression of the form Γ `Σ m : α is called a judgment, and if it is derivable
by the above rules, it is called the typing of m. A term m is called typable if it has
a typing. If in a judgment we do not refer to any particular signature, we also
write Γ ` m : α. Regarding β reduction, we have the following well-known result:

Theorem 1 (Subject Reduction Theorem) If Γ ` m : α, m β m′, then Γ ′ ` m′ : α,
where Γ ′ is the restriction of Γ to FV (m′).

Let m β m′ be a contraction of a redex (λx.n)o. This reduction is non-erasing
if x ∈ FV (n), and non-duplicating if x occurs free in n at most once. A reduction
from m to m′ is non-erasing (non-duplicating) if all of its reduction steps are non-
erasing (non-duplicating). We say a term m is linear, if for each subterm λx.n of m,
x occurs free in n exactly once, and each free variable of m has just one occurrence
free in m. Linear λ-terms are thus the terms, for which each β-reduction is non-
erasing and non-duplicating. We will be mainly interested in a slightly larger class.
A term m is a λI term, if for each subterm λx.n of m, x occurs free in m at least
once. λI terms are thus the terms which do not allow for vacuous abstraction
(see [1], chapter 9 for extensive treatment). Another important result for us is
the following: obviously, by our typing procedure a single term might be possibly
assigned many types. We call a type substitution a map π : A→ Tp(A), which
respects the structure of types: π(β → γ) = (π(β))→ (π(γ)), for β, γ ∈ Tp(A).

Theorem 2 (Principal Type Theorem) Let m be a term, and let Θ := {α : Γ `
m : α is derivable} be the set of all types which can be assigned to m. If Θ 6= ∅,
then there exists a principal type β for m, such that Γ ` m : β is derivable, and
for each α ∈ Θ, there is a substitution πα such that α = πα(β).

Obviously, β is unique up to isomorphism; we will write pt(m) for the principal
type of m. The proof of the theorem is constructive, that is, β can be effectively
computed or shown to be nonexistent, see [6].

3 Types and Concepts

3.1 A Context of Terms

We now give a short introduction into formal concept analysis. A context is a
triple (G,M, I), where G,M are sets and I ⊆ G ×M. In FCA, the entities in G
are thought of as objects, the objects in M as attributes, and for m ∈M, g ∈ G,
we have (g,m) ∈ I if the object g has the attribute m. This is all we need as
basic structure to get the machine of FCA going. For A ⊆ G, B ⊆ M, we put
A. := {m ∈ M : ∀a ∈ A, (a,m) ∈ I}, and B/ := {g ∈ G : ∀m ∈ B, (a,m) ∈ I}.
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A concept is a pair (A,B) such that A. = B,B/ = A. We call A the extent
and B the intent. A is the extent of a concept iff A = A./, dually for intents.
The maps [−]., [−]/ are called polar maps. We order concepts by inclusion of
extents, that is, (A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2.

Definition 3 Given a context B = (G,M, I), we define the concept lattice
of B as L(B) = 〈C,∧,∨,>,⊥〉, where > = (G,G.), ⊥= (M/,M), and for
(Ai, Bi), (Aj , Bj) ∈ C, (Ai, Bi)∧ (Aj , Bj) = (Ai∩Aj , (Bi∪Bj)/.), and (Ai, Bi)∨
(Aj , Bj) = ((Ai ∪Aj)./, Bi ∩Bj).

We define our type theoretic context as follows. Recall that Tm(Λ(Σ)) is the
set of all λ-terms over Σ. We put Tmc(Λ(Σ)) := {m ∈ Tm(Λ(Σ)) : FV (m) = ∅},
the set of closed terms, and we call Tmc(ΛI(Σ)) the set of all closed λI terms.
Furthermore, define WTT as the set of all closed and well-typed terms, that
is, the set of all terms m such that ` m : α is derivable for some α by our
rules; WTTI = WTT ∩ Tm(ΛI(Σ)). Recall that =αβ is a congruence. Let σ be a
given type, and L′ ⊆ ‖σ‖ be a distinguished subset of the terms of type σ; we
define L := {m : ∃n ∈ L′ : m =αβ n}, that is, as closure of L′ under =αβ . Put
G = M = Tmc(Λ(Σ)), and define the relation I ⊆ Tmc(Λ(Σ)) × Tmc(Λ(Σ)) as
follows: for m, n ∈ Tmc(Λ(Σ)), we have (m, n) ∈ I if nm ∈ L. So the relation of
objects in M and G is that of function and argument, and the relation I tells us
whether the two yield a desired value. Same can be done with Tmc(ΛI(Σ)).

Obviously, we have ⊥= (∅, Tmc(Λ(Σ))). Regarding upper bounds, we have
to distinguish two important concepts: we first have a concept we denote ᵀ :=
(WTT, ΛV ), where ΛV (V for vacuous) is the set of all terms of the form λx.m,
where m ∈ L and x /∈ FV (m). There is however a larger concept > ≥ ᵀ, which
is defined as > := (Tmc(Λ(Σ)), ∅). The reason for this slight complication is as
follows: we want our terms to be closed, because open terms are meaningless
for us. Now, it holds that the concatenation of closed terms is again a closed
term; but the concatenation of well-typed terms need not be well-typed: for
m, n ∈ WTT, it might be that nm /∈ WTT. Furthermore, there are λ-terms n with
vacuous abstraction such that the set {nm : m ∈ ᵀ} � ᵀ; we would however like
our > to be absorbing; and in fact, if m /∈ WTT, then for any term n, nm, mn /∈ WTT.
So for every term m /∈ WTT, {m}. = ∅. For all interesting results we have to restrict
ourselves to WTT, but for completeness of some operations we have to consider
Tmc(Λ(Σ)). Note however that if we restrict Tmc(Λ(Σ)) to Tmc(ΛI(Σ)), then >
and ᵀ coincide.3

3.2 Concept Structure and Type Structure

We have seen that each term can be assigned a most general type. Importantly,
the same holds for sets of types:

3 This is actually not straightforward, but follows as a corollary from results we present
later on.
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Lemma 4 Let T ⊆ WTT be a set of terms, such that the set of principal types
{pt(m) : m ∈ T} is finite. If there is a set of types Θ, such that for each m ∈ T and
all θ ∈ Θ, ` m : θ is a derivable judgment, then there is a (up to isomorphism)
unique type α, such that for every m ∈ T , ` m : α is derivable, and every θ ∈ Θ
can be obtained by α through a type substitution.

α is usually called the most general unifier of Θ; for a set of terms T , we
also directly call it pt(T ), the principal type of T ; for Θ a set of types, we denote
it by

∨
Θ. A proof for this fundamental lemma can be found in [6]; again the

proof is constructive. Note that if we do not assume that the set of principal
types of terms m ∈ T is finite, then there is no upper bound on the length of types,
and so there cannot be a finite common unifier. For convenience, we introduce
an additional type > /∈ A, such that our types are the set {>} ∪ Tp(A). If a set
of types Θ does not have a common unifier, then we put

∨
(Θ) = >.

This is of immediate importance for us, as it allows us both to speak of
the principal type of a set of terms, as well as of the least upper bound of a
set of types. From there we easily arrive at the greatest lower bound of two
types α, β, which we denote by α ∧ β, and which intuitively is the amount of
structure which α and β share. Write α ≤ β, if there is a substitution π such
that π(α) = β. This is, up to isomorphism, a partial order. We now can simply
define α ∧ β :=

∨{γ : γ ≤ α, β}. It is clear that the set {γ : γ ≤ α, β} modulo
isomorphism is finite, so the (finite) join exists in virtue of the above lemma. So
Tp(A) is lattice ordered up to isomorphism.

How does type structure behave wrt. concept structure? First of all, if A ⊆ B,
then pt(A) ≤ pt(B). So the inclusion relation reflects type structure. This entails
that pt(A) ≤ pt(B./). Stronger results are hard to obtain; for example, if we
know pt(A), there is nothing we can say in general about an upper bound for
pt(A./).

Fortunately, there is more we can say about the lattice order of concepts and
type order. Define ∨ and ∧ on concepts as usual. For a concept (A,B) over the
term context, we put pt1(A,B) = pt(A), pt2(A,B) = pt(B).

Lemma 5 For concepts C1, C2 of the term context, the following holds: (1) If
C1 ≤ C2, then pt1(C1) ≤ pt1(C2), and pt2(C2) ≤ pt2(C1). (2) pt1(C1 ∧ C2) ≤
pt1(C1) ∧ pt1(C2), and (3) pt1(C1) ∨ pt1(C2) ≤ pt1(C1 ∨ C2).

Proof. The first claim is immediate by set inclusion. To see the second,
consider that for every m ∈ A1 ∩A2, we must have pt({m}) ≤ pt(A1), pt({m}) ≤
pt(A2) by set inclusion; and so pt({m}) ≤ pt1(C1)∧pt1(C2). To see the third claim,
consider the following: we can easily show that pt(A1) ∨ pt(A2) = pt(A1 ∪ A2).
Then the claim follows from considering that pt(A1 ∪A2) ≤ pt((A1 ∪A2)./). �

Definition 6 A term m is a left equalizer, if we have ` m : θ1 → α, ` m : θ2 →
α, and θ1 6= θ2. m is a right equalizer, if ` m : α1, ` m : α2, and α1 6= α2.

Easy examples of left equalizers are terms with vacuous abstraction; easy
examples of right equalizers are terms which do not contain constants. A term
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which is both a left and right equalizer is λyx.x. The following results are a bit
tedious to obtain, yet not very significant; we therefore omit the proof.

Lemma 7 Let T ⊆ WTT, such that pt(T ) = >. Then each m ∈ T . is a left
equalizer.

We can thus also speak of equalizer concepts. If we restrict our context to λI
terms, we get a stronger result:

Lemma 8 Let m be a left equalizer and λI-term, such that `Σ m : θ1 → α and
`Σ m : θ2 → α. Then both θ1, θ2 must be types inhabited by terms in Tm(ΛI(Σ)),
that is, there are terms mi, for which `Σ mi : θi is derivable for i ∈ {1, 2} and
mi ∈ Tm(ΛI(Σ)).

So when we restrict ourselves to ΛI, we have proper restrictions on the class
of possible equalizers, in the general case we do not. For example, assume there
is a set T of terms, and pt(T ) 6= >. Still, we might have pt(T .) = >. Conversely,
from the fact that pt(T ) = >, it does not follow that T . = ∅.

Of course, all general results of FCA also hold in this particular setting. For
us, the question is not in how far is the type theoretic context interesting as a
particular context, but rather: in how far can type theoretic contexts be used
in order to generalize existing contexts? As is well-known, type theory is a very
powerful tool; we will show this by way of example in formal language theory.

4 A Language-theoretic Context

4.1 Syntactic Concepts

Syntactic concept lattices form a particular case of formal concept lattices. In
linguistics, they have been introduced in [9]. They were brought back to attention
and enriched with residuation in [2], [3], as they turn out to be useful repre-
sentations for language learning (for background on residuated lattices, see [5]).
Syntactic concept are useful to describe distributional patterns of strings4. The
most obvious way to do so is by partitioning strings/substrings into equivalence
classes: we say that two strings w, v are equivalent in a language L ⊆ T ∗, in
symbols, w ∼L v, iff for all x, y ∈ T ∗, xwy ∈ L⇔ xvy ∈ L.5 The problem with
equivalence classes is that they are too restrictive: a single word can ruin an
equivalence class. In particular in linguistic applications, this is bad, because
restrictions of datasets or some particular constructions might prevent us from
having, say, an equivalence class of nouns. Syntactic concepts provide a somewhat
less rigid notion of equivalence, which can be conceived of as equivalence restricted
to a given set of string-contexts (not to be confused with contexts in the sense of
FCA!).

4 Or words, respectively, depending on whether we think of our language as a set of
words or a set of strings of words.

5 This defines the well-known Nerode-equivalence.

108 Christian Wurm



We now define our first language theoretic context. For L ⊆ T ∗, BC(L) =
(T ∗, T ∗ × T ∗, I), where (b, (a, c)) ∈ I iff abc ∈ L. This gives rise to polar maps
. : ℘(T ∗)→ ℘(T ∗ × T ∗), and / : ℘(T ∗ × T ∗)→ ℘(T ∗), where

1. for S ⊆ T ∗, S. := {(x, y) : ∀w ∈ S, xwy ∈ L}; and dually
2. for C ⊆ T ∗ × T ∗, C/ := {x : ∀(v, w) ∈ C, vxw ∈ L}.

That is, a set of strings is mapped to the set of string contexts, in which all
of its elements can occur. For a set of string contexts C, C/ can be thought of as
an equivalence class with respect to the string contexts in C; but not in general:
there might be elements in C/ which can occur in a string context (v, w) /∈ C
(and conversely).

Definition 9 A syntactic c-concept A is a pair, consisting of a set of strings,
and a set of string contexts, written C = (SC , CC), such that S.C = CC and
C/C = SC. The syntactic c-concept lattice of a language L is defined as
L(BC(L)) := 〈CCL ,∧,∨,>,⊥〉, where CCL is the set of syntactic c-concepts of L,
and with all constants and connectors defined in the usual way.

For example, given a language L, we have (ε, ε)/ = L, as all and only the
strings in L can occur in L in the string context (ε, ε); so L is a closed set of
strings. We can give the syntactic concept lattice some more structure. We define
a monoid structure on concepts as follows: for concepts (S1, C1), (S2, C2), we
define:

(2) (S1, C1) ◦ (S2, C2) = ((S1S2)./, (S1S2).),

where S1S2 = {xy : x ∈ S1, y ∈ S2}. Obviously, the result is a concept. ′◦′ is
associative on concepts, that is, for X,Y, Z ∈ B, X ◦ (Y ◦ Z) = (X ◦ Y ) ◦ Z
(see [10] for discussion). It is easy to see that the neutral element of the monoid
is ({ε}./, {ε}.), and that the monoid structure respects the partial order of the
lattice: For concepts X,Y, Z,W ∈ B, if X ≤ Y , then W ◦X ◦ Z ≤W ◦ Y ◦ Z.

We define a similar operation • for the string contexts of concepts: (x, y) •
(w, z) = (xw, zy). This way, we still have f • (g • h) = (f • g) • h for singleton
string contexts f, g, h. The operation can be extended to sets in the natural way,
preserving associativity. For example, C • (ε, S) = {(x, ay) : (x, y) ∈ C, a ∈ S}.
We will use this as follows:

Definition 10 Let X = (SX , CX), Y = (SY , CY ) be concepts. We define the
right residual X/Y := ((C1 • (ε, SY ))/, (C1 • (ε, SY ))/.), and the left residual
Y \X := ((C1 • (SY , ε))

/, (C1 • (SY , ε))
/.).

For the closed sets of strings S, T , define S/T := {w : for all v ∈ T,wv ∈ S}.
We then have SX/SY = SX/Y . So residuals are unique and satisfy the following
lemma:

Lemma 11 For X,Y, Z ∈ CCL , we have Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

For a proof, see [2]. This shows that the syntactic concept lattice can be
enriched to a residuated lattice (a residuated lattice is precisely a lattice with
monoid structure and satisfying the law of residuation).
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4.2 Problems and Limitations

Syntactic c-concepts form a very well-behaved structure, which even forms a
complete class of models for the Full Lambek calculus, an important substructural
logic (see [10]). A major limitation of these concepts is that our only objects are
strings, and our only operation concatenation. To see why this is a restriction,
consider the following. Let L1 ⊆ T ∗ be an arbitrary language, and put L2 :=
{ww : w ∈ L1}. Now, in the general case, L1 will not be a closed concept of L2,
because there is no general string context in which all and only the words in L1

can occur. The appropriate string context would have to be a function, as each
w ∈ L1 has the string context (ε, w). So there is a clear and simple generalization
regarding the distribution of L1 in L2, but we cannot express it.

As a second example, consider L3 := {a2n : n ∈ N}. Here we have the following
problem: for each n ∈ N, an will have a distinguishing string context. Nonetheless,
there is a very simple pattern in the language: taking a word of L3, we just
have to concatenate it with itself, and we get a new word in L3. In our analysis,
however, there are no concepts C1, C2, such that C1 ◦ (L3, L

.
3) ◦ C2 = (L3, L

.
3). So

our concepts are uninformative on the pattern of this language. What we want to
have in this case is a concept of duplication. We will remedy these shortcomings
in what is to follow; we will need, however, some type-theoretic background.

5 Strings as λ-Terms

The following, type theoretic encoding of language theoretic entities has been
developed in the framework on on abstract categorial grammars (introduced
in [4]). We follow the standard presentation given in [7]. Given a finite alphabet T ,
a string a1 . . . an ∈ T ∗ over T can be represented by a λ term over the signature
Σstring
T := ({o}, T, φ), where for all a ∈ T , φ(a) = o → o; we call this a string

signature. The term is linear and written as /a1 . . . an/ := λx.a1(. . . (anx) . . . ).
Obviously, the variable x has to be type o, in order to make the term typable.
We then have, for every string w ∈ T ∗, `Σstring

T
/w/ : o→ o.

Under this representation, string concatenation is not entirely trivial, and
cannot be done by juxtaposition, as the result would not be typable. We can con-
catenate strings by the combinator B := λxyz.x(yz), which concatenates its first
argument to the left of its second argument, as can be easily checked.6 We can also
represent tuples of strings by terms. Let /w1/, . . . , /wn/ represent strings. Then a
tuple of these strings is written as /(w1, . . . , wn)/ := λx.((. . . (x/w1/) . . . )/wn/).
The type of x here depends on the size of the tuple. We define α →n β by
α→0 β = β, α→n+1 β = α→ (α→n β). In general, for a term m encoding an
n-tuple , we have `Σstring

T
m : ((o → o) →n (α))) → α. So the types get larger

with the size of tuples; the order of the term however remains invariantly 2.
We indicate how to manipulate tuple components separately. The func-

tion which concatenates the tuple components in their order is obtained as

6 See [7] for more examples, also for what is to follow. A combinator is in general a
function over functions.
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follows: Given a tuple /(w, v)/ = λx.((x/w/)/v/, we obtain /wv/ through ap-
plication of the term: λx1.x1(λx2y.Bx2y)). We can also manipulate tuples to
form new tuples: take again /(v1, w1)/ = λx.((x/v1/)/w1/); we want to convert
it into a tuple /(v1v2, w1w2)/ = λx.((x/v1v2/)/w1w2/). This is done by the term
λyx1.y(λx2x3((x1Bx2v2)Bx3w2)). This term takes the tuple as argument and
returns a tuple of the same type. If we abstract over the term /(v2, w2)/, this
gives us a function which concatenates two 2-tuples componentwise.

However, the general componentwise concatenation of tuples of arbitrary size
(considering strings as 1-tuples) cannot be effected by a typed λ-term. The reason
is: if we do not fix an upper bound on tuple size, the types of tuples get higher
and higher, and there is no finite upper bound. So there is no finite term which
could have the appropriate type.7 This means that in this setting, we must refrain
from a notion of general concatenation of any type. This will however do little
harm, as we will see.

6 Generalizing the Language-theoretic Context

Take a finite alphabet T , and fix a language L1 ⊆ T ∗. As we have seen in the
last section, there is a bi-unique mapping i : T ∗ → WTT between strings in T ∗

and λ-terms of the signature Σstring
T . Note that i is properly bi-unique and not

up to =αβ equivalence; we map strings only onto their standard encoding, using
a standard variable. We thus obtain i[L1] ⊆ WTT, where i[−] is the pointwise
extension of i to sets. We close i[L1] under =αβ , and obtain L := {m : there is
n ∈ i[L] : n =αβ m}. This is the language we are working with, the type theoretic
counterpart of L1. In the sequel, for any M ⊆ T ∗, we will denote the closure of
i[M ] under =αβ by Mλ; so we have L = (L1)λ.

We now define a context BT (L) = (G,M, I), where G =M = Tmc(Λ(Σstring
T )),

that is the set of closed terms over the signature Σstring
T ; and for m, n ∈

Tmc(Λ(Σstring
T )), we have (m, n) ∈ I iff nm ∈ L. So for S a set of terms, we

have S. := {t : ∀s ∈ S : ts ∈ L}, and S/ := {t : ∀s ∈ S : st ∈ L}.

Definition 12 A t-concept is a concept (S, T ) over the context BT (L), where
S = T /, T = S.. The syntactic t-concept lattice of a language L is defined
as LT (L) := L(BT (L)) = 〈CTL,∧,∨,>,⊥〉, where CTL is the set of syntactic
t-concepts of L, and with all constants and connectors defined in the usual way.

What we are still missing is an operator which allows us to define fusion
and residuation. Recall that for terms, our primitive objects, juxtaposition is
interpreted as function application. We extend this interpretation to sets of terms:
for S1, S2 ⊆ Tmc(Λ(Σstring

T )), we define S1S2 := {mn : m ∈ S, n ∈ T}. Next, for t-
concepts (S1, T1), (S2, T2), we simply put (S1, T1)◦(S2, T2) := ((S1S2)./, (S1S2).).

7 On the other side, once we fix an upper bound k to tuple size, it is easy to see how
to define ◦ as λ term: for i ≤ k, we simply encode all tuples as k-tuples with all jth
components, i < j, containing the empty string. Then ◦ is simply componentwise
concatenation of k-tuples, which is λ-definable, as we have seen.
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That is, as before we use the closure of concatenation of extents to define ◦.
But there is an important restriction: concatenation of terms is not associative.
Consequently, the operation ◦ is not associative on concepts, we have, for concepts
M,N,O ∈ CTL, (M ◦ N) ◦ O 6= M ◦ (N ◦ O). For example, M ◦ N might be >,
because MN contains a term mn /∈ WTT, and consequently we have > ◦ O = >.
Still, M ◦ (N ◦O) might be well-typed. So the structure of (B, ◦) is not a monoid,
but rather a groupoid. We furthermore have a left identity element 1l, such that
for every concept S, 1l ◦ S = S. This is the concept of the identity function
({λx.x}./, {λx.x}.). (By the way, the identity function is also the encoding of
the empty string /ε/). There is no general right identity, though: for assume we
have a term m : α for a constant atomic type α; then there is no term n such that
mn can be typed. Consequently, no n can be the right identity for m.

What are the residuals in this structure? Given the fusion operator, they are
already implicitly defined by the law of residuation O ≤M/N ⇔ O ◦N ≤M ⇔
N ≤ O\M ; what we have to show that they exist and are unique. In the sequel we
will use residuals both on sets of terms and on concepts; this can be done without
any harm, as the extent order and the concept order are isomorphic. To see more
clearly what residuation means in our context, note that for S ⊆ Tmc(Λ(Σstring

T )),
we have S. := L/S; because S. is the set of all terms m, such that for all n ∈ S,
mn ∈ L. Dually, we have S/ := S\L. Consequently, we have S./ = (L/S)\L,
and dually, we get S/. = L/(S\L). So we see that the polar maps of our Galois
connection form a particular case of the residuals, or conversely, the residuals
form a generalization of the polar maps. The closure operators are equivalent
to a particular case of what is known as type raising. More generally, we can
explicitly define residuals over a ternary relation: put (m, n, o) ∈ R if and only if
mn =αβ o. Then we define

1. O/N := {m : ∀n ∈ N, ∃o ∈ O : (m, n, o) ∈ R}; dually:
2. M\O := {n : ∀m ∈M,∃o ∈ O : (m, n, o) ∈ R}.

As is easy to see, M. := {n : ∀m ∈M, ∃o ∈ L : (m, n, o) ∈ R}; and M/ := {n :
∀m ∈M,∃o ∈ L : (m, n, o) ∈ R}. This way, we explicitly define residuals for sets
of terms. Given this, it easily follows that residuals also exist and are unique for
concepts: (S1, T1)/(S2, T2) = ((S1/S2), (S1/S2).).

So residuals allow us to form the closure not only with respect to L, but
with respect to any other concept. This provides us with a much more fine-
grained access to the hierarchical structure of languages. On the negative side,
the ◦ operation and residuals do not tell us anything about directionality of
concatenation on the string level. This however is unsurprising, as our treatment
of strings as λ-terms serves precisely the purpose of abstracting away from this:
concatenation is done by terms automatically, and we need no longer care for this.
Obviously t-concepts provide a vast generalization of c-concepts. An immediate
question is whether this extension is conservative, in the sense that each c-closed
set is also t-closed. This is generally wrong, but holds with some restrictions:

Theorem 13 Let M,L ⊆ T ∗; let Mλ, Lλ be their type theoretic counterpart in
the signature Σstring

T . If M = M./ is closed wrt. the language theoretic context
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BC(L), then we have Mλ = (Mλ)./ ∩ (T ∗)λ, where (Mλ)./ is closed wrt. the
type theoretic context BT (Lλ).

Proof. Let M be c-closed; every string context (w, v) ∈M. corresponds to
a function of the form λx.B(B/w/x)/v/, which takes a term /u/ as argument,
concatenating it with a /w/ to its left and /v/ to its right, resulting in a term
/wuv/. Call the set of these functions (Mλ)I. We now take (Mλ)I/. Obviously
we have Mλ ⊆ (Mλ)I/. We show that Mλ ⊇ (Mλ)I/ ∩ (T ∗)λ: if we have, for
w ∈ T ∗, w /∈ M , but /w/ ∈ (Mλ)I/ ∩ (T ∗)λ, then we have i−1(/w/) ∈ M./,
because each type context in (Mλ)I corresponds to a string context in M.. This
is a contradiction, as M is closed under [−]./.

So we have Mλ = (Mλ)I/∩(T ∗)λ, and (Mλ)I/ is a closed set. Furthermore, as
(Mλ)I ⊆ (Mλ)., we have (by the laws of Galois connections) (Mλ)I/ ⊇ (Mλ)./.
So we get Mλ ⊇ (Mλ)./ ∩ (T ∗)λ. To see that Mλ ⊆ (Mλ)./ ∩ (T ∗)λ, consider
that as M ⊆ T ∗, we have Mλ ⊆ (T ∗)λ; furthermore, Mλ ⊆ (Mλ)./. Therefore,
Mλ ⊆ (Mλ)./ ∩ (T ∗)λ. This completes the proof. �

As expected, the converse does not hold, not even for terms which encode
strings. In this sense t-concepts yield a proper generalization of c-concepts.
This however does not obtain for the extension of the lattice with fusion and
residuals: fusion in the t-concept lattice is completely incomparable to fusion in
the c-concept lattice of a language.

7 Conclusion and Possible Restrictions

One main objection to our type theoretic approach to language might be that
we produce many concepts to which we might not be able to assign any intuitive
meaning, and which tell us very little about the language in question. We easily
see what is meant by the concept of a term /w/ in a language L. We can also
make perfectly sense of the concept duplication. It is less easy to see what is
meant by the concept of the term B, which we discussed above. What can the
the distribution of such a concept in a language tell us about the language?8

So we do not have a problem with the formalism in the first place, but with its
interpretation.

Therefore, it might be reasonable to restrict our approach. We propose here
two main restrictions: First, as we already mentioned, we might restrict the
universe of terms Tmc(Λ(Σstring

T )) to λI terms. A language-theoretic argument
for this point is that we are interested in the distributional structure of languages.
Vacuous abstraction, as yielding constant functions, allows us to delete arguments
or certain parts thereof. This seems to us an “unlinguistic” procedure, as we
cannot say we talk about the distribution of an object if we allow to delete
parts of it. A further restriction to linear λ-terms, on the other side, does not

8 What is less unclear is its meaning as intent rather than extent: apart from some
additional technical difficulties, it must take two arguments which, when concatenated,
give a term in L.
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seem to be desirable, as then we get the same problems with our toy language
{a2n : n ∈ N} as before.

A second restriction which might be reasonable is the restriction of type
order. As we have seen, types of second order allow us to yield all strings and
tuples of strings. If we restrict only G to second order types, we will have all
functions from second order types to second order types in M. This seems to us
a very reasonable restriction, the consequence of which we cannot discuss here
for reasons of space.

In conclusion, there are many options in further pursuing our approach, and
at this point it is unclear which direction is the most promising. But in either
way our approach might provide some contribution to the old problem of learning
infinite languages from the distributional structure of a finite fragment thereof.
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Abstract. We study the problem of mining frequent closed patterns
in multi-relational databases in a distributed environment. In multi-
relational data mining (MRDM), relational patterns involve multiple re-
lations from a relational database, and they are typically represented in
datalog language (a class of first order logic). Our approach is based on
the notion of iceberg query lattices, a formulation of MRDM in terms of
formal concept analysis (FCA), and we apply it to a distributed mining
setting. We assume that a database considered contains a special predi-
cate called key , which determines the entities of interest and what is to be
counted, and that each datalog query contains an atom key, where vari-
ables in a query are linked to a given target object corresponding to the
key. We show that the iceberg query lattice in this case can be defined
similarly in the literature. Next, given two local databases (horizontal
partitions) and their sets of closed patterns (concepts), we show that the
subposition operator, which constructs a global Galois (concept) lattice
from the direct product of two lattices studied in the literature, can be
utilized to generate the set of closed patterns in the global database. The
correctness of our algorithm is shown, and some preliminary experimen-
tal results using a MapReduce framework are also given.

1 Introduction

Multi-relational data mining (MRDM) has been extensively studied for more
than a decade (e.g., [5, 6] and references therein). The research topics discussed
in the conventional data mining have been considered in this more expressive
framework of MRDM, where data and patterns (or queries) are represented in
the form of logical formulae such as Datalog (a class of first order logic). In
contrast to the traditional data mining dealing with rather simple patterns such
as itemsets, the expressive formalism of MRDM allows us to use more complex
and structured data in a uniform way, including trees and graphs in particular,
and multi-relational patterns in general.
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On the other hand, Formal Concept Analysis (FCA) has been developed as a
field of applied mathematics based on a clear mathematization of the notions of
concept and conceptual hierarchy [7]. It has attracted much interest from various
application areas including, among others, data mining, knowledge acquisition
and software engineering (e.g., [8]).

Stumme [20] has proposed the notion of iceberg query lattices, which com-
bines the notions of the above two fields, i.e., MRDM and FCA; Iceberg query
lattices combine the notion of frequent datalog queries in MRDM with iceberg
concept lattices (or frequent closed itemsets) in FCA. Then, it has been shown
that we can apply the “full arsenal” of FCA-based methods to frequent queries,
thereby allowing us to mine and visualize relational association rules. Condensed
representations such as closed patterns and free patterns in MRDM have been
also studied in c-armr [4], and in RelLCM2 [9].

In this paper, we study the problem of mining closed queries in multi-
relational data based on these precursors. We apply the notion of iceberg query
lattices to a distributed mining setting. The assumption that a given dataset
is distributed and stored in different sites is reasonable, because we will not be
able to move local datasets into a centralized site due to too much data size
and/or privacy concerns. We also assume that a database considered contains
a special predicate called key (e.g., [3, 4]), and that each datalog query is sup-
posed to contain an atom key, where variables in a query are linked to a given
target object corresponding to the key. Using an key atom, we can define the
notion of the frequency of a datalog query, since the key atom determines the
entities of interest and what is to be counted. We show that the iceberg query
lattice in this case can be defined similarly in the literature. Next, given two local
databases (horizontal partitions) and their sets of closed queries (concepts), we
show that the we can construct the set of closed queries in the global database,
by using subposition operator [7, 23], which constructs a global Galois (concept)
lattice from the direct product of two lattices. We also present some preliminary
experimental results using a distributed framework of MapReduce [2].

The organization of the rest of this paper is as follows. After summarizing
some basic notations and definitions in FCA in Sect. 2, we reconsider the notion
of iceberg query lattices with key in Sect. 3. We then explain our approach to
distributed closed query mining in MRDB in Sect. 4. In Section 5, we show the
effectiveness of our method by some preliminary experimental results. Finally,
we give a summary of this work in Section 6.

2 Preliminaries: Formal Concept Analysis

We assume that the reader is familiar with the basic notions of Formal Concept
Analysis (FCA), which are found in [7]. However, we recall some of the important
definitions and notations.

Definition 1. A (formal) context K = (O,A, I) consists of a set O of objects,
a set A of attributes, and a binary relation I ⊆ O × A.
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The mapping f : P(O) → P(A) is given by f(X) = {a ∈ A | ∀o ∈ X :
(o, a) ∈ I}. The mapping g : P(A) → P(O) is given by g(Y ) = {o ∈ O | ∀a ∈
Y : (o, a) ∈ I}.

If it is clear from the context whether f or g is meant, then we abbreviate
both f(·) and g(·) just by ′. In particular, Y ′′ stands for f(g(Y )).

A (formal) concept is a pair (X,Y ) with X ⊆ O, Y ⊆ A, X ′ = Y, and Y ′ =
X. X is called extent , and Y is called intent of the concept. The set CK of all
concepts of K together with the partial order (X1, Y1) ≤ (X2, Y2) ↔ X1 ⊆ X2

(which is equivalent to Y1 ⊇ Y2) is called the concept lattice of K. 2

In FCA [7], a set of context-oriented operators has been studied, including
apposition/subposition operators, and they are extensively studied by Valtchev
and Missaoui [23, 24]. The following definitions and lemma are due to [23].

Definition 2. Let K1 = (O1, A, I1) and K2 = (O2, A, I2) be two contexts with
the same set of attributes A. Then the context K = (O1 ·∪O2, A, I1 ·∪I2) is called
the subposition of K1 and K2, denoted by K = K1

K2
.

Usually, the extent of K is set to the disjoint union (denoted by ·∪) of the
involved context extents, and this constraint is suitable for our current study.

Let Ki (i = 1, 2) be a context, and Li the corresponding lattice. The direct
product of a pair of lattices L1 and L2, denoted by L× = L1 × L2, is itself a
lattice L× = 〈CK× , ≤×〉, where CK× = CK1 × CK2 , and (c1, c2) ≤× (c1, c2) ⇔
c1 ≤L1 c1 and c2 ≤L2 c2.

Any concept of L can be projected upon the concept lattice, L1 (L2) by
restricting its extent to the set of “visible” objects, e.g., those in O1 (O2), re-
spectively. The resulting mapping constitutes an order homomorphism between
L and the direct product [7].

Definition 3. The function ϕ : CK → CK× maps a concept from the global
lattice into a pair of concepts of the partial lattices by splitting its extent over
the partial context object sets O1 and O2:

ϕ((X,Y )) = ((X ∩ O1, (X ∩ O1)
′), (X ∩ O2, (X ∩ O2)

′)).

From the above definitions, we have the following property [23]:

Lemma 1. [23] For any global concept c = (X,Y ) and its image ϕ(c) =
((X1, Y1), (X2, Y2)), it holds that X = X1 ∪ X2 and Y = Y1 ∩ Y2. 2

Example 1. Consider a context K in Fig. 1 (upper left). The concept lattice CK
derived from K is shown in the right. Let K1, K2 (lower right of the figure) be
a horizontal decomposition of K, where O1 = {1, 2} and O2 = {3, 4}. Then, K
is the subposition of K1 and K2, i.e., K = K1

K2
. The concept lattices CK1 (CK2)

derived from K1 (K2) are shown in the right, respectively.
Consider a global concept c = (123, d) in CK. Then, ϕ(c) = ((12, bd), (3, acd)),

and we have from Lemma 1 that {123} = {12} ∪ {3} and {d} = {bd} ∩ {acd}. 2
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K
a b c d

1 × ×
2 × × × ×
3 × × ×
4 ×

∅

1234

c

234

d

123

acd

23

bd

12

abcd

2

K1

a b c d

1 × ×
2 × × × ×

K2

a b c d

3 × × ×
4 ×

bd

12

abcd

2

c

34

acd

3

abcd

∅

Fig. 1. Upper: A Context K and the Hasse diagram of the concept lattice derived from
K. Lower: A horizontal decomposition K1, K2 of K, and the Hasse diagrams of the
concept lattices derived from K1, K2.

FCA provides a framework for frequent itemset mining (FIM), where the
intent of a concept corresponds to a closed itemset. The subposition operator will
be readily used for mining frequent closed itemsets (FCIs) in a global transaction
database D from the local FCIs from two disjoint (horizontal) partitions D1 and
D2, provided that we mine all the partitions with an (absolute) support being
set to 1, i.e. when we consider as frequent any itemset which occur at least once
in D. In fact, Lucchese et al. [15] show the following property:

Theorem 1 (Lucchese et al. [15]). Let D be transaction database, and D1,
D2 two disjoint (horizontal) partitions of D. Let C be the set of FCIs of D, and
C1 (C2) the set of local FCIs of D1 (D2), respectively. Then, C is computed from
C1 and C2 as C = (C1 ∪ C2) ∪ {C1 ∩ C2 | (C1, C2) ∈ (C1 × C2)}. 2

Namely, C is obtained by collecting the closed itemsets contained in C1 and
C2, and intersecting them to obtain further ones. It is easy to see that this exactly
corresponds to Lemma 1 based on the subposition operator. In the following, we
will apply the subposition operator to a more expressive framework of MRDM.

3 Iceberg Query Lattices in Multi-Relational DM

3.1 Multi-Relational Data Mining

In the task of frequent pattern mining in multi-relational databases, we assume
that we have a given database r, a language of patterns, and a notion of frequency
which measures how often a pattern occurs in the database. We use Datalog
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Customer

key

allen
carol
diana
fred

Parent

SR. JR.

allen bill
allen jim
carol bill
diana eve
fred eve
fred hera

Buys

key item

allen pizza
carol pizza
diana cake
fred cake

Male

person

bill
jim

Female

person

eve
hera

Fig. 2. An Example of Datalog Database r with customer relation as a key

to represent data and patterns. We assume some familiarity with the notions
of logic programming (e.g., [14, 16]), although we introduce some notions and
terminology in the following.

An atom (or literal) is an expression of the form p(t1, . . . .tn), where p is a
predicate (or relation) of arity n, denoted by p/n, and each ti is a term, i.e., a
constant or a variable.

A substitution θ = {X1/t1, . . . , Xn/tn} is an assignment of terms to variables.
The result of applying a substitution θ to an expression E is the expression Eθ,
where all occurrences of variables Vi have been simultaneously replaced by the
corresponding terms ti in θ. The set of variables occurring in E is denoted by
Var(E).

A pattern is expressed as a conjunction of atoms (literals) l1∧· · ·∧ln, denoted
simply by l1, . . . , ln. A pattern is sometimes called a query . Let C be a pattern
(i.e., a conjunction) and θ a substitution of Var(C). When Cθ is logically entailed
by a database r, we write it by r |= Cθ. Let answerset(C, r) be the set of
substitutions satisfying r |= Cθ. We will represent conjunctions in list notation,
i.e., [l1, . . . , ln]. For a conjunction C and an atom p, we denote by [C, p] the
conjunction that results from adding p after the last element of C.

In multi-relational data mining, one of predicates is often specified as a key
(or target), which determines the entities of interest and what is to be counted.

Example 2. Let r be a multi-relational DB in Fig. 2, which consists of five rela-
tions, including Customer,Parent, Buys and so on. For each relation, we intro-
duce a corresponding predicate, e.g., customer for relation Customer.

Let P be a pattern of the form: customer(X), parent(X,Y ), buys(X, pizza).
Pθ is logically entailed by r, if there exists a tuple (a1, a2) such that a1 ∈
Customer, (a1, a2) ∈ Parent, and (a1, pizza) ∈ Buys. Then, answerset(P, r) =
{{X/allen, Y/bill}, {X/allen, Y/jim}, {X/carol , Y/bill}}. 2

As explained in Sect. 1, in a typical task of MRDM, a user is usually expected
to specify a special predicate key (or target) (e.g., [3, 4]). The key is an atom
which determines the entities of interest and what is to be counted. The key
(target) is thus to be present in all patterns considered. In Example 2, the key
is predicate customer .
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A pattern containing a key is not always meaningful to be mined. For ex-
ample, let C = [customer(X), parent(X,Y ), buys(Z, pizza)] be a conjunction in
Example 2. Variable Z in C is not linked to variable X in key atom customer(X);
an object represented by Z will have nothing to do with key object X. It will be
inappropriate to consider such a conjunction as an intended pattern to mine. In
ILP, the following notion of linked literals [10] is a standard one to specify the
so-called language bias.

Definition 4 (Linked Literal). [10] Let key(X) be a key atom and l a literal.
l is said to be linked to key(X), if either X ∈ Var(l) or there exists a literal l1
such that l is linked to key(X) and Var(l1) ∩ Var(l) 6= ∅. 2

Given a database r and a key atom key(X), we assume that there are prede-
fined finite sets of predicate (resp. variables; resp. constant symbols), and that,
for each literal l in a conjunction C, it is constructed using the predefined sets.
Moreover, each pattern C of conjunctions to be mined satisfies the following
conditions: key(X) ∈ C and, for each l ∈ C, l is linked to key(X). In the follow-
ing, we denote by Q the set of queries (or patterns) satisfying the above bias
condition.

Let r be a database and Q be a query containing a key atom key(X). Then,
the support (or frequency) of C, denoted by supp(Q, r, key), is defined as:

supp(Q, r, key) =
|{θkey | θ ∈ answerset(Q, r)}|

|answerset(key(X), r)| ,

where θkey is the restriction of θ = {X/t, . . . } w. r. t. key(X), defined by θkey =
{X/t} for some term t. The numerator in the above formula is called the support
count (or absolute support). Q is said to be frequent , if supp(Q, r, key) is no less
than some user defined threshold min sup.

3.2 Iceberg Query Lattices with Key

We now consider the notion of a formal context in MRDM, following [20].

Definition 5. [20] Let r be a datalog database and Q a set of datalog queries.
The formal context associated to r and Q is defined by Kr, Q = (Or, Q, Ar, Q, Ir, Q),
where Or, Q = {θ | θ is a grounding substitution for all Q ∈ Q}, and Ar, Q = Q,
and (θ,Q) ∈ Ir, Q if and only if θ ∈ answerset(Q, r). 2

Each θ ∈ answerset(Q, r) is often called an occurrence of Q in r. We denote by
O(Q; r) the set of the occurrences of Q in r, namely, O(Q; r) = answerset(Q, r).

From this formal context, we can define the concept lattice the same way as
in [20]. We first introduce an equivalence relation ∼r on the set of queries: Two
queries Q1 and Q2 are said to be equivalent with respect to database r if and
only if answerset(Q1, r) = answerset(Q2, r).
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Definition 6 (Closed Query). Let r be a datalog database and ∼r the equiv-
alence relation on a set of datalog queries Q. A query (or pattern) Q is said to be
closed (w.r. t. r and Q), iff Q is the most specific query among the equivalence
class to which it belongs: {Q1 ∈ Q | Q ∼r Q1}. 2

For any query Q1, its closure is a closed query Q such that Q is the most
specific query among {Q ∈ Q | Q ∼r Q1}. Since it uniquely exists, we denote it
by Clo(Q1; r). Note that Var(Q1) = Var(Clo(Q1; r)) by definition. We refer to
this as the range-restricted condition here.

Stumme [20] showed that the set of frequent closed queries forms a lattice.
In our framework, it is necessary to take our bias condition into consideration.
To do that, we employ the well-known notion of the most specific generalization
(or least generalization) [18, 16].

For queries Q1 and Q2, we denote by lg(Q1, Q2) the least generalization of
Q1 and Q2. Moreover, the join of Q1 and Q2, denoted by Q1 ∨ Q2, is defined
as: Q1 ∨ Q2 = lg(Q1, Q2)|Q, where, for a query Q, Q|Q is the restriction of Q to
Q, defined by a conjunction consisting of every literal l in Q which is linked to
key(X), i.e., deleting every literal in Q not linked to key(X).

Definition 7. [20] Let r be a datalog database and Q a set of datalog queries.
The iceberg query lattice associated to r and Q for minsupp ∈ [0, 1] is defined as:
Cr, Q = ({Q ∈ Q | Q is closed w.r.t. r and Q, and Q is frequent}, |=), where |=
is the usual logical implication. 2

Theorem 2. Let r be a datalog database and Q a set of datalog queries where
all queries contain an atom key and they are linked. Then, Cr, Q is a ∨-semi-
lattice.

Proof. (Sketch) Let Q1, Q2 be frequent closed queries in Q. Then, it is easy to
see that their least generalization lg(Q1, Q2) is closed and frequent. However,
it might not be linked to key(X). For example, consider that Q1 (Q2) is of the
form: Q1 = key(X), p(X,Y ),m(Y ) (Q2 = key(X), q(X,Y ),m(Y )), respectively.
Then, lg(Q1, Q2) = key(X),m(Y ), which is not linked to key(X), although it is
a closed query. In this case, Q1 ∨ Q2 = lg(Q1, Q2)|Q = key(X), which satisfies
the bias condition from the definition. We can show that the resulting Q1 ∨ Q2

is in fact a closed query in the sense of Def. 6. 2

Example 3. Continued from Example 2. Fig. 3 shows the iceberg query lattice
associated to r in Ex. 2 and Q with the support count 1, where each query Q ∈ Q
has customer(X) as a key atom, denoted by key(X) for short, Var(Q) ⊆ {X,Y }
and the 2nd argument of predicate buys is a constant. 2

4 Distributed Closed Pattern Mining in MRDB

Our purpose in this work is to mine global concepts in a distributed setting,
where a global database is supposed to be horizontally partitioned appropri-
ately, and stored possibly in different sites. Our approach is to first perform the
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key(X)

{a, c, d, f}

key(X), buys(X, pizza)

{a, c}

key(X), parent(X, Y )

{(a, b), (a, j), (c, b),
(d, e), (f, e), (f, h)}

key(X), buys(X, cake)

{d, f}

key(X), buys(X, pizza),
parent(X, Y ),male(Y )

{(a, b), (a, j), (c, b)}

key(X), buys(X, cake),
parent(X, Y ), female(Y )

{(d, e), (f, e), (f, h)}

Fig. 3. The Iceberg Query Lattice Associated to r in Ex. 2: In the figure, a substitution
θ = {X/t1, Y/t2} (resp., θ = {X/t1}) in an occurrence set is denoted simply by (t1, t2)
(resp., t1). The name of each person in r is abbreviated to its first character.

computations of local concepts on each partition of the global DB, and then
combine the local concepts by using the subposition operator.

4.1 Horizontal Decomposition of MRDB

We first consider the notion of a horizontal decomposition of a multi-relational
DB. Since a multi-relational DB consists of multiple relations, its horizontal
decomposition is not immediately clear.

Definition 8. Let r be a multi-relational datalog database with a key predicate
key . We call a pair r1, r2 a horizontal decomposition of r, if

1. keyr = keyr1
·∪ keyr2

, i.e., the key relation keyr in r is disjointly decomposed
into keyr1

and keyr2
in r1 and r2, respectively, and

2. for any query Q, answerset(Q, r) = answerset(Q, r1) ∪ answerset(Q, r2). 2

The second condition in the above states that the relations other than keyr

are decomposed so that any answer substitution in answerset(Q, r) is computed
either in r1 or r2, thereby being preserved in this horizontal decomposition.

Given a horizontal decomposition of a multi-relational DB, we can utilize
any preferable concept (or closed pattern) mining algorithm for computing lo-
cal concepts on each partition, as long as the mining algorithm is applicable
to MRDM and its resulting patterns satisfy our bias condition. For example,
Stumme [20] discussed the algorithm called Titanic [21], which is based on a
level-wise approach. We use here an algorithm called ffLCM [19], which is based
on the notion of closure extension due to Pasquier et al. [17] in FIM, and then
elaborated by Uno et al. [22].
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4.2 Subposition Operator in MRDM

We now present the counterpart to Lemma 1 in closed pattern mining in MRDB.
We first modify the mapping ϕ in Def. 3 suitably for our purpose.

Definition 9. Let r be a datalog database, and r1, r2 a horizontal decompo-
sition of r. Let (O(Q; r), Q) be a concept in r, i.e., Q is a closed query and
O(Q; r) = answerset(Q, r). Then,

ϕ̃((O(Q; r), Q)) = ((O(Q; r1),Clo(Q; r1)), (O(Q; r2), Clo(Q, r2))).

To give the counterpart to Lemma 1 in MRDM, we need another definition
of join. Let Q1 and Q2 be queries which contain the same set V of variables, i.e.,
Var(Q1) = Var(Q2) = V. We define Q1 ∨RR Q2 = lg(Q1, Q2)|V,Q, where, for
a query Q, Q|V,Q is the restriction of Q to V and Q, defined by a conjunction
consisting of every literal l in Q such that Var(l) ⊆ V and l is linked to key ,
i.e., Q|V,Q is constructed from Q by deleting every literal in Q which contains a
variable not in V, then deleting every remaining literal not linked to key .

Theorem 3. Let r be a datalog database, and r1, r2 a horizontal decomposi-
tion of r. For any global concept c = (O(Q; r), Q) in r, and its image ϕ̃(c) =
((O(Q1; r1), Q1), (O(Q2; r2), Q2)), it holds that

O(Q; r) = O(Q1; r1) ∪ O(Q2; r2) and Q = Q1 ∨RR Q2.

Remark 1. We omit the proof here, since we can prove the theorem similarly to
[23]. Instead, we give an example which will be helpful to understand why we
need an extra provision for considering the least generalization in this case.

Let Q be a query of the form: key(A), p(A,B). Suppose that Q1 (Q2) is a
query of the form: Q1 = key(A), p(A,B), q(A, B) (Q2 = key(A), p(A,B), q(B,A)),
respectively. Then, lg(Q1, Q2) = key(A), p(A,B), q(C,D), where C and D are
newly introduced variables in the least generalization. In this case, since Var(Q) =
Var(Q1) = Var(Q2) = {A, B}, Q1 ∨RR Q2 is key(A), p(A,B), which coincides
with Q.

Finally, we note that, in the case of transaction databases, the above theorem
coincides with Theorem 1 in Sect. 2. 2

Example 4. Continued from Example 3. We consider a horizontal decomposition
r1, r2 of r such that the key relation keyr (i.e., Customer) in r is decomposed
into keyr1

= {allen, carol} and keyr2
= {dian, fred}, and the other relations than

Customer are decomposed so that they satisfy the second condition of Def. 8.

Let Q be a pattern of the form: [key(X), parent(X,Y )] in Fig. 3. We have
that Q1 = Clo(Q; r1) = [Q, buys(X, pizza),male(Y )], and Q2 = Clo(Q; r2) =
[Q, buys(X, cake), female(Y )]. Then, it holds that Q = Q1 ∨RR Q2. 2

Distributed Closed Pattern Mining in Multi-Relational Data 123



5 Distributed Mining Using MapReduce Framework

Since the computation of local concepts can be done independently, it is expected
that our algorithm is amenable to data-parallelism. We have therefore imple-
mented our algorithm using MapReduce framework [2], although any framework
supporting data-parallelism will do for our purpose.

In MapReduce framework, the user expresses the computation in terms of
two functions: map and reduce. The map function takes an input key/value pair
and produces a set of intermediate key/value pairs. Then, the set of intermediate
key/value pairs are passed to the reduce function. The reduce function accepts
an intermediate key and a set of values for that key, and it then merges (or
aggregate) these values together to form a possibly smaller set of values.

However, our use of MapReduce framework is very simple; We use map op-
eration to each local DB to compute a set of its local concepts. An intermediate
key/value pair simply consists of (DB id , Cid), where Cid is the set of local con-
cepts of DB id . We then apply a reduce operation which simply combines the
derived results to form an input to the subsequent subposition operator. We thus
simply exploited map for computing local concepts independently. We employed
Hadoop1,an open source implementation of MapReduce.

We now present some preliminary results of our experiments. We imple-
mented our algorithm by using Java 1.6.0 22. Experiments were performed on 6
PCs with Intel Core i5 processors running at 2.8GHz, 8GB of main memory, and
8MB of L2 cache, working under Ubuntu 11.04. We used Hadoop 0.20.2 using 6
PCs, and 2 mappers working on each PC.

Fig. 4 summarizes the results of the execution time for a test data on the
mutagenicity prediction,2 containing 30 chemical compounds. Each compound
is represented by a set of facts using predicates such as atom, bond , for example.
The size of the set of predicate symbols is 12. The size of key atom (active(X ))
is 230, and minimum support min sup = 1

230 . We assume that patterns contain
at most 4 variables and they contain no constant symbols. The number of the
concepts mined is 4, 831.

Fig. 4 shows that the execution times t1 for mining local concepts are reduced
almost linearly with the number of partitions from 1 (i.e., no partitioning) to 8.
When the number of partitions is 16, the speed-up did not scale well compared to
the other cases. This is a reasonable result; Due to the restriction of our current
experiment environment, we used 6 PCs. Therefore, at most 12 mappers are
simultaneously available. On the other hand, the execution times t2 for merging
local concepts to obtain global concepts increase almost linearly with the number
p of partitions from 1 (i.e., no partitioning) to 16. This is also reasonable; the
number of subposition operators applied is (p − 1) when we have p partitions.

1 Hadoop: Open source implementation of MapReduce. http://
lucene.apache.org/hadoop/.

2 http://www.comlab.ox.ac.uk/activities/machinelearning/mutagenesis.html
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6 Concluding Remarks

We have studied the problem of mining frequent closed patterns in multi-relational
databases in a distributed environment. To do that, we have first reconsidered
the notion of iceberg query lattices, where each datalog query contains an atom
key, and the variables in a query are linked to the key. We have then proposed
the notion of a horizontal decomposition of a given MRDB, and explained how
the subposition operator can be utilized to generate the set of closed queries in
the global database from the two sets of local closed queries in the two parti-
tions. We have exemplified the effectiveness of our method by some preliminary
experimental results using Hadoop.

As discussed in [1], efficiency and scalability have been major concerns in
MRDM. Krajca et al. [11, 12] have proposed algorithms which allow us to com-
pute search trees for concepts simultaneously either in parallel or in a distributed
manner. Since their approaches are orthogonal to ours, it would be beneficial to
employ their algorithms for computing local concepts in our method.

In this work, we have confined ourselves to horizontal partitions of a global
context. It will be interesting to study vertical partitioning and their mixture in
MRDM, where the apposition operator studied by Valtchev et al. [24] will play
an important role. Our future work includes developing an efficient algorithm for
handling such a general case, as well as accumulating more experimental results
on different MRDBs to confirm the effectiveness of our subposition operator.

Acknowledgement The authors would like to thank anonymous reviewers for
their useful comments on our paper. The authors are grateful to Seiji Yamazaki
for preparing the experiments in this paper.
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Attribute Dependencies in a Fuzzy Setting
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Abstract. We present a new framework for modelling users preferences
in a fuzzy setting. Starting with a formal fuzzy context, the user en-
ters so-called attribute dependency formulas based on his priorities. The
method then yields the “interesting” formal concepts, that is, interesting
from the point of view of the user. Our approach is designed for com-
pounded attributes, i.e., attributes which include more than one trait.
In this paper, after studying some properties of the formulas, we start
investigating the computation of non-redundant bases for them. Such
bases are wishful for a better overview of the preferences.

Keywords: Formal Concept Analysis, fuzzy data, data reduction

1 Introduction

Attribute dependency formulas were introduced in [1] and further studied in
a series of papers, see for instance [2]. They were developed as a method of
controlling the size of crisp concept lattices. The most appealing aspect of this
method is that the reduction is done based on the user’s preferences, namely
he is allowed to define a sort of order on the attributes. In accordance with
these preferences, the user receives just the “interesting” concepts, “interesting”
from his point of view. In [1] such preferences were modelled in the language of
Formal Concept Analysis as follows: An attribute dependency formula (AD
formula) over a set M of attributes is A v B, where A,B ⊆ M . The meaning
of the formula is “the attributes from A are less important than the attributes
from B”. The AD formula A v B is true in N ⊆M , written N |= A v B, if

if A ∩N 6= ∅, then B ∩N 6= ∅.

A formal concept (C,D) ∈ B(G,M, I) satisfies A v B if D |= A v B.
These formulas were the starting point of our work. However, we develop a

different kind of AD formulas, namely some that are appropriate for compounded
attributes, i.e., attributes which include more than one trait. For instance the
notion “wealth” is a compounded attribute consisting of “investment” and “flu-
ency”. A person who is wealthy has to have high values on both investment and
fluency. We develop such formulas for the fuzzy setting and automatically obtain
the crisp case by choosing L = {0, 1} for the residuated lattice.

Some proofs are omitted due to lack of space but can be found in [3].

c© 2012 by the paper authors. CLA 2012, pp. 127–138. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



The paper is structured as follows: In Section 2 we give brief introductions to
Fuzzy Sets, Fuzzy Logic and Formal Fuzzy Concept Analysis. Section 3 contains
our new framework. Concluding remarks and further research topics are given
in the last section.

2 Preliminaries

2.1 Fuzzy Sets and Fuzzy Logics

In this subsection we present some basics about fuzzy sets and fuzzy logic. The
interested reader may find more details for instance in [4, 5].

A complete residuated lattice with (truth-stressing) hedge is an al-
gebra L := (L,∧,∨,⊗,→,∗ , 0, 1) such that: (L,∧,∨, 0, 1) is a complete lattice;
(L,⊗, 1) is a commutative monoid; 0 is the least and 1 the greatest element; the
adjointness property, i.e., a ⊗ b ≤ c ⇔ a ≤ b → c, holds for all a, b, c ∈ L.
The hedge ∗ is a unary operation on L satisfying the following conditions:
i) a∗ ≤ a; ii) (a→ b)∗ ≤ a∗ → b∗; iii) a∗∗ = a∗; iv)

∧
i∈I a

∗
i = (

∧
i∈I ai)

∗; for ev-
ery a, b, ai ∈ L (i ∈ I). Elements of L are called truth degrees, ⊗ and → are
(truth functions of) “fuzzy conjunction” and “fuzzy implication”. The hedge ∗

is a (truth function of) logical connective “very true”, see [4, 6]. The properties
(i)-(iv) have natural interpretations, i.e., (i) can be read as “if a is very true,
then a is true”, (ii) can be read as “if a→ b is very true and if a is very true, then
b is very true”, etc. From the mathematical point of view, the hedge operator is
a special kernel operator controlling the size of the fuzzy concept lattice.

A common choice of L is a structure with L = [0, 1], ∧ and ∨ being minimum
and maximum, ⊗ being a left-continuous t-norm with the corresponding→. The
three most important pairs of adjoint operations on the unit interval are:

 Lukasiewicz: a⊗ b := max(0, a+ b− 1) with a→ b := min(1, 1− a+ b),

Gödel: a⊗ b := min(a, b) with a→ b :=

{
1, a ≤ b
b, a � b

,

Product: a⊗ b := ab with a→ b :=

{
1, a ≤ b
b/a, a � b

.

Typical examples for the hedge are the identity, i.e., a∗ := a for all a ∈ L, and
the globalisation, i.e., a∗ := 0 for all a ∈ L \ {1} and a∗ := 1 if and only if a = 1.

Let L be the structure of truth degrees. A fuzzy set (L-set) A in a universe
U is a mapping A : U → L, A(u) being interpreted as “the degree to which u
belongs to A”. We denote by u ∈ A the fact that A(u) = 1. If U = {u1, . . . , un},
then A can be denoted by A = {a1/u1, . . . , an/un} meaning that A(ui) equals
ai for each i ∈ {1, . . . , n}. Let LU denote the collection of all L-sets in U . The
operations with L-sets are defined component-wise. For instance, the intersection
of L-sets A,B ∈ LU is an L-set A∩B in U s. t. (A∩B)(u) = A(u)∧B(u) for each
u ∈ U , etc. Binary fuzzy relations (L-relations) between X and Y can be thought
of as L-sets in the universe X × Y . For A,B ∈ LU , the subsethood degree,
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which generalises the classical subsethood relation ⊆, is defined as S(A,B) :=∧
u∈U (A(u) → B(u)). Therefore, S(A,B) represents a degree to which A is a

subset of B. In particular, we write A ⊆ B iff S(A,B) = 1.
Fuzzy closure operators were introduced in [7] and studied further by Be-

lohlavek at al., see for instance [8, 9]. The definition given in [7] mirrors more a
crisp thinking, representing a special case of the one given in [8]. Therefore, we
will use the latter.

Definition 1. Define on a set Y two mappings C, κ : LY → LY satisfying

A ⊆ C(A), κ(A) ⊆ A, (1)

S(A1, A2)∗ ≤ S(C(A1),C(A2)), S(A1, A2)∗ ≤ S(κ(A1), κ(A2)), (2)

C(A) = C(C(A)), κ(A) = κ(κ(A)), (3)

for every A,A1, A2 ∈ LY . Then, C is called an L∗-closure operator and κ an
L∗-kernel operator on Y . A system S := {Aj ∈ LY | j ∈ J} is a L∗-closure
system if for each A ∈ LU it holds that

⋂

j∈J
(S(A,Aj)

∗ → Aj) ∈ S. (4)

The system S is called an L∗-kernel system if for each A ∈ LU it holds that
⋃

j∈J
(S(A,Aj)

∗ ⊗Aj) ∈ S. (5)

For the globalisation, (2) becomes

A1 ⊆ A2 =⇒ C(A1) ⊆ C(A2), A1 ⊆ A2 =⇒ κ(A1) ⊆ κ(A2),

and (4) and (5) become
⋂
j∈J,A⊆Aj

Aj and
⋃
j∈J,A⊆Aj

Aj , respectively.

Theorem 1. ([8, 9]) A system S which is closed under arbitrary intersections
is an L∗-closure system iff for each a ∈ L and A ∈ S it holds that a∗ → A ∈ S.
A system S closed under arbitrary unions is an L∗-kernel system iff for each
a ∈ L and A ∈ S it holds a∗ ⊗A ∈ S.

2.2 Formal Fuzzy Concept Analysis

In the following we give brief introductions to Formal Fuzzy Concept Analysis
[10, 5, 11].

A triple (G,M, I) is called a formal fuzzy context if I : G×M → L is
an L-relation between the sets G and M and L is the support set of some
residuated lattice. Elements from G and M are called objects and attributes,
respectively. The L-relation I assigns to each g ∈ G and each m ∈M the truth
degree I(g,m) ∈ L to which the object g has the attribute m. For L-sets A ∈ LG

and B ∈ LM , the derivation operators are defined by

A↑(m) :=
∧

g∈G
(A(g)∗ → I(g,m)), B↓(g) :=

∧

m∈M
(B(m)∗ → I(g,m)) (6)
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for g ∈ G and m ∈ M . Then, A↑(m) is the truth degree of the statement “m
is shared by all objects from A”, and B↓(g) is the truth degree of “g has all
attributes from B”. The operators ↑,↓ form a so-called Galois connection with
hedges ([11]). A formal fuzzy concept (L-concept) is a tuple (A,B) with
A ∈ LG, B ∈ LM such that A↑ = B and B↓ = A. Then, A is called the (fuzzy)
extent and B the (fuzzy) intent of (A,B). We denote the set of all L-concepts
of a given context (G,M, I) by B(G∗,M∗, I). Concepts serve for classification.
Consequently, the super- and subconcept relation plays an important role. The
concept (A1, B1) is a subconcept of (A2, B2), written (A1, B1) ≤ (A2, B2), iff
A1 ⊆ A2 (or, equivalently, B1 ⊇ B2). Then, we call (A2, B2) the superconcept
of (A1, B1). The set of all L-concepts ordered by this concept order forms a
complete fuzzy lattice (with hedge), the so-called fuzzy concept lattice which
is denoted by B(G∗,M∗, I) := (B(G∗,M∗, I),≤), see [11].

3 Fuzzy Attribute Dependencies

Now we are ready to present our new framework. Given a fuzzy formal context,
the user obtains the “interesting” concepts after entering a sort of order on
the groups of attributes, and fix the truth values for their relevance. Recall, we
designed this kind of AD formulas for compounded attributes. Thus, this notion
is not the fuzzy equivalent one of the formulas presented in Section 1. For a
straightforward fuzzification of those formulas see Remark 1.

Definition 2. A fuzzy attribute-dependency formula (fAD) over a set M
of attributes is an expression A v B, where A,B ∈ LM are L-sets of attributes.
A v B is true in an L-set N ∈ LM for α, β ∈ L \ {0} and α ≤ β, written
N |=α,β A v B, if the following condition is satisfied:

if S(A,N) ≥ α, then S(B,N) ≥ β. (7)

For an fAD formula or a set T of fAD formulas, the values α and β are called
the thresholds of A v B and T . An L-concept (C,D) ∈ B(G,M, I) satisfies
A v B if D |=α,β A v B.

For notational simplicity we will sometimes omit α and β from |=α,β provided
they are clear from the setting.

The set of all formal concepts from B(G,M, I) that satisfy a given set T of
fAD formulas is denoted by BT (G,M, I). We call BT (G,M, I) together with the
restricted concept order the fuzzy concept lattice of (G,M, I) constrained
by T and denote it by BT (G,M, I).

The fAD formulas permit a two-sided modelling of the extracted L-concepts.
On the one hand, α and β provide the thresholds to which an intent has to
contain all elements of A and B. On the other hand, the truth degrees of the
elements contained in A and B fix the thresholds to which we want the attributes
to be contained in the intent of a concept satisfying the fAD formula. We will
illustrate this fact in the forthcoming example.
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In applications it is particularly useful to associate to the truth values of
a residuated lattice L a Likert scale L. This allows the user to have a better
understanding of the truth values. For instance let L = {0, 0.25, 0.5, 0.75, 1} be
the support set of some residuated lattice with the associated Likert scale L =
{not important, less important, important, very important, most important},
i.e, 0 =not important, 0.25 =less important, etc.

Example 1. Consider the fuzzy context given in Figure 1. It represents the eval-
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1 0 0.5 0.5 1 1 0 0 0.5 0.5 0.5 1 1
2 1 1 1 1 1 1 1 1 0.5 0.5 0 0
3 0.5 0.5 0.5 1 1 0 1 1 1 1 0.5 0.5
4 1 0.5 1 1 1 0 1 1 0.5 0.5 1 1
5 0 0.5 0 0.5 0.5 0 0 0.5 0.5 0.5 0 0
6 1 1 0.5 1 1 1 1 1 0.5 0.5 0.5 0.5
7 0 0.5 0 0 0.5 0 0 0.5 0 0.5 0 0

Fig. 1. Fuzzy context about employees

uation of the employees of a small business regarding some qualities. Here each
quality is compounded of two or more traits. For instance, an employee is a “good
team player” if he/she is collaborative and not discriminative. The context has
44 L-concepts with the Gödel logic which are far too many to be analysed by a
busy manager. The manager however knows how good or bad the employees do
their jobs and he is interested more in their collaboration than their organisa-
tional skills and more in their adaptivity than in their confidentiality. Therefore,
he chooses the following two fAD formulas

{0.5/c, d, e} v {a, b} and {0.5/i, 0.5/j} v {f, g, h}, (8)

with α = 0.5 and β = 1. Then, he obtains 11 L-concepts which are given in
Figure 2.

The manager realises that the company does neither send its employees to
business trips nor to other companies and the employees should know their
priorities. Therefore, he changes the second fAD formula into

{0.5/i, 0.5/j} v {g, 0.5/h}. (9)
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Extent Intent

1 2 3 4 5 6 7 a b c d e f g h i j k l

1 0 0 0 0 0 0.5 0 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0.5 0 0 0 0.5 0 1 1 1 1 1 1 1 1 1 1 0 0
3 0 1 0 0 0 0.5 0 1 1 1 1 1 1 1 1 0.5 0.5 0 0
4 0 0 0 0 0 1 0 1 1 0.5 1 1 1 1 1 0.5 0.5 0.5 0.5
5 0 1 0 0 0 1 0 1 1 0.5 1 1 1 1 1 0.5 0.5 0 0
6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 1 0 0 1 0 0 1 0 1 0 0
7 0.5 1 0.5 0.5 0.5 1 0.5 0 1 0 0 1 0 0 1 0 0.5 0 0
8 0.5 0.5 1 0.5 0.5 0.5 0.5 0 0.5 0 0 1 0 0 1 0 1 0 0
9 0.5 1 1 1 0.5 1 0.5 0 0.5 0 0 1 0 0 1 0 0.5 0 0
10 1 1 1 1 0.5 1 0.5 0 0.5 0 0 1 0 0 0.5 0 0.5 0 0
11 1 1 1 1 1 1 1 0 0.5 0 0 0.5 0 0 0.5 0 0.5 0 0

Fig. 2. Concepts satisfying (8)

Obviously the concepts from the first fAD formulas are a subset of the concepts
from the second fAD formulas. The second couple of formulas yields 16 concepts,
namely those from Figure 2 and 3.

Extent Intent

1 2 3 4 5 6 7 a b c d e f g h i j k l

12 0 0 0.5 0.5 0 0.5 0 1 1 1 1 1 0 1 1 1 1 1 1
13 0 0.5 0.5 0.5 0 0.5 0 1 1 1 1 1 0 1 1 1 1 0 0
14 0 1 0.5 0.5 0 0.5 0 1 1 1 1 1 0 1 1 0.5 0.5 0 0
15 0 0 0.5 0.5 0 1 0 1 1 0.5 1 1 0 1 1 0.5 0.5 0.5 0.5
16 0 1 0.5 0.5 0 1 0 1 1 0.5 1 1 0 1 1 0.5 0.5 0 0

Fig. 3. Concepts satisfying (9) and the first fAD from (8)

We already have the framework of how to select interesting concepts based
on the preferences of the user. Let us further investigate some properties of the
fAD formulas.

Proposition 1. Let T be a set of fAD formulas. Then, BT (G,M, I) is a com-
plete fuzzy lattice, which is a

∨
-sublattice of B(G,M, I).

Proof. Clearly, BT (G,M, I) ⊆ B(G,M, I) and B(G,M, I) with the restricted
concept order, is a partially ordered subset of B(G,M, I). Further note that
BT (G,M, I) is bounded from below because the least L-concept of B(G,M, I)
is (M↓,M), concept which is compatible with every fAD formula. Now, we have
to show that BT (G,M, I) is closed under arbitrary suprema in B(G,M, I). To
this end let (Aj , Bj) ∈ BT (G,M, I) (j ∈ J) be L-concepts. For any fAD formula
A v B ∈ T , we have Bj |= A v B for every j ∈ J . Now, if there is j ∈ J such
that Bj(a) < α for some a ∈ A, then ∩j∈JBj(a) < α and we are done because
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then ∩j∈JBj |= A v B. Contrary, if for all j ∈ J and all a ∈ A we have
Bj(a) ≥ α, then ∩j∈JBj(a) ≥ α for all a ∈ A. Since Bj |= A v B holds for
all j ∈ J , we also have that Bj(b) ≥ β for all j ∈ J and b ∈ B. Due to the
same argument as before, it holds ∩j∈JBj(b) ≥ β for all b ∈ B and hence we
have ∩j∈JBj |= A v B, showing that BT (G,M, I) is closed under arbitrary
suprema. ut

In general BT (G,M, I) is not closed under arbitrary infima in B(G,M, I).
The fAD formulas are entered by the user. Thus, the chance that these for-

mulas are redundant is very high. Wishful thinking suggests to have a set of
non-redundant formulas because these are then easier to follow and to modify.
Therefore, in the following we will develop methods for removing such redun-
dancies.

Definition 3. An L-set N ∈ LM is a model of a set T of fAD formulas if we
have N |= A v B for each A v B ∈ T . Let Mod(T ) denote the set of all models
of T , i.e.,

Mod(T ) := {N ∈ LY | N |= A v B for each A v B ∈ T}.

An fAD formula A v B follows semantically from T , written T |= A v B, if
for each N ∈ Mod(T ), we have N |= A v B.

Lemma 1. i) N |= A v {l1/y1, . . . , ln/yn} iff N |= A v {li/yi} holds for each
i ∈ {1, . . . , n}.
ii) For each set T of fAD formulas and each fAD formula ϕ, we have T |= ϕ iff
bT c |= ϕ, where bT c := {A v {l/y} | A v B ∈ T and B(y) = l}.

Proof. i) If S(A,N) < α, then we are done. Therefore, suppose S(A,N) ≥ α.
By the definition of S, we have S({l1/y1, . . . , ln/yn}, N) ≥ β if and only if we
have N({li/yi}) ≥ β for all i ∈ {1, . . . , n} and thus N |= A v {li/yi} for all
i ∈ {1, . . . , n}.
ii) Follows by i), omitted due to lack of space. ut

Thanks to Lemma 1 we may merge fAD formulas with the same left-hand
side into a single fAD formula. The new formula is true in a model if and only
if all its component fAD formulas are true in that model. This lemma allows us
also to test semantic entailment in fAD formulas A v {l/y} rather than on the
whole A v B.

In the following we will study the connection between the models of fAD
formulas and L∗-closure systems. It will turn out that any L∗-closure system
can be described by a set of fAD formulas.

Proposition 2. Let T be a set of fAD formulas. Then, Mod(T ) is an L∗-closure
system with ∗ being the globalisation.

Proof. Let {Nj ∈ Mod(T ) | j ∈ J}. We will be showing that Mod(T ) is closed
under arbitrary intersection, i.e.,

⋂
j∈J Nj is a model of T . For any fAD formula
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A v B ∈ T we have Nj |= A v B for every j ∈ J . Now, if there is j ∈ J such that
Nj(a) < α for some a ∈ A, then ∩j∈JNj(a) < α and we are done because then
∩j∈JNj |= A v B. Contrary, if for all j ∈ J and all a ∈ A we have Nj(a) ≥ α,
then ∩j∈JNj(a) ≥ α for all a ∈ A. Since Nj |= A v B for all j ∈ J holds, we
also have that Nj(b) ≥ β for all j ∈ J and b ∈ B. Due to the same argument
as before, ∩j∈JNj(b) ≥ β for all b ∈ B and hence we have ∩j∈JNj |= A v B,
showing that Mod(T ) is a closed under arbitrary intersection.

Mod(T ) is a closed under arbitrary intersection and due to Theorem 1 we
just have to show that for any N ∈ Mod(T ) and any a ∈ L, a∗ → N is a model
of T . However, this condition only holds if ∗ is the globalisation because, then
we have

S(A, a∗ → N) = a∗ → S(A,N) =

{
1, a = 0,
S(A,N), a = 1,

i.e., a∗ → N trivially satisfies any fAD formula if a = 0 or we do not gain
anything new to N in the case that a = 1. ut
Remark 1. One may argue that due to Proposition 2 the fAD formulas are not
strong enough. However, we consider that this is not the case. In the crisp set-
ting, the AD formulas form a kernel system, and due to the connection between
AD formulas and attribute implications (for details see [1]) one may efficiently
compute a non-redundant base of formulas. For instance, if we generalise in a
straight-forward way the AD formulas from [1] to the fuzzy setting, then we also
obtain just crisp like kernel systems. This can be done as follows: Define a fAD
formula A v B, where A,B ∈ LM . Further, A v B is true in an L-set N ∈ LM

for α, β ∈ L \ {0} and α ≤ β, written N |=α,β A v B, if the following condition
is satisfied:

if A ∩N α-true, then B ∩N β-true,

where an L-set X ∩ Y ∈ LM is α-true if there is at least one attribute m ∈ M
such that (X ∩ Y )(m) ≥ α, where α ∈ L. We need the thresholds in order to
ensure that the obtained concepts are indeed relevant. Now, the models of such
formulas form a crisp like kernel system which can be shown in an analogous
way to Proposition 2.

Lemma 2. For any L∗-closure system S in M there is a set T of fAD formulas
over M such that S = Mod(T ).

Proof. Define a set T of fAD formulas by T := {A v CS(A) | A ∈ LM}, where
CS(A) is the closure of A given by the L∗-closure operator CS . Further, choose
α = β = 1. Let N ∈ S, i.e., N = CS(N). We have to show that N is a model
of T , thus let N |= A v CS(A) for every A v CS(A) ∈ T . If S(A,N) < 1, then
N |= A v CS(A) and we are done. Now take S(A,N) ≥ 1, i.e., A ⊆ N . Since
CS is a closure operator we have CS(A) ⊆ CS(N) = N , hence S(CS(A), N) ≥ 1,
i.e., N |= A v CS(A). Thus, N is a model of T and we have the first inclusion,
namely S ⊆ Mod(T ). For the converse inclusion let N ∈ Mod(T ). We have

if S(N,N) ≥ 1, then S(CS(N), N) ≥ 1,
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where S(N,N) ≥ 1 obviously holds and since N is a model of T we must
also have S(CS(N), N) ≥ 1 yielding that N = CS(N), i.e., N ∈ S and hence
Mod(T ) ⊆ S. ut

According to Proposition 2, Mod(T ) is an L∗-closure system, and there-
fore there must exist an L∗-closure operator CMod(T ) : LM → LM such that
N = CMod(T )(N) if and only if N ∈ Mod(T ). Hence, by definition CMod(T )(N)
is the least model in Mod(T ) which contains N . This definition of the L∗-closure
operator does not provide a useful method to compute the closure of a given N .
First, because one has to iterate over all models in Mod(T ) and second, such a
iteration may be impossible if L is infinite because then Mod(T ) is infinite.

Similarly to (fuzzy) attribute implications we proceed as follows: For any set
T of fAD formulas and for any L-set N ∈ LM of attributes, we define an L-set
NT ∈ LM of attributes as follows:

NT := N ∪
⋃
{β ⊗B | A v B ∈ T, S(A,N) ≥ α}. (10)

Further, we define an L-set NTn ∈ LY of attributes for each non-negative integer
by

NTn :=

{
N if n = 0,
(NTn−1)T if n ≥ 1.

(11)

We define an operator clT : LM → LM by

clT(N) :=

∞⋃

n=0

NTn . (12)

Proposition 3. For each N ∈ Mod(T ) we have clT(N) = N .

Proof. Omitted due to lack of space. ut
The next lemma shows that the L∗-closure operator defined on the models

of T coincides with the clT-operator defined in (12).

Lemma 3. Let T be a set of fAD formulas over M . Further let both M and
L be finite. Then, clT is an L∗-closure operator such that for each N ∈ LM ,
CMod(T )(N) = clT(N).

Proof. CMod(T ) is an L∗-closure operator, therefore it suffices to check that
CMod(T ) and clT coincide. To this end let N ∈ LM be an L-set of attributes. By
the definition of clT we have N ⊆ clT(N). We still have to show that clT(N)
belongs to Mod(T ) and that clT(N) is the least model containing N . First of all
note that the finiteness of L and M imply that LM is finite and that there exists
a non-negative integer k such that clT(N) = NTk , where NTk is given by (11).

We still have to show that clT(N) ∈ Mod(T ), i.e., for any A v B ∈ T we have
clT(N) |= A v B. Suppose that S(A, clT(N)) ≥ α. Then, clT(N) = N ∪{β⊗B}.
Obviously, S(B,N∪{β⊗B}) ≥ β, proving that clT(N) ∈ Mod(T ) which contains
N . For any X ∈ Mod(T ) such that N ⊆ X we have to show that clT(N) ⊆ X.
This easily follows by the properties of closure operators and by Proposition 3.
In fact, we have that clT(N) ⊆ clT(X) = X. ut
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Based on the previous result we present an algorithm for the computation of
the closure CMod(T )(N) of a fuzzy attribute set N ∈ LM provided L and M are
finite.

Algorithm 1: Closure( N,T )

1 repeat
2 take A v B ∈ T such that S(A,N) ≥ α and S(B,N) < β;
3 set N to N ∪ {β ⊗B};
4 until forall A v B ∈ T , (S(A,N) < α) or (S(A,N) ≥ α and S(B,N) ≥ β);
5 return N

If we choose more restrictive values for α and β, we have the following con-
nection between fuzzy implications and fAD formulas:

Lemma 4. Let Imp(T ) := {A ⇒ B | for all A v B ∈ T} and T be a set of
fAD formulas. If we choose α = β = 1, then the following holds

Mod(Imp(T )) ⊆ Mod(T ).

Proof. Omitted due to lack of space. ut
Definition 4. Two sets T1 and T2 of fAD formulas are called equivalent, writ-
ten T1 ≡ T2, if for each ϕ1 ∈ T1 and ϕ2 ∈ T2 we have T1 |= ϕ2 and T2 |= ϕ1.

Lemma 5. Let T1 and T2 be sets of fAD formulas. Then, the following are
equivalent:
i) Mod(T1) = Mod(T2),
ii) For any fAD formula ϕ we have T1 |= ϕ⇐⇒ T2 |= ϕ,
iii) T1 ≡ T2.

Proof. Omitted due to lack of space. ut
Now we are prepared to introduce non-redundant bases.

Definition 5. A set T1 of fAD formulas is called a non-redundant base of T
if T ≡ T1 and there is no T2 ⊂ T1 with T2 ≡ T . A set T1 of fAD formulas is
called a minimal base of T if T ≡ T1 and for each T2 such that T ≡ T2, we
have |T1| ≤ |T2|.
Obviously, if T1 is a minimal base of T , then T1 is a non-redundant base of T .
The converse implication is not true in general.

For a given set T of fAD formulas we may compute a non-redundant base as
follows: First note that if T1 := T \ {A v B} and T1 |= A v B, then T ≡ T1.
We may then remove fAD formulas A v B from T step-by-step until there is
no T1 ⊂ T such that T1 ≡ T . The computation of a non-redundant base with
this method is quite laborious. In what follows, we present another connection
between fuzzy attribute implications and fAD formulas which will considerably
simplify this task.

136 Cynthia Vera Glodeanu



Lemma 6. Let T be a set of fAD formulas. We have Mod(T ) = Mod(Imp(T ∗)),
where

Imp(T ∗) := {α⊗A⇒ β ⊗B | ∀A v B ∈ T, α, β thresholds of T}. (13)

Proof. First note that an L-set N ∈ LM is a model of an attribute implication
A⇒ B in a fuzzy setting if ||A⇒ B||N := S(A,N)∗ → S(B,N) = 1.

Let N ∈ Mod(T ) and A v B ∈ T . We have two cases: i) S(A,N) ≥ α
and S(B,N) ≥ β both hold. Consider its first part. Then, for every attribute
m ∈ M , we have A(m) → N(m) ≥ α which by the adjointness property gives
us α⊗A(m) ≤ N(m) and therefore S(α⊗A,N) = 1 and thus S(β ⊗B,N) = 1.
Hence, α ⊗ A ⇒ β ⊗ B||N = S(α ⊗ A,N)∗ → S(β ⊗ B,N) = 1∗ → 1 = 1.
ii) We have S(A,N) < α which is equivalent to S(α ⊗ A,N) < 1. Therefore,
||α ⊗ B ⇒ β ⊗ B||N = S(α ⊗ A,N)∗ → S(β ⊗ B,N) = 0 → S(β ⊗ B,N) = 1.
Cases i) and ii) show that N is a model of Imp(T ∗).

For the converse inclusion let N ∈ Mod(Imp(T ∗)). Then, we have

||α⊗A⇒ β ⊗B||N = S(α⊗A,N)∗ → S(β ⊗B,N) = 1 (14)

for any fuzzy implication A⇒ B ∈ Imp(T ∗). Equation 14 holds if and only if one
of the following situations appears: i) (S(α ⊗ A,N)∗ = 1 and S(β ⊗ B,N) = 1)
⇐⇒ (S(A,N) ≥ 1 and S(B,N) ≥ 1). ii) S(α ⊗ A,N)∗ = 0 is equivalent to
S(α ⊗ A,N) < 1 which further is equivalent to S(A,N) < α. The two cases
prove N |=α,β A v B. ut
Thus, a fAD formula A v B with thresholds α, β is satisfied if and only if the
corresponding implication from Imp(T ∗), where ∗ is the globalisation, holds with
truth value 1. With this link between fAD formulas and fuzzy attribute impli-
cations we may easily compute a minimal base for any set T of fAD formulas.
First, we build the set Imp(T ∗) associated to T as given in (13). For this set
we compute a minimal base of attribute implications BT∗ . Finally, from BT∗ we
obtain a minimal base of fAD formulas for T by

BT := {A� v B� \A� | A⇒ B ∈ BT∗},
where

A� :=
∨
{C ∈ LM | α⊗ C = α⊗A}, B� :=

∨
{D ∈ LM | α⊗D = α⊗B}.

Note that, unlike the crisp case, in the fuzzy setting a formal context does
not have to have a unique stem base (see [12]). The uniqueness is ensured just
in the case of the globalisation.

With the possibility of computing a non-redundant base, the user may review
his choices and alter them conveniently.

4 Conclusion

We have presented two generalisations of crisp attribute dependency formulas
into the fuzzy setting. Both variants allow the user to define a sort of order on
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the attributes. According to the entered constraints the user sees just a part of
the concept lattice, namely the one containing the relevant concepts for him/her.
Due to lack of space, the straightforward generalisation was just briefly presented
in Remark 1.

The second approach was designed for compound attributes, such which in-
corporate more than one quality or specification. This time we required from the
“interesting” concepts that if they contain all less important attributes with a
threshold α, then they should also contain all more important attributes with
a threshold β, were the thresholds are truth degrees such that α ≤ β. For such
formulas, besides showing some of their properties, we focused mainly on the
computation of their non-redundant bases.

Future work will focus on applying the method on real-world data and eval-
uating the outcomes by experts. Another research topic is the exploration of
fAD formulas, where the user may alter the choices made without starting from
scratch each time.
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How Relational Concept Analysis Can Help to
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Abstract. The development of information systems follows a long and
complex process in which various actors are involved. We report an ex-
periment in which we observe the evolution of the analysis model of an
information system through 15 successive versions. We use indicators
on the underlying concept lattices built by applying Relational Concept
Analysis (RCA) to each version. RCA is an extension of FCA which
groups entities based on characteristics they share, including links to
other entities. It here helps in analyzing their evolution. From this expe-
rience, we establish recommendations to monitor and verify the proper
evolution of the analysis process.

Keywords: Relational Concept Analysis, Unified Modeling Language,
UML, Evolution, Model analysis, Metric, Indicator

1 Introduction

In thematic domains, like environment and territories, the development of infor-
mation systems often involves many actors and scientists with different (some-
times opposed) viewpoints on a complex and heterogeneous knowledge. The
analysis is often conducted during sessions with a different team each time,
interspersed with consolidation meetings to cross-check and merge various view-
points on business concepts or on subsets of UML (Unified Modeling Language)
models. Methods and tools are thus welcome to accompany the evolution of
systems.

To study the evolution of a system, classical model indicators can be used
such as the number of elements of various kinds (classes, methods, etc). How-
ever, those indicators do not reveal more complex evolutions such as the precision
in the description of model elements, or the level of abstraction and factoring.
We thus propose to base evolution analysis not only on classical indicators but
also on indicators provided by the application of Formal and Relational Con-
cept Analysis to the successive models. Indeed, Formal Concept Analysis [7]
groups together similar business concepts, highlights and brings out new, more
abstract, business concepts about which the scientists may not have thought,

c© 2012 by the paper authors. CLA 2012, pp. 139–150. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



since the scientists are not necessarily interested in the overall model (experi-
ence shows that scientists focus their analytical efforts on the parts of the model
they are familiar with or that is needed for their research). Furthermore, FCA
removes duplications in a systematic way, by creating new abstractions (within
a robust process that leads to a unique solution). The result of the FCA process
for a class model of an information system is the equivalent of a normal (non
redundant) form. FCA has been used over years for this purpose [9] and is used
in an iterative manner in Relational Concept Analysis (RCA [12]) to take into
account the richness of the relations between classes, attributes, methods, etc.
Because FCA produces a normal form, it offers a framework for comparing the
successive versions of the model, disregarding the potential lack of factoring and
of abstraction.

In this paper, we report such observation on the evolution of the class model
of an information system through 15 successive model versions of the system.
We observe a set of indicators, and establish recommendations to use those
indicators to monitor and verify the proper evolution of the analysis process.
The model under study, Pesticides, is described in Section 2. Section 3 explains
how lattices on class models can be built thanks to RCA. In Section 4, we
introduce indicators on the normal forms and we observe the evolution of those
indicators on Pesticides. We position our work relatively to the literature in
Section 5. Section 6 concludes the paper and gives perspectives of this work.

2 Case Study : the business model Pesticides

The project under study is called Environmental Information System for Pes-
ticides (EIS-Pesticides). It aims at defining an information system grouping to-
gether the knowledge and the information produced by two teams: the first
one (Transfer team), is specialized in the study of the transfer of pesticides to
the rivers and the second one (Practice team) mainly works on the agricultural
practices of farmers. UML is used to capitalize the knowledge of the themati-
cians within an analysis model which will be transformed into the schema of
the database. During this analysis phase, the adopted methodology consisted to
archive the models after each major change. This section answers two questions:
i) what was the Pesticides model "life" during the analysis phase? ii) what was
the evolution of the numbers of model elements?

2.1 A brief history of the Pesticides model

We thus have 15 versions for the Pesticides model [16]. The V0 is the result of
a first analysis of a set of documents and data from the Transfer Team. This
V0 model is free of superclasses. The V1 version has been produced during
the first analysis session with the Transfer team, where the composite design
pattern has been used to organize the hydrographic entities but also those of the
landscape. A model refactoring activity and a decomposition in three packages
lead to the V3 : superclasses have been added and several associations have
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been removed. During the next meeting, the model of agricultural activity was
detailed, producing a strong increase of the number of classes and consequently
the number of model elements (V4 model).

As the model on the activity of metrology was not correct, it was entirely
reanalyzed in the V5 model. A copy of the corresponding package was made in
order to avoid the loss of concepts, thus producing a strong increase of the model
elements. The V6 model results from business concept refinement. To obtain
V7, the project leader has removed the remaining concepts wrongly introduced
copying the activity model of metrology, thus the model elements number has
strongly decreased. The V8 model results from the assignment of a type to
all the attributes, and the specification of all the features of the associations
(name, cardinalities, name roles). In the V9 model, a pictogram-based language
[17, 18] was introduced for spatiality (point, line and polygon) and temporality
(time point and time period) notions, it has resulted in the deletion of attributes
and their substitution by stereotypes. The next versions (V10 to V14) result
from classical analysis : refactoring, errors corrections and specification of some
non-detailed items.

2.2 Evolution of the numbers of Pesticides model elements

In this section, we analyze the quantity of the included model elements on differ-
ent versions of the Pesticides model. We study the number of classes (#Classes1),
attributes (#Attributes), associations (#Associations) and the total. Figure 1
shows those metrics for the 15 versions.
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Fig. 1. Evolution of the different model elements

#Classes: The number of classes globally increases (except in a few steps):
from about 50 classes in V0 to more than 170 classes in V14. The increase from
V0 to V3 is explained by the deepening of V0. New business concepts continue
to be added up to V4, as the analysis progresses. At V5, classes are duplicated,
explaining the large increase. The decreasing between V6 and V7 corresponds
to the cleaning-up done by the project leader. Two stable plateaus are observed

1 #Classes means number of classes
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from V8 to V10 and V11 to V14. The increase from V10 to V11 corresponds to
a big design activity.

#Attributes: When the attribute number increases, this may indicate that
business concepts are more precisely described. This is the case between V0 and
V1. The introduction of superclasses (more general business concepts) in V2
may explain the decrease of the attribute number, because redundancies may
have been removed. Large increase from V4 to V5 may be explained by the
duplication of a package and decrease between V6 and V7 by the cleaning-up
activity. From V10 to V11, a very slight increase indicates that actors have added
some precision on the existing business concepts.

#Associations: This metric is an indicator of the relational description of
the business concepts. A slight decrease is observed for the very first versions
(V0 to V3) followed by a moderate growth in recent versions of the model. This
reflects two work phases. In the first, the trainee model was completely restruc-
tured, and the decrease may be explained by the introduction of superclasses.
Associations may have been factored out on those superclasses. Then, new points
of view brought by the different actors may explain the growth.

3 Relational Concept Analysis and model normalization

Like FCA [10], the RCA framework can be used to produce normal forms for
UML models that eliminate redundant descriptions, add all the implicit special-
ization relationships and highlight relevant abstractions. Such a normalization
can be seen as the transposition of the normalization step [4] used for the de-
sign of relational databases. We illustrate these characteristics on the model of
Figure 2 which contains attribute redundancies (e.g. Device Type) and associa-
tions which deserve to be generalized (e.g. Groundwater Instrumentation and
Rainfall Instrumentation). An FCA approach applied to such a UML model
would, for example, describe the classes by their attributes names, the associa-
tions by their roles names and attributes by their type name. The description
is given in the form of binary tables called formal contexts. The result of FCA
is a lattice of concepts: the entities taken into account in the formal context
are grouped according to the properties they share. The discovered groups of
entities sharing properties are called concepts. Concepts are formed by maxi-
mal sets of entities (the extent of the concept) sharing maximal sets of common
properties (the intent of the concept). They are organized in a classification with
a lattice structure. The obtained lattice enables to find higher level superclasses
like Measuring Device which factorizes the attribute Device Type. But new
discovered abstractions (e.g. on classes) cannot be exploited to discover other
abstractions (e.g. on associations, etc.).

To go beyond, RCA extends FCA on a context family. This family, com-
posed of formal contexts and relational contexts, is called Relational Context
Family (RCF). RCA iterates on the RCF and builds several lattices, one for
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each context representing a model entity2, that are then used to normalize the
UML model. The normal form for the Measuring station model is shown in
Figure 3. As the relational contexts encode the relationships between the various
entities, we use them in particular to formalize (through roles) the UML notion
of association between classes. The iterative procedure of RCA first finds the
class Measuring Device (given by the expert), then the role of type Measuring
Device (Devices), and later the association Instrumentation (named by the
expert) which generalizes the associations Groundwater Instrumentation and
Rainfall Instrumentation. Due to the cardinality of the new association, the
semantics of the model is changed. We should add an OCL constraint to allow
only one instance of Rain Gauge and one instance of Piezometer. In this work,
we use the lattices that are at the origin of these normal forms as a framework
to better compare models and understand their evolution.

Station

0..1

Device

Groundwater InstrumentationMeasuring Station

Rain Gauge

Administrative Institute : string
Station Name : string

Tube High : real
Device Number : integer
Device Type : string

Piezometer

Tube Diameter : real
Device Number : integer
Device Type : stringStation

1

0..1

Device

1

InstrumentationRainfall

Fig. 2. Extract of the measuring station model

Station

Instrumentation Devices

0..2

Measuring Device

Rain GaugePiezometer

Device Number : integer
Device Type : string

Measuring Station

Administrative Institute : string
Station Name : string

Tube High : realTube Diameter : real

1

Fig. 3. Refactored model of the Measuring station model (see Fig. 2)

4 Evolution through the indicators on the lattices

4.1 Studied RCA configurations

We denote RCA configuration the choice of the elements, the features and the
relations that have to be taken into account to produce the normal form. We
here consider two configurations C1 and C2 composed of relations between the
main modeling elements including classes, attributes and associations. In UML,
navigability is a notion that applies to an associationR ⊆ Csource×Ctarget. IfR is

2 The contexts and lattices of this example are presented at the URL: http://www2.
lirmm.fr/~huchard/Documents/Papiers/RCA_Pesticide_model_example.pdf
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navigable from Csource to Ctarget, this means that from an object of Csource, you
can reach (or query, or send a message to) an object of Ctarget. Furthermore, in
our current analysis we select only the roles that are named because they have
a stronger semantics. In the two defined configurations, the formal contexts
only describe the modeling elements with their names. To preserve inheritance
relationships, classes are also described by the names of their superclasses.

The RCA configuration C1 comprises the following elements: classes, at-
tributes, operations, associations and roles (described by their names). The rela-
tional contexts of the RCF are as follows: owns1 ⊆ classes×attributes, owns2 ⊆
classes× operations, owns3 ⊆ classes× roles, owns4 ⊆ Associations× roles.

The RCA configuration C2 extends the previous one by adding a fifth relation
hasType5 ⊆ roles×classes. This configuration leads to much more complex lat-
tices. After several experiments, we observed that the better informative results
are obtained at step 5, probably due to the structure of the UML meta-model3.
Our experiments on the complete process (beyond step 5) are very difficult to
interpret. It would be interesting to study this point.

As support tools for our experiments, we developed an UML profile in Ob-
jecteering4, that makes use of the framework eRCA (Eclipse Relational Concept
Analysis)5 for the lattice construction. We applied the two RCA configurations
on the 15 versions of the model Pesticides.

4.2 Lattice indicators evolution

In this section, we follow the evolution of Pesticides with information extracted
from lattices used as a normalization framework. For each considered kind of
UML model elements, we computed the following indicators to evaluate the
unicity of concepts within the model and the increase in new abstract concepts:

1. The ratio of Merged concepts: #Merge/#Model Elements. Merged concepts
have a proper extent that contains more than one element. They merge
several formal objects which have the same description. Note that proper
extents contain elements not present in the extent of sub-concepts.

2. The ratio of the New concepts: #New/#Model Elements. New concepts
are the concepts whose proper extent is empty. They correspond to the
factorization of formal attributes and no formal object is described exactly
by their formal attribute set.

We report only the analyses on classes attributes and associations because the
number of operations is small and roles behave more or less like associations.
The indicators have been computed on lattices at the end of each RCA step for
the 15 versions. Visually, the lattices of each version become more complex and
indicators help us to go into a detailed analysis.

3 To navigate from a class to another one via associations, five model elements are
crossed: Class, EndAssociation, Association, EndAssociation and Class.

4 http://www.objecteering.com/
5 http://code.google.com/p/erca/
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Fig. 4. C1-C2: #Merge/#Classes

Indicators on Classes
#Merge/#Classes: This indicator counts the number of Merged concepts in
the class lattice and compares it to the class number in the model. These concepts
group classes with same name and same description. This indicator has the same
value in all the RCA steps in the two chosen configurations. In Figure 4, we
observe two peaks in V5 and V6 while, for other versions, the indicator is low.
Those peaks come from the existence of duplicated classes, e.g. in V5 we have
three classes called Active ingredient that have the same attributes. Indeed, in
V5 and V6, a package was duplicated during a working session. For versions
V0, V1, V2, V9 and V10, we do not observe merged concepts: each class owns
something that the others do not own. The more the ratio is high, the more we
have identical classes. This ratio should alert the designer on the versions where
it is high, especially if it does not decrease in the following versions. It is very
different from the case where we add many classes.
#New/#Classes: This indicator counts the number of New concepts in the
class lattice relatively to the class number in the model. The new concepts cor-
respond to new class abstractions that would be needed to factorize the similar
characteristics of the existing classes. The ratio differs for the two configurations
and changes during the RCA steps. It reflects the missing factorizations rate.
In the case of C1 (Fig. 5), we notice a progressive decrease although the class
number increases. The evolution suggests that even if there are more and more
classes, the abstraction level of the model improves. This is confirmed by the
fact that the project leader regularly factorized attributes and associations on
new added superclasses. The duplication done in V5-V6 degrades the abstrac-
tion level: the ratio increases in these steps. This suggests that in the duplicated
classes there were missing factorizations.

Analyzing Figure 6 (step 5), we notice peaks suggesting a lack of factoriza-
tion in V4, V5, V6 and V13, V14. In V4, this is explained by the addition of
many classes that lack factorization (also visible in C1, but more evident here
because of the inclusion of more information in the configuration). In V5 and
V6, this is the effect of the package duplication. In V13, associations have been
added, and the project leader a posteriori judges that they introduced missing
class factorization. Reversely, a significant fall is observed between V1 and V2,
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due to the refactoring of many associations inserted in the first version by the
trainee. When the model is improved on the factorization of classes (resp. asso-
ciations), the ratio should decrease in C1 (resp. in C2-step5). When it increases,
the designer should be warned and (s)he should consider looking at duplications
in attributes and associations that (s)he should factorize in relevant superclasses.

Indicators on Attributes
#Merge/#Attributes: This metric gives the ratio of Merged attribute con-
cepts in the attribute lattice relatively to the attribute number (Fig. 7). These
concepts group attributes with same name (in a model, this often corresponds
to redundant attributes). A general decreasing tendency is observed, revealing
less attribute redundancy and confirming that factorization has been improved.
The ratio remains low. Peaks in V1 to V3 correspond to important additions
of attributes with similar names. The peak at versions V5 and V6 corresponds
to the mentioned package duplication. After V7, the attribute number slightly
increases, but the ratio decreases, thus the attributes that are introduced do not
introduce redundancy because either these are new properties or the designer
improves the model by removing the repetition of property names.
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#New/#Attributes: This ratio expresses the proportion of new attribute con-
cepts relatively to the attributes (Fig. 8). With the chosen configurations (C1
and C2), there are no new concepts in the attribute lattice. However, attributes
participate massively in the creation of new class and association abstractions.

Indicators on Associations
#Merge/#Associations: This ratio gives the number of Merged association
concepts relatively to the number of associations (Fig. 9). When decreasing ten-
dencies are observed, the designer confirmed that the model was improved by
association and role factorization. In V0 and V1 which not contain superclasses
and V5 and V6 where a lot of associations are duplicated, the ratio of merged
concepts is high because the factorization level is low.
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#New/#Associations: This ratio gives the number of New association con-
cepts relatively to the number of associations. It expresses the potentially missing
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abstractions of associations. For C1 (Fig. 10), the global tendency in versions V0-
V9 is decreasing, suggesting that factorization improves. At the end, it slightly
grows, and analyzing the models, we noticed that the added associations needed
factorization. For C2 (Fig. 11), we notice that V1 lacks many class factorizations,
and comparatively not so many association factorizations. Actually, V1 version
is a rather chaotic transition from the trainee model to the current model. From
V2 to V4, there are very few associations, and classes and associations behave
differently. They do not much influence each other. After V7, classes and associ-
ations have the same behavior, indicating a needed factorization growing at the
end (V13 and V14).

4.3 Discussion

The evolution of the data encapsulation level is highlighted by the evolution
of the number of classes. The evolution of attribute number might indicate the
level of completion of the model. The relational aspect is shown by the evolution
of the numbers of roles and associations. But these numbers of elements cannot
indicate if we really completed the model or if we have introduced duplication
and redundancies. This is where lattice-based indicators help. By comparing the
results of indicators and the known "life" of the model, we can draw advice.
The evolution of the number of merged concepts indicates if identical or badly
described model elements have been introduced into a version. The evolution
of new concept numbers gives a measure of the increasing of the abstraction
level of the model or its degradation. The new class and association concepts
also indicate the effort needed to reach a normalized model, by computing the
number of abstractions necessary to factorize the entities.

5 Related Work

Several well known software metrics have been proposed for measuring the qual-
ity of inheritance [3, 15]. For example, DIT [3] measures the length of a longest
path from the root to a leaf of the inheritance tree; NRM [15] counts the number
of overridden methods (not inherited, not specialized). High inheritance use and
overriding correspond to an increasing complexity, but also to an improvement
of the abstraction level and of the opportunity to reuse methods and attributes
in subclasses. Empirical evaluations [2, 11] of these metrics assess if they can
predict faults in software. Here, we are not interested in detecting faults but
in following the construction of a class model covering a domain. Counting the
main modeling elements gives indications about the degree of reification of the
model and the degree of completion of the model. Indicators built using the
lattices assess the degree of reification, but more deeply analyze the abstraction
level of reified entities, their structuring and their description.

In [5], the proposed metrics measure the quality of factoring in inheritance hi-
erarchies by reference to an ideally factorized hierarchy obtained by constructing
a Galois subhierarchy on flattened class description. Here, we observe identified
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categories of concepts in lattices (Merged and New concepts) because they are
immediately understandable by the expert, who can exploit the resulting con-
cepts to build new classes or associations in his/her model.

Software metrics are included in frameworks dedicated to software evolution
analysis. In [14], an evolution matrix of classes is proposed. The size of classes
(in LOC) is represented by a variable-size box representing the class in a specific
version. Main evolution phases emerge (growth, stabilization, etc.) and specific
behavior of classes (e. g. permanently large classes) are highlighted. Pingzer et
al. [21] use Kiviat diagrams for visualizing metrics through several releases.

Other approaches use information on the releases [6], or on basic changes or
code churns [20]. In [13], authors propose a meta-heuristic-based approach for
determining an editing distance of minimal cost between two successive versions
of a class model. This distance counts the design changes between the versions
and is compared with traditional metrics for predicting defects. Here we want
to understand evolution and identify its main phases. We use information on
the model elements, and on the lattices to alert the designer on the lack of
details or the lack of abstraction of the model. In the database domain, several
approaches have been proposed for managing the evolution of object-oriented
database schema [1, 19, 22]. They mainly define the operations used for schema
evolution. An evolution combines a set of primitive evolution operations as well
as global rules used for validating or invalidating the evolution. Here we propose
a set of indicators for observing and understanding the evolution. We interpret
results w.r.t. the known evolution history and we establish recommendations.

6 Conclusion and perspectives

In this paper, we presented an observation of the evolution of the business class
model of an information system. Metrics on model elements and indicators on
the lattices generated with RCA are systematically computed on the 15 versions
of Pesticides model. The results of these metrics and indicators offer to the model
designer a dashboard that can be used to monitor the process of analysis of its
information system. Indicators based on RCA give a normalization framework
for the monitoring, highlighting aspects of the evolution that are not captured
by the model metrics. The observation of the evolution of the analysis process on
15 versions of the Pesticides model allowed recommendations to be extracted,
that are confirmed by the story of the model.

As future work, we will implement traceability links to better monitor and
understand the evolution of business concepts in the analysis process to help the
designer. Beyond the evolution analysis, and following tracks of previous work,
we would like to better control the new concepts that emerge from RCA to build
a normalized UML model.
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Abstract. The classification of possible errors in object intents is given
and some possibilities of exploring them are discussed. An approach for
finding some types of errors in new object intents is introduced. This
approach is based on finding implications from an implication basis of
the context that are not respected by a new object. It is noted that this
approach may lead to a computationally intractable solution. An alter-
native approach based on computing closure of subsets of object intent
is considered. The alternative approach allows one to find a polynomial
time algorithm and to deal with inconsistent combination of attributes.
This algorithm may also be used to prove object’s correctness (existence)
or to add missing attributes and remove unnecessary attributes from the
object’s intent. Experimental results are discussed.

Keywords: formal context, implication, error exploration

1 Introduction

The work is motivated by the idea of building a multi-user system based on
methods of Formal Concept Analysis. Consider two well known multi-user data
representation systems: QED and Wikipedia. The aim of the QED project ([1])
is to build a single, distributed, computerized repository that rigorously repre-
sents all important, established mathematical knowledge. For this purpose all
the input data for QED project should be mathematically formalized. However,
it is not always possible in practice. In Wikipedia one may input any data, but
no reasoning is supported. To find inferences or consequences from data given
in Wikipedia one should read it and process it by own means. However, Formal
Concept Analysis offers methods for reasoning with not completely formalized
data. Error finding tools are absolutely necessary for such multi-user systems.
In Wikipedia the task is solved by moderations, in QED project all the data is
checked by automatic provers. To our knowledge there is no FCA-based research
on error detection.
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In this paper we discuss possible error types in new object intents, choose
two most important ones, and propose efficient methods for finding them. We
provide two different approaches for revealing such errors: one based on com-
puting implication system of the context and another one based on computing
the closures of the subsets of the new object intent. Since computing closures
may be performed much faster we improve and generalize this approach and fi-
nally obtain a procedure for finding all possible errors of considered types. This
procedure may also be used to prove correctness of a given object. However,
it is not possible to completely escape the necessity of checking some objects
by hand. However, the procedure allows one to prove the correctness of input
data checking by hand only maximal objects. We finish the paper by discussing
experimental results.

In this paper we assume that we are given a context (possibly empty) with
correct data and a number of new object intents that may contain errors. This
data is taken from some data domain and we may ask an expert whose answers
are always correct. However, we should ask as few questions as possible.
All sets and contexts we consider in this paper are assumed to be finite.

2 Main Definitions

Let G and M be sets. Let I ⊆ G ×M be a binary relation between G and M .
Triple K := (G,M, I) is called a (formal) context.
Set G is called a set of objects. Set M is called a set of attributes.

Consider mappings ϕ : 2G → 2M and ψ : 2M → 2G: ϕ(X) := {m ∈ M |
gIm for all g ∈ X}, ψ(A) := {g ∈ G | gIm for all m ∈ A}. For any X1, X2 ⊆
G, A1, A2 ⊆M one has

1. X1 ⊆ X2 ⇒ ϕ(X2) ⊆ ϕ(X1)

2. A1 ⊆ A2 ⇒ ψ(A2) ⊆ ψ(A1)

3. X1 ⊆ ψϕ(X1) and A1 ⊆ ϕψ(A1)

Mappings ϕ and ψ define a Galois connection between (2G,⊆) and (2M ,⊆), i.e.
ϕ(X) ⊆ A ⇔ ψ(A) ⊆ X. Usually, instead of ϕ and ψ a single notation (·)′ is
used. (·)′ is sometimes called a derivation operator. For X ⊆ G the set X ′ is
called the intent of X and is denoted int(X). Similarly, for A ⊆M the set A′ is
called the extent of A and is denoted ext(A).
Let Z ∈M ∪G. (Z)′′ is called the closure of Z in K. Applying Properties 1 and
2 consequently one gets the monotonicity property: for any Z1, Z2 ∈ G∪M one
has Z1 ⊆ Z2 ⇒ Z ′′

1 ⊆ Z ′′
2 .

Let m ∈ M,X ⊆ G, then m is called a negated attribute iff m ∈ X ′ whenever
m 6∈ X ′.

An implication of K := (G,M, I) is defined as a pair (A,B), written A →
B, where A,B ⊆ M . A is called the premise, B is called the conclusion of
implication A → B. Implication A → B is respected by a set of attributes N if
A * N or B ⊆ N . Implication A→ B holds (is valid) in K if it is respected by
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all int(g), g ∈ G, i.e. every object, that has all the attributes from A, also has
all the attributes from B. Implications satisfy Armstrong rules:

A→ A
,

A→ B

A ∪ C → B
,

A→ B,B ∪ C → D

A ∪ C → D

A support of an implication in context K is the set of all objects of K, whose
intents contain the premise and the conclusion of the implication. A unit impli-
cations is defined as an implication with only one attribute in conclusion, i.e.
A → b, where A ⊆ M, b ∈ M . Every implication A → B can be regarded as
the set of unit implications {A→ b | b ∈ B}. One can always observe only unit
implications without loss of generality.

An implication basis of a context K is defined as a set L of implications of K,
from which any valid implication for K can be deduced by the Armstrong rules
and none of the proper subsets of L has this property.
A minimal implication basis is an implication basis minimal in the number of
implications. A minimal implication basis was defined in [6] and is known as
the canonical implication basis. In paper [5] the premises of implications from
canonical base were characterized in terms of pseudo-intents. A subset of at-
tributes P ⊆M is called a pseudo-intent, if P 6= P ′′ and for every pseudo-intent
Q such that Q ⊂ P , one has Q′′ ⊂ P . The canonical implication basis looks as
follows: {P → (P ′′ \ P ) | P - pseudo-intent}.

We say that an object g is reducible in a context K := (G,M, I) iff ∃X ⊆ G :
g′ =

⋂
j∈X

j′.

3 Classification of Errors

In this section we use the idea of data domain dependency. Usually objects and
attributes of a context represent entities (e.g. physical objects, mathematical
instances, goods and services, etc.). Dependencies may hold on attributes of such
entities (e.g. if an object represents a convex quadrangle, the sum of all angles
should be equal to π). However, such dependencies may not be implications
of a context as a result of an error in object intents. Thereby, data domain
dependencies are such rules that hold on data represented by objects in a context,
but may erroneously be not valid implications of a context. We aim to restore
valid dependencies and therefore correct errors.

Every object in a context is described by its intent. In the data domain there
may exist dependencies between attributes. In this work we consider only de-
pendencies that do not have negations of attributes in premises. As mentioned
above there is no need to specially observe non-unit implications. Consider pos-
sible types of such dependencies (A ⊆M, b, c ∈M):

1. A→ b
2. A→ b
3. A→ b ∨ c
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4. A → Φ, where Φ is any logical formula not considered above, for example,
Φ = a ∨ (b ∧ c)

If we have no errors in a context, all the dependencies of Type 1 are deducible
from implication basis. However, if we have not yet added enough objects in the
context, we may get false consequence. Nevertheless, it is guaranteed that none
of valid dependencies is lost, and, as we add objects without errors we reduce
the number of false consequences from the implication basis.
The situation is different if we add an erroneous object. It may violate a depen-
dency valid in the data domain. In this case, until we find and correct the error,
we are not able to deduce all dependencies valid in the data domain from the
implication basis, no matter how many correct objects we add afterwards.
Now we take a closer look at various possible cases. If a dependency of Type 3
holds in the data domain, there should be a restriction on reducible objects in
the context. However, reducible objects do not change neither the closure sys-
tem, nor the implication basis of a context. This case would be an interesting
direction for further investigation, but now we do not consider this case.
In Type 4 formula Φ can be represented in conjunctive normal form. That is
why we may hope that if it is possible to find and generalize solution for Type
3, we would be able to reveal dependencies of Type 4 as well.
Types 1 and 2 are most simple and common dependencies. In this work we
try to find the algorithm to reveal these two types of dependencies and find
corresponding errors.

4 Finding Errors

We introduce two different approaches to finding errors. The first one is based
on inspecting the canonical basis of a context. When adding a new object to the
context one may find all implications from the canonical basis of the context
such that the implications are not respected by the intent of the new object.
These implications are then output as questions to an expert in form of unit
implications. If at least one of these implications is accepted, the object intent
is erroneous. Since the canonical basis is the most compact (in the number of
implications) representation of all valid implications of a context, it is guaranteed
that minimal number of questions is asked and no valid dependencies of Type 1
are left out.
Although this approach allows one to reveal all dependencies of Type 1, there
are several issues. The problem of producing the canonical basis with known
algorithms is intractable. Recent theoretical results suggest that the canonical
base can hardly be computed with better better worst-case complexity than that
of the existing approaches ([3], [2]). One can use other bases (for example, see
progress in computing proper premises [9]), but the algorithms known so far are
still too costly and non-minimal bases do not guarantee that the expert is asked
minimal sufficient number of questions.

However, since we are only interested in implications corresponding to an
object, it may be not necessary to compute a whole implication basis. Here is
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the second approach. Let A ⊆M be the intent of the new object not yet added
to the context. m ∈ A′′ iff ∀g ∈ G : A ⊆ g′ ⇒ m ∈ g′, in other words, A′′

contains the attributes common to all object intents containing A. The set of
unit implications {A → b | b ∈ A′′ \ A} can then be shown to the expert. If all
implications are rejected, no attributes are forgotten in the new object intent.
Otherwise, the object is erroneous. This approach allows one to find errors of
Type 1.

5 An Example

Consider the following example with convex quadrangles. The formal context in
Fig. 1 contains convex quadrangles and their properties. The context is not full,
i.e. not all possible convex quadrangles are considered, and some objects in the
context are reducible (they do not bring new information in the implication basis
of the context). Seven attributes are considered. Attributes “has equal legs” and
“has equal angles” require at least two angles/legs of a quadrangle to be equal.
Some dependencies on attributes are obvious, e.g., it is clear that if all angles
are equal in a quadrangle, then this quadrangle definitely has equal angles.
Four errors are presented in Fig 2. Errors are added to the context in Fig. 1 one
at a time. One should treat an error as an object to be added to the context.
The context without errors in Fig. 1 is denoted K , (·)′ is the corresponding
derivation operator.
The context of errors in Fig. 2 is denoted by Ke , (·)e is the derivation operator
for Ke.

Example 1. {Erorr 2}e ={has equal legs, has right angle, all legs equal, all angles
equal}
{Erorr 2}e′′ ={has equal legs, has right angle, all legs equal, all angles equal,
has equal angles}

The canonical basis of the context K in Fig. 1 looks as follows:

1. at least 3 different angles → at least 3 different legs
2. all angles equal → has equal angles, has equal legs, has right angle
3. all legs equal → has equal angles, has equal legs
4. has right angle, at least 3 different legs → at least 3 different angles
5. has equal angles, has equal legs, at least 3 different legs, all legs equal→ has

right angle, at least 3 different angles, all angles equal
6. has equal angles, has equal legs, at least 3 different legs, all angles equal, has

right angle, at least 3 different angles → all legs equal
7. has right angle, has equal legs, all legs equal, has equal angles → all angles

equal

Consider Error2. {Erorr 2}e ={has equal legs, has right angle, all legs equal,
all angles equal}
Using the first approach we find that this object does not respect Implications 2
and 3. It is easy to see that both implications are valid in data domain. Thereby,
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Square × × × × ×
Rectangle × × × ×
Quadrangle × ×
Rhombus × × ×
Parallelogram × ×
Rectangular trapezium × × × ×
Quadrangle with 2 equal legs and right angle × × × ×
Isosceles trapezium × × ×
Rectangular trapezium with 2 equal legs × × × × ×
Quadrangle with 2 equal angles × × ×
Quadrangle with 2 equal legs × × ×
Quadrangle with 2 equal legs and 2 equal angles × × × ×

Fig. 1. Context of convex quadrangles K
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Error4 × × × ×

Fig. 2. Context of errors Ke
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the expert recognizes object as an error.
As {Erorr 2}e′′ ={has equal legs, has right angle, all legs equal, all angles equal,
has equal angles}, the second approach yields the following implication: {has
equal legs, has right angle, all legs equal, all angles equal} → {has equal angles}.
This implication is also valid in data domain. Although this implication is less
general than Implications 2 and 3, it is sufficient to indicate an error.

6 Improvements

Obviously, applying the derivation operator two times is much easier task than
computing the canonical basis, and can be performed in polynomial time. How-
ever, the following case is possible. Let A ⊆ M be the intent of the new object
such that @g ∈ G : A ⊆ g′. In this case A′′ = M and the implication A→ A′′ \A
has empty support. This may indicate an error of Type 2, because the object
intent contains combination of attributes impossible in the data domain, but
the object may be correct as well. An expert could be asked if the combination
of attributes in the object intent is consistent in the data domain. For such a
question the information already input in the context is not used. More than
that, this question is not sufficient to reveal an error of Type 1.

Proposition 1. Let K = (G,M, I), A ⊆M . The set

IA = {B → d | B ∈MCA, d ∈ B′′ \A ∪A \B},
whereMCA = {B ∈ CA|@C ∈ CA : B ⊂ C} and CA = {A∩g′ | g ∈ G}, is the set
of all unit implications (or their non-trivial consequences with some attributes
added in the premise) of Types 1 and 2 such that implications are valid in K,
not respected by A, and have not empty support.

Proof. Let (E → f) ∈ IA. As E = A ∩ g′ for some g ∈ G, f ∈ g′. Consider
possible cases:

1. f ∈ E′′ \ A. As follows from the definition of derivation operator, the im-
plication is valid and f ∈ g′, i.e. at least g is in support of this implication.
More than that, E′′ \A * A and implication is not respected by A.

2. f ∈ A \ E. Since E is a maximal intersection (@C ∈ CA : E ⊆ C), there does
not exist object ĝ ∈ G such that E ∪m ∈ ĝ′, for any m ∈ A \ E. This proves
that implication is valid and at least g is in support of this implication. More
than that, since A \ E ⊆ A the implication is not respected by A.

Now let E → f be a valid implication not respected by A with a non-empty
support. Then E ∈ A, f /∈ A and there exists g ∈ G such that E, f ∈ g′. By
construction there exists B ∈MCA such that E ⊆ A∩g′ ⊆ B. Consider possible
cases:

1. f ∈ M . As implication is valid and not respected by A, we have f ∈ (A ∩
g′)′′ \ A. From monotonicity property it follows that f ∈ B′′. It shows that
(B → f) ∈ IA.
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2. f ∈ M . Let f = v. As implication is valid, there does not exist ĝ ∈ G such
that v ∈ ĝ′. Then v ∈ A \B and (B → f) ∈ IA. ut
Proposition 1 allows one to find an algorithm for computing the set of ques-

tions to an expert revealing possible errors of Types 1 and 2. The pseudocode is
pretty straightforward.

6.1 Pseudocode

inspect(K:=(G, M, I), A⊆M)
1. if A′′=A:

2. return ∅
3. Candidates = {object′∩A | object∈G}
4. Candidates = {C∈Candidates |

@B∈Candidates: C⊆B}
5. Result = ∅
6. for Candidate in Candidates:

7. Result.add({Candidate → d |

d∈(Candidate′′\A ∪ A \ Candidate)})
8. return Result

A is the intent of the new object. In the third line we compute the set of all
subsets that can produce the desired implication. In the fourth line we discard
all the non-maximal elements. In lines 6 and 7 we compute closures and add the
corresponding implications.

If we try to add a new object intent such that it is not contained in any object
intent already in the context, we should ask a new question to the previous new
object intent. Indeed, now there may exist new valid implications with nonempty
support. However, it is easy to see that such a question is exactly the question
to the new object intent with negated conclusion. Indeed, let B → c be the
implication representing the question to the new object. If it is rejected and the
new object is added to the context, then the new object respects the implication
B → c. As the implication B → c was asked, there were no object intents in the
context respecting implication B → c. That is why the implication B → c was
never asked before and should be asked now. Finding such implications does not
require any time and guarantees independence of the order of adding new object
intents.
It is worth noting that considering only implications with non-empty support is
not always safe. On the one hand, it allows one to avoid questions not based on
any input information. On the other hand, this consideration does not allow one
to state that there are no errors in an object. However, it suffices to check only
maximal object intents in the context at any point in time, because only they
may contain combinations of attributes not occurring elsewhere in the context.
So, in order to avoid doubling the work, one should not consider implications
with empty support, checking maximal object intents “by hand” whenever it is
needed to show that the context is free from errors of Types 1 and 2.
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7 Results

For the sake of compactness in this section we present implications in non-unit
form. The name inspect_dg is used to denote the function implementing the
first described approach (involving the canonical basis).

7.1 Example

Inspecting Error1:

inspect_dg

at least 3 different angles → at least 3 different legs
all legs equal → has equal angles, has equal legs

inspect

has equal legs, at least 3 different angles → at least 3 different legs,
all legs equal
has equal legs, all legs equal → has equal angles, at least 3 different angles

Both algorithms reveal possible errors in a similar manner, although there
are obvious differences. In the output of inspect_dg the premises are smaller
than in the output of inspect. The latter also reveals dependencies of Type 2.
It is easy to see that all output implications hold in data domain. For example,
if all legs are equal in a quadrangle, it should have equal angles and should not
have 3 different angles. As a corollary this object should be recognized as an
error.

Inspecting Error2:

inspect_dg

all angles equal → has equal angles, has equal legs, has right angle
all legs equal → has equal angles, has equal legs

inspect

has right angle, has equal legs, all legs equal, all angles equal → has equal
angles

In this example we are able to ask even less number of questions to an expert
using inspect as with inspect_dg. This is the result of finding implications
generated by maximal subsets of object’s intent. Again, all implications are valid
in data domain. The intent of Error2 occurs in the context (in the intent of
Square), that is why we do not get any negated attributes in the output of
inspect.
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Inspecting Error3:

inspect_dg

all angles equal → has equal angles, has equal legs, has right angle
all legs equal → has equal angles, has equal legs

inspect

has equal angles, has right angle, at least 3 different legs, at least 3 different
angles → all angles equal, all legs equal
has equal angles, has right angle, all legs equal, all angles equal→ has equal
legs, at least 3 different angles, at least 3 different legs

In the case of Error3 we get both implications from the output of inspect_dg
combined in one implication with a bigger premise in the output of inspect. In
addition we obtain several implications with negated attributes. It is easy to see
that all implications hold in the data domain.

Inspecting Error4:

inspect_dg

has equal angles, has equal legs, at least 3 different legs, all legs equal→ has
right angle, at least 3 different angles, all angles equal

inspect

has equal angles, has equal legs, all legs equal → at least 3 different legs
has equal angles, has equal legs, at least 3 different legs → all legs equal

Error4 is a very special case where the corresponding implication from canon-
ical basis has empty support. In the output of inspect_dg we obtain all questions
possible for this intent. As discussed above these questions are not based on any
information input so far. Even if we add attributes “at least 3 different angles”
and “all angles equal” and reject the last implication we would not be able to
recognize this object as an error. On the contrary inspect allows us to recognize
errors of Type 2.

7.2 Experiment

Below the results of tests on a bigger data are presented. The tests were con-
ducted as follows: all objects one by one are first separated from a context and
then added as a new object; all the possible errors of Type 1 and 2 are found
and output for this object.

FCA package for Python was used for implementation ([8]). For computing
the canonical basis an optimized algorithm based on Next Closure was used
([7]). All tests described below were run on computer with Intel Core i7 1.6GHz
processor and 4 Gb of RAM running Linux Ubuntu 11.10 x64.

In Fig. 3 the results of running both algorithms on random contexts are
presented. For each context the number of objects is equal to 50. Parameter
d represents the density of the context, i.e. the probability of having cross in
the cross-table representing the relation. This result is presented in the semi-
logarithmic scale as the growth of complexity of computing the canonical basis
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is nearly exponential in this example. It is easy to note that with the growth of
the number of attributes and the density the difference between runtime of two
algorithms grows as well.

15 20 25

100

101

102

|M |

t,
s

— inspect
— inspect dg

• d = 0.1
4 d = 0.3
× d = 0.6

Fig. 3. Comparison of runtime on random contexts in semilog scale.

In Table 1 the results of running both algorithms on real data are presented.
The data is taken from the UCI repository ([4]). In this tests algorithm inspect

outperforms algorithm inspect_dg as well. Again, with the growth of the num-
ber of attributes the difference becomes more noticeable.

Context Name |G| |M | inspect (s) inspect dg (s)

wine 178 68 4.674 13627.952
house-votes-84 435 18 1.048 64.735

SPECT 266 23 0.636 672.942
Table 1. Comparison of runtime on real data from UCI
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8 Conclusion

An algorithm for finding errors of two types in new object intents is presented.
As opposed to finding the canonical basis of the context the proposed algorithm
terminates in polynomial time. Moreover, after checking only maximal object
intents “by hand” it is possible to find all errors of two considered types (or
prove their absence).
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Adapting Fuzzy Formal Concept Analysis for
Fuzzy Description Logics
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Abstract. Fuzzy Logics have been applied successfully within both For-
mal Concept Analysis and Description Logics. Especially in the latter
field, Fuzzy Logics have been gaining significant momentum during the
last two years. Unfortunately, the research on fuzzy logics within the two
communities has been conducted independently from each other, lead-
ing to different approaches being pursued. We show that if we look at a
restricted variant of fuzzy formal concept analysis, then the differences
between the two approaches can be reconciled. Moreover, an implica-
tional base can be computed even when the identity hedge is used.

1 Introduction

In many applications one is forced to deal with vague knowledge, knowledge that
does not fit into the binary world of classical logics. Among the countlessly many
examples are the questions whether a country is large, or whether two cities are
close to each other are difficult to answer with true or false. There are various
degrees of size and proximity. Fuzzy Logics has successfully proposed to use a
scale of truth degrees to describe vague knowledge. It has first been formalized
for propositional logic [1] and has since been applied to many other logics and
logic related formalisms. Among them are Formal Concept Analysis (FCA) [2]
and Description Logics (DL) [3].

Whenever one applies Fuzzy Logics to an existing formalism, one is faced with
several choices: Should the real unit interval be used for the set of truth degrees
or a more complex lattice of truth degrees? How should the semantics of the
conjunction be defined? Which parts of the existing theory should be replaced
by their fuzzy counterparts and which should remain unchanged? These decisions
have been made independently for fuzzy FCA and fuzzy DL.

In the crisp setting, a number of works have used FCA methods in DL. Some
use it as a tool for efficiently computing concept hierarchies [4]. Others use it
for ontology completion [5] and for exploring and learning from graph data [6,
7]. This work has been possible due to the close ties between FCA and DL.
In FCA objects can be described using sets of attributes, and in DL individuals
can be described using concept descriptions, in the easiest case conjunctions over
concept names. Sets of attributes in FCA and conjunctions over concept names in
DL share essentially the same semantics. While in the crisp case the similarities

c© 2012 by the paper authors. CLA 2012, pp. 163–174. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
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between fuzzy DL and fuzzy FCA are prominent, the situation is not so clear
in the fuzzy variants of the respective theories. In fuzzy FCA one is allowed to
use fuzzy sets of attributes. In fuzzy DL the same concept descriptions as in
crisp DL are used. They are not fuzzy, only their semantics are. In Section 3 we
identify such differences, that hinder the close cooperation that exists between
the crisp variants of the two fields. We propose simple adjustments to avoid
them. Generally speaking, one can say that the FCA community has been more
ambitious and applied Fuzzy Logics to a much larger extent than fuzzy DL.
Unfortunately, for this reason implication bases, which play an important role
in the cooperation between crisp DL and crisp FCA, can no longer effectively be
computed in the general case [8, 9].1 We shall see in Section 4 that if we restrict
expressivity of fuzzy FCA by considering only crisp sets of attributes, we can
effectively compute bases.2 Moreover, if the Gödel t-norm is used, this restricted
version of fuzzy FCA is exactly the segment of fuzzy FCA whose semantics
overlaps with fuzzy DL, presumably allowing synergies as in the crisp case.

The restriction to the Gödel t-norm is necessary, since fuzzy FCA uses weak
conjunction for the semantics of attribute sets, while DL uses strong conjunction
for its semantics. The two coincide only for the Gödel t-norm. From a current
DL viewpoint, this is not a severe restriction, since up to now the Gödel t-norm
is the only t-norm for which the standard DL reasoning tasks are known to be
decidable [10].

2 Preliminaries

2.1 T-Norms, Hedges and Fuzzy Sets

Fuzzy Logics represent vague data while maintaining a well-defined semantics.
Instead of using only the two values true and false a scale of truth degrees is used.
In this work we consider only the most typical choice where truth degrees are
values from the real unit interval [0, 1].

Fuzzy Logics provide several operators to define its semantics. A t-norm ⊗
is a binary operator ⊗ : [0, 1] × [0, 1] → [0, 1] that is associative, commutative,
monotone and has 1 as its unit. Every continuous t-norm gives rise to a binary
operator ⇒ : [0, 1]× [0, 1]→ [0, 1] that is the unique operator satisfying

z ≤ x⇒ y iff x⊗ z ≤ y (1)

for all z ∈ [0, 1]. The intuition is that the t-norm and the residuum be used to
interpret conjunction and implication, respectively. Among the many continuous
t-norms perhaps the simplest one, and the one we shall be interested in, is the
Gödel t-norm. It is defined as x⊗ y = min{x, y} and its residuum is

x⇒ y =

{
1 if x ≤ y
y otherwise.

1 They can be computed if the globalization hedge is used. However, hedges do not
exist in fuzzy DL and would even be problematic, as we shall see later.

2 even if the globalization hedge is not used
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A hedge ·∗ is a unary operator that is idempotent and satisfies 1∗ = 1, a∗ ≤ a,
and (a ⇒ b)∗ ≤ a∗ ⇒ b∗ for all a, b ∈ [0, 1]. It is used for truth-stressing, i.e. to
increase the contrast between 1 and the smaller truth values. A simple hedge is
the globalization, defined as 1∗ = 1 and a∗ = 0 for a 6= 0.

Fuzzy sets are a central idea of Fuzzy Logics. Given a setM a fuzzy (sub-)set
T of M is a function T : M → [0, 1], that maps each element of M to its mem-
bership degree in T . The cardinality of a fuzzy set T is defined as the cardinality
of its support {x ∈ M | T (x) > 0}. Two fuzzy sets T1 and T2 can be compared
pointwise by defining T1 ⊆ T2 iff T1(x) ≤ T2(x) for all x ∈M . Alternatively, one
can associate a subsethood degree with T1 and T2 by defining

S(T1, T2) = inf
x∈M

T1(x)⇒ T2(x).

For finite fuzzy sets we use notation such as {0.5/a, 1/b} to denote the set that
contains a with degree 0.5 and b with degree 1.

2.2 Formal Concept Analysis

The crisp setting We introduce crisp FCA in addition to fuzzy FCA, as we
shall need the crisp version of the Duquenne-Guigues Base in the later sections.
In crisp FCA [11], data is typically represented in the form of cross tables such
as the one in Table 1. More formally, a formal context is a triple K = (G,M, I)
where G is a set, called the set of objects, M is a set, called the set of attributes,
and I ⊆ G×M is a binary relation, called the incidence relation. For sets A ⊆ G
and B ⊆M the derivation operators are defined as

A↑ = {m ∈M | ∀g ∈ A : (g,m) ∈ I}, B↓ = {g ∈ G | ∀m ∈ B : (g,m) ∈ I}. (2)

The two derivation operators ·↑ and ·↓ form an antitone Galois-connection. An
implication A→ B, where A,B ⊆M , is said to hold in the context K if A↓ ⊆ B↓.
A set of attributes U ⊆M respects A→ B iff A 6⊆ U or B ⊆ U . A→ B follows
from a set of implications L iff every set U that respects all implications from L
also respects A→ B.

One way to structure the data in a formal context K is the Duquenne-Guigues
base DG(K) [12]. DG(K) is a set of implication that is sound for K, i.e. every
implication from DG(K) holds in K, complete for K, i.e. every implication that
holds in K follows from DG(K), and hasminimal cardinality among all sound and
complete sets of implications. A version that can handle background knowledge
has been introduced in [13]. Given a sound set of implications S (the background
knowledge) the S-Duquenne-Guigues base DGS(K) is a set of implications such
that DGS(K) is sound for K, S ∪ DGS(K) is complete for K and DGS(K) has
minimal cardinality [7]. The underlying mathematics of DG(K) and DGS(K)
are not relevant for this work. It is, however, important, that both bases can
effectively be computed for every finite context K.
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The Fuzzy Setting [2] In a fuzzy context K = (G,M, I) the incidence relation
I is a fuzzy relation, i.e. a fuzzy subset of G×M . The derivation operators are
defined for fuzzy subsets A of G and fuzzy subsets B of M as follows:

A↑(m) = inf
g∈G

(
A(g)∗ ⇒ I(g,m)

)
, B↓(g) = inf

m∈M

(
B(m)⇒ I(g,m)

)
. (3)

Notice, that the hedge ·∗ is used only for the derivation of fuzzy sets of objects.
The operators ·↑ and ·↓ form a Galois connection with hedges.

In fuzzy FCA the implications are also allowed to be fuzzy. A fuzzy implica-
tion is a pair written as A → B where A and B are fuzzy subsets of M . Let U
be a fuzzy subset of M . The degree to which A→ B holds in U is defined as

‖A→ B‖U = S(A,U)∗ ⇒ S(B,U) (4)

The degree to which A→ B holds in K is defined as ‖A→ B‖K = ming∈G ‖A→
B‖Ig , where Ig is the fuzzy set to which eachm ∈M belongs with degree I(g,m).
Let L be a fuzzy set of fuzzy implications. A set U ⊆M is called a model of L if
‖A→ B‖U ≥ L(A→ B) holds for every fuzzy implication A→ B. We say that
A→ B follows from L to degree q if ‖A→ B‖U ≥ q for all models U of L. There
have been several works where the existence of bases for fuzzy implications has
been considered [8, 9]. We shall not go into details, however, we would like to
point out two things. First, it can be shown that it suffices to consider crisp sets
L that contain fuzzy GCIs [14]. Second, in this setting an effective algorithm for
computing a base is known only when globalization is used as the hedge [8].

2.3 Fuzzy Description Logics

For DL we only introduce the fuzzy version. The crisp version only occurs in
a high-level description in Section 3.1. For a formal introduction of crisp DL
we refer to [15]. DL is not just one formalism, but a family of many knowledge
representation formalisms. The observations in this work hold for any fuzzy DL
that provides for conjunction, i.e. virtually all of them. For brevity we only
introduce the lightweight DL called EL. In fuzzy EL (exactly like in crisp EL)
concept descriptions can be formed from a set of concept names NC and a set
of role names NR using the constructors >, u and ∃. More formally, > and all
concept names are concept descriptions, and if C and D are concept description
and r is a role name then C uD and ∃r.C are also concept descriptions.

In fuzzy EL (in contrast to crisp EL) fuzzy sets are used to interpret both
concepts and roles. A fuzzy interpretation I = (∆I , ·I) satisfies

AI : ∆I → [0, 1], rI : ∆I ×∆I → [0, 1].

for all A ∈ NC and all r ∈ NR. Fuzzy interpretations I are extended to complex
concept descriptions by defining >I(x) = 1 and

(C uD)I(x) =CI(x)⊗DI(x), (∃s.C)I(x) = sup
z∈∆I

sI(x, z)⊗ CI(z) (5)
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for all x ∈ ∆I . Fuzzy GCIs are typically written as 〈C v D, q〉, where C,D
are concept descriptions and q ∈ [0, 1]. The fuzzy GCI 〈C v D, q〉 holds in the
fuzzy interpretation I if all x ∈ ∆I satisfy CI(x) ⇒ DI(x) ≥ q. The fuzzy
interpretation I is a model of the set of fuzzy GCIs T if all fuzzy GCIs from T
hold in I. 〈C v D, q〉 is entailed by T if it holds in all models of T .

3 Comparison of the Two Formalisms

3.1 The Crisp Setting

Most existing works at the intersection of FCA and DL have in common that
they associate FCA attributes and DL concept names. The objects are usually
chosen to be domain elements of an interpretation [6, 7]. Other choices, such
as selecting ABox individuals, usually require extending FCA theory, e.g. to
allow for partial knowledge [5]. These choices are motivated by the following
observation. Whether we compute the interpretation of the concept descrip-
tion Large u Populous u Asian or compute the derivation of the set of attributes
{Large,Populous,Asian}, the intuition in both cases is that we want to know
which countries are large and populous and Asian.

To formalize this connection, for every interpretation I = (∆I , ·I) one can
define its induced context KI whose set of objects is ∆I , whose attributes
are the concept names and where x ∈ ∆I and A ∈ NC are incident iff x ∈
AI . For example, we can think of the context in Table 1 as being induced
by an interpretation I whose domain are the world’s 8 most populous coun-
tries, and where the concept names Populous, Large and Asian are interpreted
as PopulousI = {China, India}, LargeI = {China,Russia,US}, and AsianI =
{China, India, Indonesia,Pakistan,Russia}.

In the induced context it holds for all sets U ⊆ NC that U↓ = (
d
U)I , further

supporting the intuition that sets of attributes are treated like conjunctions
over attributes. Similarly, for two sets of concept names U, V ⊆ NC the GCId
U v d

V holds in the interpretation I iff the implication U → V holds in
the induced context of I. Hence, the notions of dependencies also coincide in
crisp FCA and crisp DL. One could even go so far to say that standard formal
contexts and the very simple DL that only allows for conjunction are syntactic
variants of each other.

3.2 The Fuzzy Setting

In this section, we analyze the differences between fuzzy FCA and fuzzy DL that
hinder a close cooperation like it exists in the crisp setting. First, the semantics
of fuzzy FCA do not treat sets of attributes like conjunctions over concept names.
Remember that in the crisp setting the exact same semantics are used to compute
the derivation of a set of attributes or the interpretation of a conjunction of
concept names. This is not true in the fuzzy setting because the infimum (or
minimum in the case of finite contexts) is used to interpret attribute sets (2) while
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Table 1. Induced Context

Large Populous Asian

Brazil

China × × ×
India × ×
Indonesia ×
Nigeria

Pakistan ×
Russia × ×
US ×

Table 2. Induced Fuzzy Context

Large Populous Asian

Brazil 0.5 0.14 0.0

China 0.56 1.0 1.0

India 0.19 0.9 1.0

Indonesia 0.11 0.18 0.76

Nigeria 0.05 0.13 0.0

Pakistan 0.05 0.13 1.0

Russia 1.0 0.11 0.75

US 0.58 0.23 0.0

the t-norm is used to interpret conjunctions (5).3 In the case of the Gödel t-norm
this is completely harmless, as the Gödel t-norm coincides with the minimum.
For the other t-norms the difference is relevant.

As an example, assume that Table 2 is obtained from a fuzzy interpretation
I by using the domain as objects, concept names as attributes and defining
I(x,A) = AI(x) (We could call it the induced fuzzy context of I). If we use the
Łukasiewicz t-norm, which is defined as x⊗ y = max{0, x+ y − 1}, then

(Populous u Large)I(US) = 0.23⊗ 0.58 = 0

However, in fuzzy FCA with the Łukasiewicz t-norm we obtain

{1/Populous, 1/Large}↓(US) = min{1⇒ 0.23, 1⇒ 0.58} = 0.23.

Thus, unlike in the crisp case, the fuzzy semantics differ even for crisp sets of
attributes such as {1/Populous, 1/Large}.

Second, we can observe that in fuzzy DL concept descriptions on their own
are not fuzzy. The interpretations are fuzzy, the axioms are fuzzy, but the concept
descriptions themselves are not. By contrast, in fuzzy FCA it is possible to use
a fuzzy set of attributes to describe a class of objects.

To describe all countries that are (completely) huge and somewhat Asian,
one can use a fuzzy set of attributes {1/Large, 0.5/Asian}. Then in Table 2 the mem-
bership of Russia in the derivation {1/Large, 0.5/Asian}↓ is 1. By contrast, in DL it is
not possible to associate a truth degree with the concepts in a conjunction. The
best approximation of the above attribute set in DL is the simple conjunction
LargeuAsian, which has, of course, a different semantics. In fact, Russia belongs
to (Large u Asian)I only with degree 0.75.4 In this respect fuzzy FCA is more
expressive than fuzzy DL.

Finally, fuzzy FCA typically uses hedges and fuzzy DL does not. In principle,
fuzzy FCA is more general here, since one could treat fuzzy DL as the special
3 Some authors use two types of conjunction: a strong conjunction interpreted by the
t-norm and a weak conjunction interpreted by the minimum. In this terminology,
we could write that fuzzy DL uses strong conjunction while fuzzy FCA uses weak
conjunction.

4 The Gödel t-norm is used to emphasize that this is independent of the first problem.
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case where identity is used as the hedge. In practice, if identity is used as the
hedge, one cannot effectively compute a base in fuzzy FCA, at least not in the
settings that have previously been considered.

On the other hand, using globalization in combination with crisp sets of
attributes has practical limitations. Consider a fuzzy implication A→ B. Using
the globalization as the hedge means, that all those counterexamples g ∈ G are
ignored that do not satisfy S(A, Ig) = 1. This is particularly problematic, if we
only consider crisp left-hand sides A, since then

S(A, Ig) = min
m∈A

(1⇒ I(g,m)) = min
m∈A

I(g,m). (6)

If for just one m ∈ A the value I(g,m) is not 1 then S(A, Ig) < 1 holds and the
object g is ignored. For example, in Table 2 if we consider A = {1/Large, 1/Populous}
then all objects are ignored, i.e. any implication with A as its left-hand side
holds. Presumably, in many applications values that differ from 1 are the rule
rather than the exception, meaning that almost all objects will be ignored.

4 Bridging the Gap

In the previous section we have identified the three aspects in which fuzzy DL
and fuzzy FCA disagree. We shall now consider a restricted subset of fuzzy FCA
for which the semantics agree. Unfortunately, it is not possible to use strong
conjunction instead of weak conjunction in fuzzy FCA, since the derivation op-
erators would no longer form a Galois-connection. Instead, we caution that the
following theory can only be applied directly in fuzzy DL with Gödel t-norm.

Since truly fuzzy implications have no equivalent in fuzzy DL, we only con-
sider implications A → B, where both sets A and B are crisp (from now on
called crisp implications). A similar idea has been proposed under the name of
“one-sided fuzzyness” in [16], with respect to concept lattices, not with respect
to bases. Instead of trying to compute a base that is complete for all fuzzy im-
plications we try to find a base that is complete only for crisp implications. In
standard fuzzy FCA there is a result, that allows one to consider only crisp sets
of fuzzy implications when searching for a base (Lemma 1 in [14]). Unfortunately,
this result cannot be applied in our restricted setting. Instead of computing a
crisp set containing fuzzy implications we compute a fuzzy set containing crisp
implications:

Problem 1. Given a fuzzy context K = (G,M, I) compute a fuzzy subset T of
{A→ B | A,B ⊆M} that is

– complete, i.e. for every implication A → B, A,B ⊆ M , ‖A → B‖K = q
implies that A→ B follows from T with degree q,

– sound, i.e. every implication A→ B holds in K with degree at least T (A→
B), and

– irredundant, i.e. no fuzzy set U ( T is complete.
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Furthermore, we use identity as the hedge, thereby ensuring both compat-
ibility with DL and the use of all objects as potential counterexamples. These
three restrictions – Gödel t-norm, identity as the hedge, only crisp implications
– guarantee that A → B holds in the fuzzy induced context K of I to degree q
iff 〈dA v d

B, q〉 holds in I. This is analogous to the crisp case.

4.1 Axiomatization

In [14] an axiomatic system is presented that can be used to infer all fuzzy
implications that follow from a crisp set of fuzzy implications. We present a
similar system of deduction rules, which can be used to infer for each crisp
implication the degree to which it follows from a fuzzy set of crisp implications.

Let L be a fuzzy subset of {A → B | A,B ⊆ M}. Our axiomatic system
consists of the following deduction rules, where q1, q2 are positive truth values. In
each deduction step a new fuzzy subset Li+1 is obtained from the previous set Li,
where L0 = L. For all implications E → F we define Li+1(E → F ) = Li(E → F )
unless mentioned otherwise in the rules.

(Refl) From A ⊆ B and Li(A→ B) < 1 infer Li+1(A→ B) = 1
(Union) From Li(A → B) = q1, Li(A → C) = q2 and Li(A → B ∪ C) <

min{q1, q2} infer Li+1(A→ B ∪ C) = min{q1, q2}
(Trans) From Li(A → B) = q1, Li(B → C) = q2 and Li(A → C) < q1 ⊗ q2

infer Li+1(A→ C) = q1 ⊗ q2.

In each of the three rules the inferred implication obtains a membership
degree that is smaller or equal to the membership degrees of the rules in the pre-
condition. Since a rule can only be applied if the degree of the inferred implication
strictly increases, no implication can ever be used in its own deduction implicitly
or explicitly. There are only finitely many crisp implications and therefore the
deduction process must terminate. We now want to show that the deduction
system is sound, in the sense that if after a finite number k of deduction steps
we can deduce Lk(A→ B) = q then A→ B follows from L with at least degree
q, and complete in the sense that if A → B follows from L with degree q then
Lk(A→ B) = q can be deduced.

Lemma 1. (Refl)–(Trans) is a sound and complete system of deduction rules.

Proof. To prove soundness, we prove that each rule application does not change
the models, i.e. that every model U of Li is a model of Li+1. The converse that
every model of Li+1 is a model of Li is trivial, since Li ⊆ Li+1. Soundness of
(Refl) is also trivial. Soundness of (Union): Assume that U is a model of Li. We
define α = minm∈A U(m), β = minm∈B U(m) and γ = minm∈C U(m). From (6)
and (4) we obtain

‖A→ B‖U = α⇒ β, ‖A→ C‖U = α⇒ γ, ‖A→ B ∪ C‖U = α⇒ min{β, γ}.

Monotonicity of the residuum yields ‖A → B ∪ C‖U = min{α ⇒ β, α ⇒ γ} ≥
min{q1, q2}. This proves that U is also a model of Li+1, which suffices to prove
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soundness of (Union). Soundness of (Trans): Since U is a model of Li we obtain
from the preconditions α⇒ β ≥ q1 and β ⇒ γ ≥ q2. Using (1) we obtain α⊗q1 ≤
β and β⊗ q2 ≤ γ. From monotonicity of the t-norm we obtain α⊗ (q1⊗ q2) ≤ γ.
Using (1) again we get q1 ⊗ q2 ≤ α ⇒ γ = ‖A → C‖U . Hence, U is a model of
Li+1, which proves soundness of (Trans).

Completeness: Let X → Y be an implication that follows (semantically) from
L to degree q. Let Lk be the fuzzy set of implications obtained after exhaustively
applying the deduction rules. To prove completeness it suffices to show that that
Lk(X → Y ) ≥ q.

As a preliminary step, let us define the following fuzzy set X+(m) = Lk(X →
{m}) and show that it is a model of L. Assume that X+ is not a model of L,
i.e. ‖A→ B‖X+ < L(A→ B) for some implication A→ B. We use the notation
α = minm∈AX+(m) and β = minm∈B X+(m). Then ‖A → B‖X+ = α ⇒ β <
L(A→ B), or equivalently by (1)

α⊗ L(A→ B) > β. (7)

On the other hand X+(a) = Lk(X → {a}) ≥ α holds for all a ∈ A. Because
the rules have been applied exhaustively to obtain Lk (Union) is not applicable
to Lk and therefore Lk(X → A) ≥ α. Using a similar argument for (Trans) we
obtain

Lk(X → B) ≥ Lk(X → A)⊗ Lk(A→ B) ≥ α⊗ L(A→ B),

where we have exploited the fact that truth values can only increase when a
rule is applied and therefore L(A → B) ≤ Lk(A → B). Finally, using (Refl)
and (Trans) it follows that Lk(X → {b}) ≥ α ⊗ L(A → B) for all b ∈ B. This
contradicts (7) and thus X+ must be a model of L.

Since X → Y follows from L to degree q it must hold that

q ≤ ‖X → Y ‖X+ =
(

min
x∈X

X+(x)⇒ min
y∈Y

X+(y)
)

= min
y∈Y

X+(y).

Therefore Lk(X → {y}) = X+(y) ≥ q for all y ∈ Y . Since (Union) cannot be
applied to Lk we obtain Lk(X → Y ) ≥ q which proves completeness. ut

4.2 Stem Base

We now provide a practical approach for computing a finite base for the Gödel
t-norm, the only t-norm for which the semantics of fuzzy FCA and fuzzy DL
coincide. Assume that we are given a finite fuzzy context K = (G,M, I). Let QK
be the set containing 1 and all truth degrees that occur in K. Let q0 ∈ [0, 1] be a
fixed truth degree. We define a crisp context Kq0 = (Gq0 ,M, Iq0) as follows. For
each g ∈ G and each q ∈ QK with q < q0 the set Gq0 contains an object gq with

{gq}′ = {m ∈M | I(g,m) > q},
i.e. gq has exactly those attributes that g has with degree higher than q. As an
example, consider a context K of South American Countries (Table 3).5

5 The value for HighGDP is the fraction of the country’s GDP per capita and the GDP
per capita of Chile, the largest in South America. Similarly for the other values.

Adapting Fuzzy FCA for Fuzzy Description Logics 171



Algorithm 1 Computing a Minimal Base with Gödel t-Norm
B = L = ∅
for all q ∈ QK in decreasing order do
D = DGB(Kq)
B = B ∪ D
L = L ∪ {q/A→B | A→ B ∈ D}

end for
return L

Lemma 2. A→ B holds in K with at least degree q0 iff A→ B holds in Kq0 .

Proof. Assume that A → B holds in K with degree less than q0. According to
(4) and the definition of the Gödel-residuum this is equivalent to

min
g∈G
‖A→ B‖Ig < q0

⇐⇒ ∃g ∈ G :

(
min
a∈A

I(g, a)⇒ min
b∈B

I(g, b)

)
< q0

⇐⇒ ∃g ∈ G : min
b∈B

I(g, b) < q0 and min
a∈A

I(g, a) > min
b∈B

I(g, b)

⇐⇒ ∃g ∈ G : ∃b ∈ B : I(g, b) < q0 and ∀a ∈ A : I(g, a) > I(g, b).

(8)

I(g, b) is a truth degree from QK and gI(g,b) satisfies (gI(g,b), b) /∈ Iq0 and
(gI(g,b), a) ∈ Iq0 for all a ∈ A. Therefore, Kq0 contains a counterexample to
A→ B, hence A→ B does not hold in Kq0 .

On the other hand if A→ B does not hold in Kq0 then there must be some gq,
q < q0 such thatA ⊆ {gq}′ andB 6⊆ {gq}′. By definition of {gq}′ this is equivalent
to I(gq, a) > q for all a ∈ A and I(gq, b) ≤ q for some b ∈ B. Since q < q0 it
holds that for this value b in particular I(gq, b) < q0 and I(gq, a) > I(gq, b) for
all a ∈ A. It then follows from (8) that A→ B does not hold in K with at least
degree q0. ut

Notice, that if q1 < q0 then Gq1 ⊆ Gq0 and Iq1 ⊆ Iq0 . This observation, to-
gether with Lemma 2, suggests a levelwise approach as sketched in Algorithm 1.
One starts with the largest value qmax in QK and computes the Duquenne-
Guigues Base for Kqmax

. The base serves two purposes. Its implications are added
to the fuzzy set of implications L with degree q, and it serves as background
knowledge in the next iteration. For the context from Table 3 Algorithm 1 yields
the base {1/{Populous,Small}→{HighGDP}, 0.9/{Populous}→{HighGDP}, 0.2/∅→{HighGDP}}.

Lemma 3. Upon termination Algorithm 1 returns a fuzzy set of crisp implica-
tions L that is sound and complete for Kq and has minimal cardinality among
all such sets.

Proof. Soundness follows immediately from Lemma 8. To prove completeness,
assume that U → V holds in K with degree q ∈ QK (notice that for the Gödel
t-norm it always holds that ‖U → V ‖K ∈ QK). Then by Lemma 8 U → V holds
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Table 3. South American Countries

Populous HighGDP Small

Argentina 0.2 0.8 0.6

Bolivia 0.1 0.2 0.9

Brazil 1.0 0.9 0.0

Chile 0.1 1.0 0.9

Colombia 0.2 0.5 0.9

Ecuador 0.1 0.3 1.0

Guyana 0.0 0.2 1.0

Paraguay 0.0 0.2 1.0

Suriname 0.0 0.5 1.0

Uruguay 0.0 1.0 1.0

Venezuela 0.1 0.7 0.9

Table 4. K1

Populous HighGDP Small

Argentina0.6 ×
Argentina0.2 × ×
Bolivia0.2 ×
Bolivia0.1 × ×
Brazil0.9 ×
Brazil0.0 × ×
Chile0.9 ×
Chile0.1 × ×
Colombia0.5 ×
Colombia0.2 × ×
Ecuador0.3 ×
Ecuador0.1 × ×
Guyana0.2 ×
Guyana0.0 × ×
Paraguay0.2 ×
Paraguay0.0 × ×
Suriname0.5 ×
Suriname0.0 × ×
Uruguay0.0 × ×
Venezuela0.7 ×
Venezuela0.1 × ×

in Kq. Consider D, V and L after the iteration for q in Algorithm 1. Since D∪B
is complete for Kq and U → V holds in Kq the implication U → V follows from
D ∪ B = {A→ B | L(A→ B) ≥ q} in the crisp setting.

We show that then U → V follows to degree q from L in the fuzzy setting.
Assume the contrary, i.e. that there exists a context K̄ for which L is sound,
but in which U → V does not hold to degree at least q. By Lemma 8 this yields
that U → V does not hold in K̄q while all implications from D ∪ B = {A→ B |
L(A → B) ≥ q} do hold in K̄q. Because we have shown that U → V follows
from D ∪ B in the crisp setting this is a contradiction. Hence U → V follows to
degree q from L, which proves completeness.

Assume that L̄ is another sound and complete fuzzy set of implications for
K. Then by Lemma 8 for each q ∈ QK the crisp set

L̄q = {A→ B | L(A→ B) ≥ q}

must be sound and complete for Kq. A simple induction over q ∈ QK can be used
to show that |L̄q| ≥ |Lq| for all q ∈ QK. For q maximal in QK the claim follows
directly from minimality of the Duquenne-Guigues Base. For the induction step
let q ∈ QK where |L̄q̄| ≥ |Lq̄| holds for the next larger value q̄ ∈ QK. Both Lq̄
and L̄q̄ are sound and complete for Kq̄, in particular they have the same models.
Thus, L̄q =

(
L̄q \L̄q̄

)
∪L̄q̄ and

(
L̄q \L̄q̄

)
∪Lq̄ also have the same models, and are

thus both sound and complete for Kq. Minimality of the Lq̄-Duquenne-Guigues
base implies |L̄q \ L̄q̄| ≥ |DGLq̄

(Kq)|. This proves

|L̄q| = |
(
L̄q \ L̄q̄

)
|+ |L̄q̄| ≥ |DGLq̄ (Kq)|+ |Lq̄| = |Lq|.

Since this holds for all q ∈ QK we get that L has minimal cardinality among all
bases. ut
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5 Conclusion

We have restricted fuzzy FCA by allowing only crisp sets of attributes in the
implications and using identity as the hedge. We have presented a sound and
complete set of deduction rules for this restricted setting. For the Gödel t-norm
the restricted setting corresponds semantically to fuzzy DL. Furthermore, we
have presented a simple algorithm for computing a minimal base for the re-
stricted setting. In the general setting this is only possible with globalization.

We do not claim, that this restriction of expressivity is the only feasible
approach for reconciling the differences between the two fields. In future work it
would be interesting to look at a kind of weighted conjunction in DL (imitating
the semantics of fuzzy attribute sets). It would also be interesting to consider a
version of fuzzy FCA that uses strong conjunction.
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Abstract. The treatment of many-valued data with FCA has been
achieved by means of scaling. This method has some drawbacks, since
the size of the resulting formal contexts depends usually on the number
of different values that are present in a table, which can be very large.
Pattern structures have been proved to deal with many-valued data,
offering a viable and sound alternative to scaling in order to represent
and analyze sets of many-valued data with FCA.
Functional dependencies have already been dealt with FCA using the
binarization of a table, that is, creating a formal context out of a set of
data. Unfortunately, although this method is standard and simple, it has
an important drawback, which is the fact that the resulting context is
quadratic in number of objects w.r.t. the original set of data.
In this paper, we examine how we can extract the functional dependen-
cies that hold in a set of data using pattern structures. This allows to
build an equivalent concept lattice avoiding the step of binarization, and
thus comes with better concept representation and computation.

Keywords: Association rules and data dependencies, attribute implica-
tions, data dependencies, pattern structures, formal concept analysis

1 Introduction and Motivation

In the relational database model there are different types of dependencies ([1,18]).
Functional dependencies are among the most popular. The reason is that they
are important in order to explain the normalization of a database scheme in the
Relational Database Model. Functional Dependencies (FD’s) have their own set
of axioms ([5,18]), which, in turn, are also shared by other dependencies. For
instance, implications share the same axioms as functional dependencies ([2]),
which are basically reflexivity, augmentation and transitivity.

These axioms state how functional dependencies behave in the presence of a
set of dependencies of the same kind. For instance, we can decide whether a set
of functional dependencies Σ implies a single FD σ, that is, Σ |= σ

c© 2012 by the paper authors. CLA 2012, pp. 175–186. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



We can also find a minimal set of functional dependencies that implies a
given set of them, that is, we can compute Σ′ such that Σ′ |= Σ, where Σ′ is
minimal. In this case, we also say that Σ′ is the minimal generating set of Σ.
These two problems have been studied in [1] and [16], and algorithms have been
proposed. Yet, it is important to note that this calculation is performed starting
from a set of dependencies, not a set of data.

In this paper, we aim at finding a characterization of functional dependencies
that hold in a set of data using Formal Concept Analysis and pattern structures.

The lattice characterization of a set of Functional Dependencies is studied in
[6,7,8,9], and the characterization with a formal context in [3,12]. This charac-
terization is based on a binarization, which is the transformation of the original
set of data into a binary context.

In fact, the primary concern when computing the characterization of a set of
functional dependencies with FCA is that, generally, the dataset is many-valued,
and not binary. This means that the set of data must be somehow transformed
to obtain a binary context.

Applying conceptual scaling (without information loss) results either in a
larger set of objects in the resulting formal context, or a larger set of attributes.

On another hand, pattern structures ([11,14]) have emerged as a valid alter-
native to work with non binary contexts and specially with numerical contexts,
as well as to avoid the complexity drawbacks that are present in scaling.

Therefore, we have two different methods of computing the characterization
of a set of functional dependencies that hold in a set of data:

1. Binarizing or scaling the original set of data, and obtaining a formal context.

2. Using pattern structures.

The purpose of this paper is twofold. On the one hand, we propose using
pattern structures as a way to compute the characterization of a set of functional
dependencies that hold in a set of data. The interest is to prove that pattern
structures is a flexible mechanism that may encode the semantics of functional
dependencies without adding further penalty to the resulting formal context. On
the other hand, we aim at setting up a solid connection between the formalism of
pattern structures and the finding of other different kinds of dependencies that
may hold in a given set of data.

The paper is organized as follows. Firstly, the definitions of functional de-
pendencies and their axioms are explained in Section 2 together with the scaling
procedure allowing one to derive a formal context from a numerical dataset that
characterize FD. Then, Section 3 presents the general formalism of pattern struc-
tures. Section 4 gives the core of this article: it shows how to define a pattern
structure that holds the same concept lattice than with the introduced scaling. It
follows experiments in Section 5 showing the interest of using pattern structures.
Finally, the conclusion draws attention to perspectives of research.
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2 Motivating Example

This example shows how functional dependencies can be extracted using FCA
(this is based on [4]). The main idea behind this method is called binarization,
and consists in transforming (implicitly) a many-valued set of data into a binary
context. This transformation allows us to build a formal context.

Before explaining this process, we first introduce functional dependencies
(FD’s). Let U be a set of attributes, and let Dom be a set of values (a domain).
For the sake of clarity, we assume that Dom is a numerical set. A tuple t is
a function t : U 7→ Dom, and a table T is a set of tuples. Usually tables are
presented as a matrix, as in the following example:

id A B C D

t1 1 3 7 2
t2 1 3 4 5
t3 3 5 2 2
t4 3 3 4 8

where the set of tuples (or objects) is { t1, t2, t3, t4 } and U = {A,B,C,D }
is the set of attributes.

Given a tuple t ∈ T , we say that t(X) (for all X ⊆ U) is the restriction of
the tuple t in the attributes X ⊆ U , this is the values of t in the attributes X.
For instance, we have that t2({A,C }) is { 1, 4 }. We drop the set notation and
say that t2(AC) is { 1, 4 }.

Definition 1 ([18]). Let T be a set of tuples, and X,Y ⊆ U . A functional
dependency (FD) X → Y , holds in T if:

∀ti, tj ∈ T : ti(X) = tj(X)⇒ ti(Y ) = tj(Y )

For instance, we have that the functional dependency C → B holds in T ,
whereas the functional dependency A→ B does not, because t3(A) = t4(A) but
t3(B) 6= t4(B).

We are now ready to explain how to extract the set of functional dependencies
that hold in a set of data, using FCA:

1. We define a formal context derived from the original many-valued data T .
2. We extract the implications that hold in the concept lattice associated to

that context ([12]).
3. We see that the implications that hold in the concept lattice are the func-

tional dependencies that hold in the original table T .

In order to define a formal context, we need to define first the set of objects:

G = { (ti, tj) | i < j and ti, tj ∈ T }
It corresponds to the set of all pairs of tuples from T (excluding symmetry

and reflexivity). The relation of the context is defined as:
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(ti, tj) I x⇔ ti(x) = tj(x)

It is important to realize that the formal context K = (G,U , I) depends
entirely on the table T , since both G and U do, but this dependency is not
explicitly shown in the definition of this context. According to the preceding
case, we would have the formal context in Figure 1 and the corresponding concept
lattice in Figure 2.

K A B C D

(1,2) × ×
(1,3) ×
(1,4) ×
(2,3)

(2,4) × ×
(3,4) ×

Fig. 1. Formal Context Fig. 2. Concept Lattice

We have created a new formal context out of a multi-valued table. We can
see that the size of this context can be of the order of O(|T 2|) (where |T | is the
number of tuples of T ), so it can be significantly bigger that the original set of
data.

The following step is to compute the Duquenne-Guigues basis ([10]) of the
concept lattice, i.e. the minimal set of implications such that all the implications
that hold in the formal context can be derived from this set. In this case, this
set consists of the following implications:

c→ b, abc→ d, bcd→ a

This is not the set of all implications that hold in the concept lattice of the
formal context that we have defined. This is just a minimal set such that all
the implications that hold in the lattice can be derived (by augmentation and
transitivity) from this set. This means that, if Σ∗ is the set of all implications
that hold in the concept lattice, then Σ |= Σ∗.

Finally, we have to realize that the set of implications that hold in the concept
lattice are syntactically the same as the set of functional dependencies that
hold in T (this is shown in [4,12]). By syntactically we mean that whenever an
implication X → Y holds in K, then the functional dependency X → Y holds
in T . Equivalently, the minimal generating set of functional dependencies that
hold in T is the same as the Duquenne-Guigues basis of the concept lattice.

A known result of the binarization process precisely states that the set of
implications that hold in the context is syntactically equivalent to the set of
functional dependencies that hold in the original set of data [12].
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3 Pattern Structures in Formal Concept Analysis

We assume the reader to be familiar with basic notions of formal concept analy-
sis. We use the standard notations from [12]. Our interest lies in handling numer-
ical data within FCA. Hence, we recall here the formalism of pattern structures
that can be understood as a generalization towards complex data, i.e. objects
taking descriptions in a partially ordered set.

A pattern structure is defined as a generalization of a formal context de-
scribing complex data [11]. Formally, let G be a set of objects, let (D,u) be a
meet-semi-lattice of potential object descriptions and let δ : G −→ D be a map-
ping associating each object with its description. Then (G, (D,u), δ) is a pattern
structure. Elements of D are patterns and are ordered by a subsumption relation
v: ∀c, d ∈ D, c v d ⇐⇒ c u d = c. A pattern structure (G, (D,u), δ) gives rise
to two derivation operators (·)�:

A� =
l

g∈A
δ(g) for A ⊆ G

d� = {g ∈ G|d v δ(g)} for d ∈ (D,u).

These operators form a Galois connection between (2G,⊆) and (D,u). Pattern
concepts of (G, (D,u), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,u), such
that A� = d and A = d�. For a pattern concept (A, d), d is a pattern intent
and is the common description of all objects in A, the pattern extent. When
partially ordered by (A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 v d1), the set
of all concepts forms a complete lattice called pattern concept lattice. Existing
FCA algorithms [15] can be used with slight modifications to compute pattern
structures, in order to extract and classify concepts (details in [11,14]).

4 Finding FD with Partition Pattern Structures

As introduced in Section 2, an existing binarization allows to build a concept
lattice from which a set of FDs can be characterized [12]. However, this formal
context tends to be very large, even when the initial data are of reasonable size.
We show here how the formalism of pattern structures can be instantiated to
obtain an equivalent concept lattice. The so called partition pattern structures
come with several advantages among which computation and interpretation of
the resulting lattice.

4.1 Preliminaries on the partition lattice

Partition of a set. Given a set E, a partition over E is a set P ⊆ ℘(E) s.t.:

–
⋃

pi∈P
pi = E

– pi ∩ pj = ∅, for any pi, pj ∈ P with i 6= j.
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In other words, a partition covers E and is composed of disjoint subsets of E.

Equivalence relation. A partition P over a set E is an equivalence relation RP

on E. The 1-1-correspondence between P andRP is given by (e, e′) ∈ RP iff e and
e′ belongs to the same class of P [6,13]. For example, given P = {{1, 2, 3}, {4}},
one has the relation RP = {(1, 2), (1, 3), (2, 3), (1, 1), (2, 2), (3, 3), (4, 4)} (omit-
ting symmetry for the sake of readability).

Ordering relation. A partition P1 is finer than a partition P2 (P2 coarser than
P1), written P1 v P2 if any subset of P1 is a subset of a subset in P2. For
example,

{{1, 3}, {2}, {4}} v {{1, 2, 3}, {4}}

Meet of two partitions. It is defined as the coarsest common refinement. In
other words, it is the intersection of the respective equivalence relations:

{{1, 3}, {2, 4}} u {{1, 2, 3}, {4}} = {{1, 3}, {2}, {4}}
or {(1, 3), (2, 4)} ∩ {(1, 2), (1, 3), (2, 3)}

Join of two partitions. It is defined as the finest common coarsening. In
other words, it is the transitive closure of the union of the respective equivalence
relations.

{{1, 3}, {2}{, 4}} t {{1, 2}, {3}{4}} = {{1, 2, 3}, {4}}
or transitive closure({(1, 3), (4, 4)} ∪ {(1, 2)(3, 3), (4, 4)})

Finally, one should notice that the property P1 u P2 = P1 ⇔ P1 v P2

naturally holds (and the dual for join). Thus the set of all partitions over a set
forms a lattice (D,u,t) and can be used as a description space of a pattern
structure.

4.2 Partition pattern structure

Consider a numerical table as a many-valued context (G,M,W, I) where G cor-
responds to the set of objects (”rows”), M to the set of attributes (”columns”),
W the data domain (”all distinct values of the table”) and I ⊆ G ×M ×W a
relation such that (g,m,w) ∈ I also written m(g) = w means that attribute m
takes the value w for the object g [12]. In Table 1 (left), we have D(4) = 8.

We show how a partition pattern structure can be defined from a many-valued
context (G,M,W, I) and show that its concept lattice is equivalent to the concept
lattice obtained after binarization (see Section 2). Intuitively, formal objects of
the pattern structure are the attributes of the numerical dataset. Then, given an
attribute m ∈ M , its description δ(m) is given by a partition over G such that
any two elements g, h of the same class take the same values for the attribute m,
i.e. m(g) = m(h). The result is given in Table 1 (middle). As such, descriptions
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obey the ordering of a partition lattice as described above. It follows that our
initial numerical table (G,M,W, I) can be represented as a pattern structure
(M, (D,u,t), δ) where M is the set of original attributes, and (D,u,t) is the
lattice of partitions over G. An example of concept formation is given as follows,
starting from set {A,B} ⊆M :

{A,B}� = δ(A) u δ(B)

= {{1, 2}, {3, 4}} u {{1, 2, 4}, {3}}
= {{1, 2}, {3}, {4}}

{{1, 2}, {3}, {4}}� = {m ∈M |{{1, 2}, {3}, {4} v δ(m)}
= {A,B}

Hence, ({A,B}, {{1, 2}, {3}, {4}}) is pattern concept. The resulting pattern
concept lattice is given in Table 1 (left).

id A B C D

1 1 3 7 2

2 1 3 4 5

3 3 5 2 2

4 3 3 4 8

m ∈M δ(m) ∈ (D,u,t)

A {{1, 2}, {3, 4}}
B {{1, 2, 4}, {3}}
C {{1}, {2, 4}, {3}}
D {{1, 3}, {2}, {4}}

Table 1. The original data (left), the resulting pattern structure (middle) and its
pattern concept lattice (right)

4.3 Formal context of the partition pattern structure

We showed that a numerical dataset can be described by a many-valued context
(G,M,W, I) from which one can derive the formal context (M,B2(G), I) 4 where
B2(G) represents any pair of objects, and (m, (g, h)) ∈ I means that m(g) =
m(h). The resulting concept lattice can be used to extract FD [12]. A result is
that both introduced structures (M,B2(G), I) and (M, (D,u), δ) are equivalent,
i.e. both collections of concepts are in 1-1-correspondence.

Proposition. Let (G,W,M, I) be a many-valued context. Let (M,B2(G), I) be
the formal context such as (m, (g, h)) ∈ I ⇔ m(g) = m(h). Let (M, (D,u,t), δ)
be the partition pattern structure where, for m ∈M , δ(m) is the partition of G
such that p, q ∈ P , P ∈ δ(m)⇔ m(p) = m(q). Then, the following holds.
1. For any formal concept (R,S), there is one and only one pattern concept
(C, d) such that R = C and S is the equivalence class representation of d.
2. and vice-versa.

4 Originally (B2(G),M, I), but for sake of simplicity here, we permute formal objects
and attributes. The results hold equally.
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Proof. Consider both structures (M,B2(G), I) and (M, (D,u,t), δ). They both
hold the same set of ”formal objects” M (attributes in the many-valued con-
text). In the pattern structure, elements of M are described by a partition over
G. In the formal context, elements are described by pairs of objects, that is, by
definition, the representation of the same partitions. As such, elements of M are
described in an equivalent way. Furthermore, intersections in both representa-
tions are equivalent too. Indeed, the meet operation between two partitions is
known to be the intersection of their equivalence class representation. Since it is
known that derivation operations are defined in pattern structures in the same
way than in formal contexts, the proposition naturally holds.

Example. The pattern concept ({B}, {{1, 2, 4}, {3}}) is equivalent to the formal
concept ({B}, {(1, 2), (2, 4), (1, 4)}).

From this example, one should remark that pattern structures offer more
concise intent representation when the set of object becomes very large, i.e.
storing a partition instead of all pairs of objects that are together in a same
class of the partition. This leads us to the next section, where the attention is
drawn to a computational comparison of both approaches.

5 Experiments

We showed how pattern structures can alternatively represent the formal con-
text (M,B2(G), I) by means of partition patterns. Both concept lattices are
equivalent and thus can be used to characterize FD. To assess the usefulness of
introducing partition pattern structures, we applied both methods to well known
UCI datasets5. To compute with formal contexts, we wrote a simple procedure
to scale the many-valued context into a formal context, and applied the (C++)
closed itemset mining algorithm LCM (version 2 [17]). Whereas this algorithm
only computes concept intents, it is known to be one of the most efficient for
that task. To compute with pattern structures, we turned the many-valued con-
text into a set of partitions over G (one for each attribute m ∈M) and applied
a slight (Java) modification of the algorithm CloseByOne [15]. Indeed, the lat-
ter can be easily adapted by changing the definition of both intersection and
subsumption test, used for closures computation (a detailed explanation for an-
other instance of pattern structures can be found in [14]). As such, this method
computes pattern concepts, i.e. both pattern extent and intent.

Table 2 gives the details of the datasets and their derived formal context we
experiment with. Note that in column |B2(G)|, formal objects (g, h) with empty
description, i.e. {(g, h)}′ = ∅ for any g, h ∈ G, are not taken into account. Table 3
gives the execution time of both methods. For pattern structures, execution
times include the reading of the data, their process to a set of partitions and
the CloseByOne execution. Concerning formal contexts, execution times include
data reading and process with LCM, while the time to build the formal context
is not taken into account. In both case, algorithms only output the number of

5 http://archive.ics.uci.edu/ml/datasets.html
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patterns. The experiments were carried out on an Intel Core i7 CPU 2.40 Ghz
machine with 5 GB RAM.

(G,M,W, I) (B2(G),MI)

Dataset |G| |M | |B2(G)| Avg. |g′| Density

iris 150 5 4,363 1.38 27.56%
hepatitis 155 20 11,935 9.02 45.08%

glass 214 10 19,601 1.74 17.43%
imports-85 205 26 20,904 6.24 23.99%

balance-scale 625 5 143,236 1.67 33.35%
crx 690 16 236,633 5.53 43.54%

flare 1,066 13 567,645 8.79 67.60%
abalone 4,177 9 3,752,318 1.19 13.18%

krkopt-25% 7,013 7 20,115,505 1.84 26.26%
krkopt-50% 14,027 7 76,547,447 1.72 24.59%
krkopt-75% 21,040 7 171,199,419 1.66 24.22%

krkopt-100% 28,056 7 299,171,478 1.67 23.88%

adult-25% 8,140 15 33,124,730 6.32 42.14%
adult-50% 16,280 15 132,507,392 6.34 42.28%
adult-75% 24,320 15 295,709,848 6.34 42.20%

adult-100% 32,561 15 530,077,524 6.33 42.21%
Table 2. Datasets and their characteristics

From Table 3, it can be observed than computing with formal contexts is
faster for the smallest datasets, even abalone that holds more than 3 millions
of formal objects. However, with bigger datasets, from 20 to 530 millions of
objects, partition pattern structures are the only able to compute the set of
concepts. This holds for 7 numerical attributes already, and is bolder with 15.
It is indeed already known that complexity of computing FD is highly related
with the number of numerical attributes M .

As already suggested in [14,11] in different settings, the explanation is that
when working with simple descriptions (i.e. vectors of bits), computing an in-
tersection is more efficient than when working with more complex descriptions.
Indeed, partitions are encoded in our algorithm as vectors of bitvectors (i.e. par-
titions) and both intersections or inclusion tests computation require to consider
all pairs of sets between the two partitions in argument. Although we used opti-
mizations avoiding an exhaustive computation between all pairs (by considering
a lectic order on parts), those operations are more complex than standard inter-
sections and inclusion tests between sets. However, we need to compute much
less intersections, thus the following trade-off. Pattern structures perform better
with larger datasets. Formal objects (numerical attributes) map to concise de-
scriptions (partitions) whereas they map with the equivalence class of the same
partitions in the case of formal contexts. Consequently, pattern structures are
preferred to formal contexts when the number of possible pairs of objects that
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CloseByOne LCMv2

Dataset Pattern concepts Time (ms) Concept intents Time (ms)

iris 26 13 26 4
balance-scale 30 30 30 76

flare 4,096 258 4,096 650
glass 133 373 133 41

crx 9,528 4,367 9,528 112
abalone 252 5,887 252 692

hepatitis 95,576 11,178 95,576 122
imports85 205,623 228,877 205,623 112

krkopt-25% 126 195 126 5,441
krkopt-50% 126 352 N/A N/A
krkopt-75% 126 631 N/A N/A

krkopt-100% 126 896 N/A N/A

adult-25% 10,881 43,949 N/A N/A
adult-50% 12,398 152,242 N/A N/A
adult-75% 13,133 316,250 N/A N/A

adult-100% 13,356 520,431 N/A N/A

Table 3. Comparing pattern structures and formal context representations. N/A
means that the computation was intractable for memory issues.

agree for one or more attributes is high (|B2(G)|). Finally, let us recall that exe-
cution times for formal contexts do not include the scaling procedure time, since
such procedure is highly dependent of I/O performances. We simply remark
that conceptual scaling lengths more than 5 minutes for the dataset adult-100%
resulting in a text-file of more than 10 giga-bytes (in the standard format of
itemset mining algorithms: each line corresponds to an object described by the
indexes of its attributes separated by a space).

To conclude, even with a simple Java implementation of CloseByOne (com-
puting both extents and intents of pattern concepts), we gave here a proof of
concept that pattern structures reveal themselves as a good trade off to over-
come scaling difficulties, i.e. for computing the set of concepts whose lattice is
equivalent to the one obtained after conceptual scaling.

6 Conclusions

We have presented a method to compute the characterization of a set of func-
tional dependencies that hold in a set of many-valued data, based on formal
concept analysis plus pattern structures. From this characterization, it is simply
a matter of applying well-known algorithms to compute the minimal set of de-
pendencies that imply the whose set (otherwise known as the Duquenne-Guigues
basis). There was already methods to compute the characterization of those de-
pendencies using FCA: One possibility is using conceptual scaling, which is the
classical method to deal with many-valued data in FCA. This paper proposes to
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use pattern structures, because they have already been used successfully to deal
with many-valued data ([14]).

The empirical results compare an algorithm based on scaling versus another
based on pattern structures, and show that scaling is faster for small datasets,
whereas pattern structures perform better for large datasets, precisely where the
scaling-based algorithm is not able to compute the output. This indicates that
this new paradigm is more scalable in terms of time and memory. Since datasets
tend to become larges and contain more attributes, this scalability may be a
much important feature than speed in small datasets.

The results in this paper present a new paradigm for computing a char-
acterization of functional dependencies that outperforms algorithms based on
the classical conceptual scaling, which shows the interest of pattern structures
for dealing with many-valued data within FCA. We think that the results that
have been presented open the possibility to adapt this pattern structures based
framework to other kinds of dependencies, namely, multi-valued dependencies
and similar constraints that may be found in different fields.
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Computing minimal generators from
implications: a logic-guided approach
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Abstract. Sets of attribute implications may have a certain degree of
redundancy and the notion of basis appears as a way to characterize the
implication set with less redundancy. The most widely accepted is the
Duquenne-Guigues basis, strongly based on the notion of pseudo-intents.
In this work we propose the minimal generators as an element to remove
redundancy in the basis.
The main problem is to enumerate all the minimal generators from a
set of implications. We introduce a method to compute all the minimal
generators which is based on the Simplification Rule for implications.
The simplification paradigm allows us to remove redundancy in the im-
plications by deleting attributes inside the implication without removing
the whole implication itself. In this work, the application of the Simpli-
fication Rule to the set of implications guides the search of the minimal
generators in a logic-based style, providing a deterministic approach.

1 Introduction

A concept is a general idea that corresponds to some kind of entities and that
may be characterized by some essential features of the class. When Wille [18]
conceived Formal Concept Analysis (FCA), he probably did not foresee the wide
diffusion of his original idea, both in the theoretical and in the applied areas.
Application areas of FCA ranges from data analysis, information retrieval, or
data mining to knowledge representation or the semantic web.

The main goal of Formal Concept Analysis is to identify the relationships
between sets of objects and sets of attributes from information in a binary table.
These relationships establish a Galois connection which allows us to identify the
concepts by using lattice theory. The construction of the lattice of concepts is
known to be a hard problem due to its exponential complexity. For this task,
probably the most cited method is the NEXTCLOSURE algorithm developed by
Ganter [5].

Apart from building the concept lattice itself, one of the key problems is to
extract the set of attribute implications which hold in the concept lattice. In
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real applications the size of the concept lattice is usually huge and is impossible
for the user to visualize it. Belohlavek and Vychodil developed [1] a method
of expressing implications by means of closure operators. The main effect is to
filter-out outputs to the user. The study of implications allowed those authors
to reduce the number of formal concepts extracted from the input data: “Using
background knowledge thus enables a focused extraction of knowledge and may
considerably reduce the amount of information presented to the user” [2].

The problem arises when the set of implications has a high degree of re-
dundancy: by the existence of redundant implications or redundant attributes
inside the implications. One desired goal in this area is to remove redundancy
and obtain a minimal basis. The most widely approach comes from the notion
of Duquenne-Guigues Basis [6] also called stem base. This basis is minimal w.r.t.
the number of implications, i.e. if one of the implications is removed from the
basis, there are non-redundant implications which are valid in the dataset and
cannot be inferred, using the Armstrong’s Axioms, from the new reduced basis.

Nevertheless, this notion of minimality and its associated redundancy may
be improved. To illustrate this assertion, we present here an example appeared
in [5, pp. 30 and 84] where Ganter presents a context of developing countries.
In the example, 130 countries and six attributes are considered: Group of 77,
Non-aligned, LLDC (Least Developed Countries), MASC (Most Seriously Af-
fected Countries), OPEC (Organization of Petrol Exporting Countries) and ACP
(African, Caribbean and Pacific Countries). Ganter builds the concept lattice
from this context and provides the following Duquenne-Guigues basis:

OPEC → Group 77, Non-aligned
MASC → Group 77

Non-aligned → Group of 77
Group 77, Non-aligned, MASC, OPEC → LLDC, ACP
Group 77, Non-aligned, LLDC, OPEC → MASC, ACP

Note, however, that in the last two implications, there still exist redundant
attributes in the left hand side, whereas in the first and in the last implications
the redundancy appears in the right hand sides. This implies that it is possible
to provide an equivalent and simpler set of implications:

OPEC → Non-aligned
MASC → Group 77

Non-aligned → Group of 77
MASC, OPEC → LLDC, ACP
LLDC, OPEC → MASC

Thus, we have an example in which the Duquenne-Guigues basis still can contain
redundant information. In order to obtain the latter basis it is necessary to
consider minimal generators instead of pseudo-intents.

Implications define a closure system, and for this reason, a closure system
can be replaced by their equivalent implications. The relationship between closed
sets and implications are the key of the attribute exploration techniques [8, 13].

In [12] we introduced a closure algorithm strongly based on the simplification
logic [3]. Here, our closure operator is used to guide the search of all the minimal
generators of the closed sets corresponding to a given set of implications.

Methods for obtaining generators of closed sets have been studied in [4,10,17].
Minimal generators [14–16] appear in the literature under different names in
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various fields. For instance, in relational databases they are called minimal keys.
In [17], the authors emphasize the importance of studying minimal generators
although “they have been paid little attention so far in the FCA literature”.

We would like to provide, in a further step, an alternative definition of ba-
sis built around the notion of minimal generator, since our goal is to avoid
redundancy inside the implications, instead of just minimizing the number of
implications. As a preliminary step, we have to design a method to enumerate
all the minimal generators and their corresponding closed sets.

This paper is structured in the following way: in Section 2 some preliminaries
about formal concept analysis and the Simplification paradigm are presented. In
Section 3 a method to enumerate all the minimal generators from an implication
set is introduced and in subsection 3.2 the algorithm is modified to compute the
non-trivial minimal generators. The paper ends with a section on conclusions
and prospects for future work.

2 Preliminaries

2.1 Formal Concept Analysis

Intuitively, Formal Concept Analysis (FCA) provides methods to describe the
relationship between a set of objects and a set of attributes. A formal context
is a triple K := (G,M, I) where G is a set of objects, M is a set of attributes
and I ⊆ G×M is a binary relation between G and M such that, for o ∈ G and
a ∈ M , o I a means that the object o has the attribute a. From this triple two
mappings can be defined. One of them ( )′ : 2G → 2M is defined for all A ⊆ G as
A′ = {m ∈M | g I m for all g ∈ A}. The other one, ( )′ : 2M → 2G is defined for
all B ⊆ M as B′ = {g ∈ G | g I m for all m ∈ B}. Both mappings are denoted
by the same symbol because no confusion arises. This pair of mappings is a
Galois connection and both are antitone mappings (A1 ⊆ A2 implies A′

2 ⊆ A′
1

for all A1, A2 ⊆ G, and, for all B1, B2 ⊆M , if B1 ⊆ B2 then B′
2 ⊆ B′

1)
The composition of the intent and the extent mappings, and vice versa, give

us two closure operators ( )′′ : 2G → 2G and ( )′′ : 2M → 2M . That is, both are
extensive (X ⊆ X ′′), idempotent ((X ′′)′′ = X ′′) and isotone (if X1 ⊆ X2 then
X ′′

1 ⊆ X ′′
2 ). In order to make this work self-contained, the notion of closed set

(as a fixpoint of a closure operator) is defined below:

Definition 1. A formal concept is a pair (A,B) such that A ⊆ G, B ⊆ M ,
A′ = B and B′ = A. Consequently, A and B are closed sets of objects and
attributes, respectively called extent and intent.

It is well-known that the set of formal concepts is a complete lattice, the con-
cept lattice associated to the context, with the following partial ordering
is considered:

(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or equivalently B1 ⊇ B2)

Related to the notion of closed set, the minimal generator (mingen) and
implication are defined as follows:
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Definition 2. Let K = (G,M, I) be a formal context and A ⊆ M . The set
of attributes A is said to be a minimal generator (mingen) if, for all set of
attributes X ⊆ A if X ′′ = A′′ then X = A.

Attribute implication allows us to capture all the information which can be
deduced from a context. They are expressions A → B being A and B sets of
attributes. A context satisfies the implication A→ B if every object that has all
the attributes from A also has all the attributes from B.

Definition 3. An (attribute) implication of a formal context K = (G,M, I) is
defined as a pair (A,B), written A→ B, where A,B ⊆ M . Implication A→ B
holds (is valid) in K if A′ ⊆ B′.

The set of all valid implications in a context satisfies the well-known Arm-
strong’s axioms:

[Ref]
A ⊇ B
A→B , [Augm]

A→B
A ∪ C→B ∪ C , [Trans]

A→B, B→C
A→C

An implication basis of K is defined as a set L of implications of K from which
any valid implication for K can be deduced by using Armstrong rules. The goal
is to obtain a implication basis with minimal size. This condition is satisfied by
the so-called Duquenne-Guigues basis [6] or stem basis, which is built over the
set of the pseudo-intents [5].

As we have illustrated in the introduction, the definition of the Duquenne-
Guigues basis refers to minimality only in the size of the set of implicants, but
redundant attributes use to appear in this kind of minimal basis. This situation
comes from the use of pseudo-intents in the construction of the basis. To avoid
redundant attributes, we propose to consider minimal generators in the left hand
side of the implications. In this work we do not provide such alternative definition
of minimal basis, but focus on the problem of enumerating all the minimal
generators. This is the main goal of Section 3, but before we need to recall the
basics of the simplification logic.

2.2 Simplification logic and closures

Armstrong’s axiom system has influenced the design of several logics for func-
tional dependencies [9,11], all of them built around the transitivity paradigm. In
this section, we summarize the axiom system of Simplification Logic for Func-
tional Dependencies SL

FD
. It avoids the use of transitivity and is guided by

the idea of simplifying the set of functional dependencies by efficiently removing
some redundant attributes [3].

To begin with, SL
FD

logic considers reflexivity as axiom scheme

[Ref]
A ⊇ B
A→B

together with the following inference rules called fragmentation, composition and
simplification respectively.
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[Frag]
A→B ∪ C
A→B [Comp]

A→B, C→D
A ∪ C→B ∪D [Simp]

A→B, C→D
A ∪ (C rB)→D

The equivalence between SL
FD

logic and Armstrong’s Axioms and an ef-
ficient algorithm to compute the closure of a set of attributes were proposed
in [12]. We have also conducted a comparison to other closure algorithms in the
literature in order to prove the better performance of our logic-based system.
The main advantage of SL

FD
is that inference rules can be considered as equiva-

lence rules, and that is enough to compute all the derivations (see [12] for further
details).

Proposition 1. Let A,B,C,D sets of attributes. In SL
FD

logic, the following
equivalences hold:

1. {A→B} ≡ {A→B rA}
2. {A→B,A→C} ≡ {A→B ∪ C}
3. A ∩B = ∅ and A ⊆ C imply {A→B,C→D} ≡ {A→B,C rB→D rB}

It is well-known that, given a basis of a context, the closure of attribute sets
defined based on Armstrong’s axioms coincides with the closure ()

′′
: 2M → 2M .

On the other hand, Armstrong’s axioms and the axiom system in SL
FD

logic
are equivalent.

Definition 4. Let Γ be a set of implications and A be a set of attributes. The
closure of A in SL

FD
logic is defined as the maximum set of attributes A+ such

that Γ ` A→A+.

Theorem 1. Let K = (G,M, I) a formal context and Γ a basis for K. For all
A ⊆M , the equality A+ = A′′ holds.

As we have said, in [12] we present a novel algorithm to compute closures using
SL

FD
Logic. The formula ∅→A is used as a seed by the reasoning method to

render the closure A+ of A (which coincides with A′′) just by applying some
operators based on the [Simp] inference rule. The algorithm is based on the
following results:

Theorem 2. Let A and B be sets of attributes and Γ be a set of implications.

Γ ` A→B if and only if {∅→A} ∪ Γ ` {∅→B}

The closure algorithm is based on the previous theorem and the systematic
application of the following equivalences which are direct consequences of the
simplification equivalence (item 3 in Proposition 1).

Proposition 2. Let A,B and C be sets of attributes, then the following equiv-
alences hold:

– Eq. I: If B ⊆ A then {∅→A,B→C} ≡ {∅→A ∪ C}.
– Eq. II: If C ⊆ A then {∅→A,B→C} ≡ {∅→A}.
– Eq. III: Otherwise {∅→A,B→C} ≡ {∅→A,B rA→C rA}.

Computing MGs from implications: a logic-guided approach 191



Given a set of implications Γ and a set of attributes A, the execution of the
SL

FD
closure method begins with the construction of the guide ∅→A. The three

equivalences are systematically applied to Γ , which produces a growth of the
guide. When none of the three equivalences can be applied, in the guide we have
the closure.

Method 1 Let Γ be a set of implications and A a subset of attributes. The
following method computes the closure A+ of the set A w.r.t. Γ :

1. Build the guide as follows {∅→A}
2. While there exist B→C ∈ Γ such that A ∩ B 6= ∅ or A ∩ C 6= ∅ (being
{∅→A} the guide in this state of the execution), execute the corresponding
equivalence:
– If B ⊆ A then remove B→C from Γ and change the guide {∅→A} by
{∅→A ∪ C}.

– If C ⊆ A then remove B→C from Γ .
– Otherwise substitute B→C by B rA→C rA in Γ .

3. If {∅→A} is the guide (in this state) then return A.

Example 1. Let Γ = {ab→c, bc→d, de→f, ce→f} and A = de. The following
table summarizes the execution of Method 1 to compute A+ = def .

Guide Γ
∅→de ab→c bc→d de→f ce→f
∅→de ab→c bc→6d 6d6e→f c6e→f
∅→def ab→c c→6f
∅→def ab→c

The new closure operator was proven to be faster than other closure algo-
rithms [12]. Finally, it is possible to define a modification of the closure algorithm
to return not only the closure but also the resulting set Γ . This algorithm will
be denoted by Cls. So, considering the previous example,

Cls(de, {ab→c, bc→d, de→f, ce→f}) = (def, {ab→c})

3 Computing all mingens from a basis

In this section, we present how the Simplification paradigm can be considered
as a powerful tool to guide the search of all minimal generator sets. In the
first method we present here, we will compute mingens (the set of all minimal
generators) from a set of implicant set. The algorithm works by applying the
SL

FD
Closure algorithm to the set of implications. This application provides a

new candidate to be added to mingen and a smaller implications set which guides
us in the search of new sets of attributes to be added to mingens.

The input of this algorithm is a set of attributes M and a set of implications Γ
over the attributes in M . The output is the set of closed sets endowed with all
the mingens that generate them, i.e.
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{〈C,mg(C)〉 : C is a closed set of attributes}
where mg(C) = {D : D is a mingen and D+ = C}.

For example, if M = {a, b, c} and Γ = {a→b, b→a} the output must be

{〈abc, {ac, bc}〉, 〈ab, {a, b}〉, 〈c, {c}〉, 〈∅, {∅}〉}

It can be seen as the concept lattice in which we have added labels with the
mingens to each closed set.

With this idea we are going to need operators that allow us to work with this
kind of sets, i.e. sets of pairs 〈A,B〉 such that A ⊆M is an intent and B ⊆ 2M

satisfies the following conditions:

1. X ⊆ A for all X ∈ B.
2. X,Y ∈ B and X ⊆ Y imply X = Y .

This kind of sets are called labeled set of intents (LSI). Given two LSIs Φ and
Ψ , we define the join of both, Φ t Ψ , as the the minimum LSI that satisfies:

– If 〈A1, B1〉 ∈ Φ and A1 6= A2 for all 〈A2, B2〉 ∈ Ψ then 〈A1, B1〉 ∈ Φ t Ψ
– If 〈A1, B1〉 ∈ Ψ and A1 6= A2 for all 〈A2, B2〉 ∈ Φ then 〈A1, B1〉 ∈ Φ t Ψ
– If 〈A,B1〉 ∈ Ψ and 〈A,B2〉 ∈ Φ then 〈A,B3〉 ∈ Φ t Ψ being B3 the set of minimal

elements of B1 ∪B2.

We define an operator, the trivial operator, that given M and Γ returns the
following LSI:

trv(M,Γ ) = {〈X, {X}〉 : X ⊆M with A 6⊆ X for all A→B ∈ Γ}

For example, trv({a, b, c}, {a→b, b→a}) = {〈c, {c}〉, 〈∅, {∅}〉}.
We will also need a way to add a pair to an LSI; it is defined as follows:

Add(〈C, {D}〉, Φ) = {〈A ∪ C, {X ∪D : X ∈ B}〉 : 〈A,B〉 ∈ Φ}

For example,

Add(〈ab, {a}〉, {〈c, {c}〉, 〈∅, {∅}〉}) = {〈abc, {ac}〉, 〈ab, {a}〉}
Add(〈c, {c}〉, {〈ab, {a, b}〉, 〈∅, {∅}〉}) = {〈abc, {ac, bc}〉, 〈c, {c}〉}

3.1 MinGen Algorithm

We already have all the tools needed to define the algorithm, which is introduced
below, together with an illustrative example of its application.

Example 2. We want to compute

MinGen({a, b, c, d}, {a→b, c→bd, bd→ac})

Step 1. Φ = trv({a, b, c, d}, {a→b, c→bd, bd→ac} =
= {〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
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Algorithm 1: MinGen

Data: M,Γ
Result: Φ

begin
if Γ = ∅ then

Φ = trv(M,Γ )
else

Let Φ = trv(M,Γ );
foreach A→B ∈ Γ do

Let (A+, Γ ′) = Cls(A,Γ );
Let Φ := Φ t Add(〈A+, {A}〉, MinGen(M rA+, Γ ′);

Return Φ

Step 2. Considering a→b ∈ Γ ,

Cls(a, Γ ) = (ab, {c→d, d→c})

and call to MinGen({c, d}, {c→d, d→c})

∅→a a→b c→bd bd→ac
∅→a 6a→b c→bd bd→6ac
∅→ab c→6bd 6bd→c

Step 2.1. This label (2.1) points that we have passed to a lower level, i.e. we have made
a recursive call to the procedure.

Φ1 = trv({c, d}, {c→d, d→c} = {〈∅, {∅}〉}
Step 2.2. Considering c→d ∈ Γ1,

Cls(c, Γ1) = (cd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→c c→d d→c
∅→c 6c→d d→6c
∅→cd

And so Φ1 = {〈∅, {∅}〉} t Add(〈cd, {c}〉, {〈∅, {∅}〉})
= {〈cd, {c}〉, 〈∅, {∅}〉}

Step 2.3. Considering d→c ∈ Γ1,

Cls(d, Γ1) = (cd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→d c→d d→c
∅→d c→6d 6d→c
∅→cd

And so
Φ1 = {〈cd, {c}〉, 〈∅, {∅}〉} t Add(〈cd, {d}〉, {〈∅, {∅}〉})

= {〈cd, {c, d}〉, 〈∅, {∅}〉}
Returning to the higher level,

Φ = {〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉} t Add(〈ab, {a}〉, {〈cd, {c, d}〉, 〈∅, {∅}〉})
= {〈abcd, {ac, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Step 3. Considering c→bd ∈ Γ ,

Cls(bc, Γ ) = (abcd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→c a→b c→bd bd→ac
∅→c a→b 6c→bd bd→a6c
∅→bcd a→6b 6b6d→a
∅→abcd

Φ = {〈abcd, {ac, ad}〉, 〈ab, {a}〉〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
t Add(〈abcd, {c}〉, {〈∅, {∅}〉})
= {〈abcd, {c, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
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Note that {〈abcd, {ac, ad}〉} t {〈abcd, {c}〉} = {〈abcd, {c, ad}〉}.

Step 4. Considering bd→ac ∈ Γ ,

Cls(bd, Γ ) = (abcd,∅)

and MinGen(∅,∅) = {〈∅, {∅}〉}.

∅→bd a→b c→bd bd→ac
∅→bd a→6b c→6b6d 6b6d→ac
∅→abcd

Φ = {〈abcd, {c, ad}〉, 〈ab, {a}〉, 〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}
t Add(〈abcd, {bd}〉, {〈∅, {∅}〉})
= {〈abcd, {c, ad, bd}〉, 〈ab, {a}〉〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

Finally, the algorithm returns

{〈abcd, {c, ad, bd}〉, 〈ab, {a}〉〈b, {b}〉, 〈d, {d}〉, 〈∅, {∅}〉}

3.2 Non-trivial minimal generators.

Notice that the first method we have just introduced computes all minimal
generators, including trivial mingens with non-relevant information.

In this subsection, we slightly modify the previous algoritm to produce only
the relevant information (not trivial mingens), by considering that trv(M,Γ )
returns always only {〈∅, {∅}〉}. This new algorithm is called L MinGen0.

Fig. 1. SLFDguides the construction of the MinGen set
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Example 3. We want L to compute

MinGen0({a, b, c, d, e, f}, {a→b, bc→d, de→f, ace→f})
The full execution of the method MinGen0 is depicted in Figure 1. In Figure 2

we show the lattice of closed sets built with the non-trivial mingens provided by
MinGen0.

Fig. 2. Lattice of minimal generators

Step 1. Φ = {〈∅, {∅}〉}
Step 2. Considering a→b ∈ Γ , compute

Cls(a, Γ ) = (ab, {c→d, de→f, ce→f})
Now we compute MinGen0({c, d, e, f}, {c→d, de→f, ce→f})
Step 2.1. Φ1 = {〈∅, {∅}〉}
Step 2.2. Considering c→d ∈ Γ ′, compute Cls(c, Γ ) = (cd, {e→f}). Now we are going
to compute MinGen0({e, f}, {e→f}).
Step 2.2.1 Φ1.1 = {〈∅, {∅}〉}
Step 2.2.2 Considering e→f ∈ Γ ′′, Cls(e, Γ ′′) = (ef,∅). And so

Φ1.1 = {〈∅, {∅}〉} t Add(〈ef, {e}〉, {〈∅, {∅}〉})
= {〈ef, {e}〉, 〈∅, {∅}〉}

Returning to the higher level,

Φ1 = {〈∅, {∅}〉} t Add(〈cd, {c}〉, {〈ef, {e}〉, 〈∅, {∅}〉})
= {〈cdef, {ce}〉, 〈cd, {c}〉, 〈∅, {∅}〉}

Step 2.3. Considering de→f ∈ Γ ′, Cls(de, Γ ) = (def,∅). Moreover, MinGen0({c},∅) =
{〈∅, {∅}〉}

Φ1 = {〈cdef, {ce}〉, 〈cd, {c}〉, 〈∅, {∅}〉} t Add(〈def, {de}〉, {〈∅, {∅}〉})
= {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉}

Step 2.4. Considering ce→f ∈ Γ ′, compute Cls(ce, Γ ) = (cdef,∅). Moreover MinGen0(∅,∅) =
{〈∅, {∅}〉}
Φ1 = {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉} t Add(〈cdef, {ce}〉, {〈∅, {∅}〉})

= {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉}
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Returning to the high level,

Φ = {〈∅, {∅}〉} t Add(〈ab, {a}〉, {〈cdef, {ce}〉, 〈def, {de}〉, 〈cd, {c}〉, 〈∅, {∅}〉})
= {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈abcd, {ac}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

Step 3. Considering bc→d ∈ Γ , Cls(bc, Γ ) = (bcd, {e→f, ae→f}). Now we compute
MinGen0({a, e, f}, {e→f, ae→f}).
Step 3.1. Φ2 = {〈∅, {∅}〉}
Step 3.2. Considering e→f ∈ Γ ′, compute Cls(e, Γ ) = (ef,∅) and MinGen0({a},∅) =
{〈∅, {∅}〉}

Φ2 = {〈∅, {∅}〉} t Add(〈ef, {e}〉, {〈∅, {∅}〉}) = {〈ef, {e}〉, 〈∅, {∅}〉}
Step 3.3. Considering ae→f ∈ Γ ′, Cls(ae, Γ ) = (aef,∅). Moreover MinGen0(∅,∅) =
{〈∅, {∅}〉}

Φ2 = {〈ef, {e}〉, 〈∅, {∅}〉} t Add(〈aef, {ae}〉, {〈∅, {∅}〉})
= {〈aef, {ae}〉, 〈ef, {e}〉, 〈∅, {∅}〉}

Returning to the high level,

Φ = {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈abcd, {ac}〉, 〈ab, {a}〉, 〈∅, {∅}〉}
tAdd(〈bcd, {bc}〉, {〈aef, {ae}〉, 〈ef, {e}〉, 〈∅, {∅}〉})
= {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈abcd, {ac}〉, 〈ab, {a}〉, 〈∅, {∅}〉}
t{〈abcdef, {abce}〉, 〈bcdef, {bce}〉, 〈bcd, {bc}〉}
={〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈bcdef, {bce}〉, 〈abcd, {ac}〉,
〈bcd, {bc}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

Notice that the last application of the t operator does not add the set {abce} to mingen
because it produces the same closed set than {ace}. Thus, in Figure 1 this leaf appears
with gray color.
Step 4. Considering de→f ∈ Γ , renders

Φ = {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈bcdef, {bce}〉, 〈abcd, {ac}〉,
〈bcd, {bc}〉, 〈def, {de}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

Step 5. Considering ace→f ∈ Γ , renders

Φ = {〈abcdef, {ace}〉, 〈abdef, {ade}〉, 〈bcdef, {bce}〉, 〈abcd, {ac}〉,
〈bcd, {bc}〉, 〈def, {de}〉, 〈ab, {a}〉, 〈∅, {∅}〉}

4 Conclusions and future works

In this work we have proposed the minimal generators as a basic notion to
remove redundancy in sets of implications. To achieve this goal, the first step
is to design a method to compute all minimal generators corresponding to a
set of implications. The simplification paradigm is the key to design the MinGen

and MinGen0 algorithms. The application of SL
FD

closure algorithm guides the
search of minimal generators.

As future work we will present a thorough study about the soundness, com-
pleteness, and complexity of the mingens algorithms, which have not been in-
cluded here due to space limitations; moreover, a definition of basis center within
the notion of minimal generators will be studied, together with a method to com-
pute such a basis.
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Abstract. This paper presents a conceptual approach for decision support ap-
plied in a collaborative complex system design project. The approach takes ad-
vantage of the use of Similarity-based Formal Concept Analysis (SFCA) to clas-
sify, visualize, and explore simulation data in order to help system designers to
identify relevant design choices. The approach is illustrated on an aircraft cabin
design case study which concerns the simulation of different configurations of
the ventilation system to study the passengers comfort in the cabin. The classi-
fication of simulation data with their corresponding comfort scores using SFCA
allows to derive for each simulated input parameter the maximal interval of values
which guarantee an acceptable comfort level. To evaluate the obtained results, the
extracted intervals are then used as ranges of the input parameters for new sim-
ulations which confirmed the already obtained comfort levels and showed the
convergence of the results.

1 Introduction

The design phase is one of the biggest challenges industrial companies are often facing
in complex system production process. During the design process, several aspects must
be studied to ensure the system performances as well as its compliance with the end-
user requirements. These aspects are reflected by a set of design parameters that must
be taken into account early from the design phase. Several simulations of design param-
eters are then performed before validating the design choices. In the case of complex
systems, simulations produce large datasets to be carefully studied and analysed in order
to identify optimal configurations. The analysis process simultaneously implies several
criteria and is usually defined as multiple criteria decision analysis (MCDA) task which
involves the comparison and ranking of a number of alternatives with respect to multi-
ple, potentially conflicting, criteria, with the ultimate objective of identifying the best
option from the available choices [1]. In this context, decision support tools are used
to aid decision-makers to make rational choices. The range of decision support meth-
ods is very large and covers several application domains such as economy, industry,
etc. [2, 3]. The choice of one method instead of another depends on several constraints
related to data characteristics (data format, data size, etc.) or to the method it-self as
generated result characteristics (visualization, analytics, etc.). In [1], a brief survey of

c© 2012 by the paper authors. CLA 2012, pp. 199–210. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



the main decision support approaches in industrial contexts is given before introduc-
ing an approach based on rough sets for environmental decision support in industry. In
the current work we are particularly interested in decision support approaches based on
conceptual structures such as concept lattices derived based on Formal Concept Anal-
ysis (FCA) formalism [4]. These approaches are motivated by the richness of lattice
structures as well as by their well-established formal properties. Indeed, a concept lat-
tice is a conceptual representation of data that highlights its underlying structure and
implicit relationships. Its usefulness for data analysis purposes is proved by the large
number of derived approaches which used lattice structures as navigation support for
information retrieval, as condensed representation of itemsets, implications and associ-
ation rules for data mining, as a set of embedded decision trees for machine learning,
prediction and decision support, etc. [5]. However, FCA method is usually limited by
the rigidity of its input format (binary data). Some works have proposed to extend it to
complex data [6–8], among them Similarity-based Formal Concept Analysis (SFCA)
method which considers similarity to directly classify non-binary data into lattice struc-
tures called Many-Valued Concept Lattices (MV lattices) [8]. Besides extending FCA to
complex data and avoiding loose of information in transformation phases, SFCA clas-
sification process produces MV lattices with different granularity levels which allows
progressive data exploration [9].

In this paper we study the usefulness of MV lattices to provide a support for com-
bining numerical values (quantitative) analysis together with qualitative analysis to aid
decision makers in the process of complex system Design. More precisely we show how
MV lattices can be used to highlight crucial information a designer may need to vali-
date design choices. The proposed approach is applied to an industrial case study: the
design of the ventilation system of an aircraft cabin. Simulation data for this case study
are classified and analysed using MV lattices to identify relevant design configurations
regarding the obtained passengers comfort in the cabin. The analysis is facilitated by
two visualization techniques proposed in this work: score-based and interval-based vi-
sualization. The rest of the paper is organized as follows: Section 2 presents the context
of the study and the aircraft cabin design test case. Section 3 recalls basic definitions
of SFCA. Section 4 briefly describes the two visualization techniques to aid decision
making in MV lattices. Section 5 details the application of SFCA to the aircraft cabin
case, the obtained results and an evaluation of these results followed by the conclusion
in Section 6.

2 Context of the Study: Collaborative Complex System Design

The present research work is part of the Complex System Design Lab (CSDL)3 project
which involves 27 industrial and academic partners and aims at providing a collabora-
tive environment for complex system design. Since the simulation of design choices,
which is one of the more strategic steps of complex system design, usually outputs
large and high dimensional datasets, the CSDL platform should allow efficient analysis
of such datasets to identify the right conception choices. In this project, simulations are

3 http://www.systematic-paris-region.org/fr/projets/csdl
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performed following a Design of Experiment procedure which consists in computing
the systems outputs for a set of chosen design points of parameter space. Moreover, ad-
ditional data dealing with the systems performances such as performance criteria, cost
functions and constraints are computed. Then the objective of the analysis step is to
identify interesting regions of the parameters space which correspond to the appropri-
ate design configuration.

Fig. 1: Aircraft cabin schema and
the main simulated input parame-
ters

Parameter Range
Alpha 1 (◦) [-90, -80]
Alpha 2 (◦) [-100, -45]
Alpha 3 (◦) [-135, -90]
Alpha 4 (◦) [-120, -80]

Uair 1 (m/s) [0.2, 0.7]
Uair 2 (m/s) [0.2, 0.7]
Uair 3 (m/s) [0.2, 0.7]
Uair 4 (m/s) [0.2, 0.7]
Uair In (m/s) [0.6, 3]
Tair In (◦C) [22, 25]
Tair P (◦C) [22, 25]
T ext (◦C) [-65, -50]

Kappa F (W/K) [1 e−4, 4 e−4]

Table 1: Ranges of the simulated
parameters

CSDL industrial partners have provided a use case which corresponds to a com-
mercial aircraft cabin air control system. In this use case the goal is to identify relevant
design configurations which ensure comfort conditions in terms of air temperature and
velocity inside the cabin. Typical fields of temperature and velocity are obtained us-
ing the same fluid model as in [10] and the comfort design problem is parametrized
by 13 continuous parameters each evolving in a range interval of possible values (see
Table 1). These design parameters are: angles of air injection at 4 passengers’ personal
fan (Alpha 1..4), blown air speed at 4 passengers’ personal fan (Uair 1..4), temperature
of blown air at main inlet (Tair In), temperature of blown air at 4 passengers’ personal
fan (Tair P), blown air speed at main inlet (Uair In), external temperature (T ext), and
fuselage thermal conductivity (Kappa F). The mean values of temperature and velocity
for each of the four passengers’ seats (see Figure 1) have been computed to assess the
passengers’ comfort, which resulted in eight output criteria (two per passenger) related
to the comfort. Moreover, a measure of the energy consumed by the air-conditioning
system is also considered to estimate the price at which this comfort comes.

In the reminder of this paper we propose an approach based on SFCA for data
analysis and decision support in industrial contexts through the classification and visu-
alization of simulation datasets. The approach is illustrated on the previously introduced
CSDL use case.
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3 Similarity-Based Formal Concept Analysis Basic Notions

SFCA [8, 9] is a classification and data analysis method which extends FCA definitions
and results to complex data represented by many-valued contexts [4]. Formally, an MV
context is denoted by (G,M,W, I) where G is a set of objects, M is a set of attributes,
W is a set of attribute values, and I is a ternary relation between G, M and W (i.e.,
I ⊆ G×M×W ). (g,m,w) ∈ I denotes the fact that “the MV attribute m takes the value
w for the object g”. This fact is also denoted by m(g) = w. Table 2 gives an example
of MV context corresponding to a part of simulation results for the aircraft cabin test
case (Figure 1). In this example, objects correspond to the first 5 simulations and the
attributes correspond to a part of simulated input parameters, namely T Ext, Tair In,
Tair P, and Uair In, and two output parameters T1 and V1 respectively corresponding
to the air temperature and velocity in seat1.

Table 2: An example of Many-valued Context corresponding to a part of simulation results for
seat1 in the aircraft cabin test case.

T Ext Tair In Tair P Uair In T1 V1
(◦C) (◦C) (◦C) (m/s) (◦C) (10−2m/s)

1 -57.41 23.89 23.31 2.56 23.86 1.31
2 -56.68 22.71 23.11 1.95 22.34 3.47
3 -59.38 24.27 23.39 2.72 24.01 6.68
4 -51.11 22.06 23.95 1.78 21.42 2.38
5 -55.93 24.28 23.70 2.25 23.91 3.43

The basic intuition of SFCA is to group together objects which are sufficiently sim-
ilar (i.e. have similar attribute values). Therefore, a set of objects A shares an attribute
m when all values of m for the objects in A are similar. The similarity is defined in the
common intuitive way: two values are similar when their difference is not significant.
In the case of numerical data, computing similarity is straightforwardly given by a com-
paraison of the numerical values. Two values are said to be similar if their difference is
less than a given similarity threshold θ which expresses the maximal variation allowed
between two similar values. Formally, given a numerical MV context (G,M, I,W ) and
wi,w j ∈W , wi 'w j iff |wi−w j| ≤ θ. More generally, two intervals [α1,β1] and [α2,β2]
are similar iff max(β1,β2)−min(α1,α2)≤ θ. Given a similarity threshold θ, the set of
all possible possible intervals of similar values that can be defined on W , denoted by
Iθ, is the set of intervals of the form [wi,w j] such that wi,w j ∈W and w j−wi ≤ θ.

The choice of θ reflects the precision requirements to be considered during the data
analysis process. Lower values of θ mean that only the closest values will be considered
as similar whereas higher values of θ mean that more distant values can be considered as
similar. Depending on considered datasets and on the analysis processes, it is possible
to choose either the same similarity thresholds for all the context attributes or a separate
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threshold for each attribute. In the later case, θ denotes a vector (θi)0≤i<|M| of |M|
elementary thresholds respectively corresponding to the context attributes.

Based on the similarity of attribute values, SFCA extends the definition of attribute
sharing between objects as follows. Given two objects gi,g j ∈G and an attribute m∈M
such that m(gi) = wi and m(g j) = w j, gi and g j share m whenever wi ' w j. The interval
of values [min(wi,w j),max(wi,w j)] is called similarity interval of attribute m for objects
gi and g j. Then gi and g j are said to share m w.r.t to [min(wi,w j),max(wi,w j)] written
as (m, [min(wi,w j),max(wi,w j)]). More generally, a set of objects A shares (m, [α,β])
where α = ming∈A(m(g)) and β = maxg∈A(m(g)) whenever ∀gi,g j ∈ A, m(gi)'m(g j).
In this case, A is said to be valid w.r.t. m and [α,β] is the similarity interval of m for
A. In the same way, A shares a set of attributes B whenever A shares all attributes in B.
In the MV context given in Table 2 objects 1 and 3 share attribute T1 for a similarity
threshold θ4 = 1. However these two objects do not share attribute V1 for θ5 = 1.

A many-valued concept is defined as (i) maximal sets of objects having in common
(ii) maximal sets of attributes with intervals of similar values. These sets are formally
defined as follows.

(i) Maximal valid sets of objects: Given an attribute m and a set of objects A valid
w.r.t. m. SFCA defines the set of reachable objects from A w.r.t. m as :

R(A,m) = {gi ∈ G | m(gi)' m(g), ∀g ∈ A}

R(A,m) is the maximal set containing all objects similar to those in A w.r.t. m. This set
may not be valid w.r.t. m because of the non transitivity of “'”. The maximal valid set
of objects containing A is the subset of R(A,m) obtained by removing from R(A,m) all
pairs of objects which do not share m. Formally this set is defined as follows:

Rv(A,m) = R(A,m)\{gi,g j ∈R(A,m) | m(gi) 6' m(g j)}

More generally, the maximal valid set containing A with respect to B⊆M is:

Rv(A,B) =
⋂

m∈B

Rv(A,m)

(ii) Maximal intervals of similar attribute values: When A⊆ G shares an attribute m ∈
M, the largest interval of similar values of m for A is the interval of similar values of m
for the objects in Rv(A,m) obtained as follows:

γ(A,m) = [ming∈Rv(A,m)(m(g)),maxg∈Rv(A,m)(m(g))]

Then A is said to share (m,γ(A,m)). For example, for θ0 = 1, the set of objects {1,3,5}
shares (T 1, [23.86,24.01]).

Based on these maximal sets, SFCA defines the following derivation operators for
A⊆ G and B⊆M×Iθ:

A↑ = {(m,γ(A,m)) ∈M×Iθ | γ(A,m) 6= Ø}

B↓ = Rv({g ∈ G | ∀ (m, [α,β]) ∈ B, m(g)' [α,β]},B)
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A↑ is the maximal set of MV attributes shared by all objects in A and B↓ is the maximal
set of objects sharing all MV attributes in B. It has been shown in [8, 9] that ↑ and ↓

form a Galois connection between (G,⊆) and (M×Iθ,⊆θ).
In the example of MV context in Table 2, and for θ = (10,10,10,10,1,1), we have:

{1,3,5}↑= {(T 1, [23.86,24.01]), (T Ext, [−59.38,−55.93]), (Tair In, [23.89,24.28]),
(Tair P, [23.31,23.7]), (Uair In, [2.25,2.72])}
and
{(T 1, [23.86,24.01]),(T Ext, [−59.38,−55.93]),(Tair In, [23.89,24.28]),(Tair P,
[23.31,23.7]),(Uair In, [2.25,2.72])}↓ = {1,3,5}.

MV concepts are then defined as pairs (A,B) where A⊆G and B⊆M×Iθ such that
A↑ = B and B↓ = A. A and B are respectively the extent and the intent of (A,B). For θ =
(10,10,10,10,1,1) in the MV context given in Table 2, ({1,2,3},{(T 1, [23.86,24.01]),
(T Ext, [−59.38,−55.93]), (Tair In, [23.89,24.28]),(Tair P, [23.31,23.7]), (Uair In,
[2.25,2.72])}) is an example of MV concept.

The MV concepts of an MV context can be partially ordered based on the inclusion
of their extents (and, dually, intents) and form the hierarchy structure called MV concept
lattice and denoted by Bθ(G,M,W, I). The Hasse diagram of the MV concept lattice of
the MV context given in Table 2 for θ = (10,10,10,10,1,1) is shown in Figure 2. In
this graphical representation, MV attributes in the form (m, [α,β]) are written m : [α,β]
for a better readability.

Fig. 2: The MV lattice Bθ(G,M,W, I) corresponding to the MV context given in Table 2 for
θ = (10,10,10,10,1,1).

4 Visualization of MV Concepts

Finding patterns within MV concepts may be assisted with the use of visualization
techniques. In this work we propose two techniques to assist the analyst in determining
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the similarity threshold, filtering and selecting concepts of interest. The proposed tech-
niques follow the so called “information-seeking mantra” - Overview first, zoom and
filter, then details-on-demand [11].

First we propose a visualization technique that consists on the filtering and coloring
of concepts based on user-defined scores. In Section 2, we show how certain inter-
vals in the temperature and the air speed are used to determine comfort classes in the
cabin according to international standards. A color gradient is assigned according to the
“global score” of a concept (Figure 2). For instance, the score of “maximum comfort”
is attributed when the scores of velocity and and temperature are equal to 2 and the
color. This simplification is important because in Complex System Design the number
of parameters are usually overwhelming to the analyst to overview and compare. Alter-
natively, user can filter concepts that are below a score threshold. This is particularly
important during the extraction of comfort classes as explained in Section 2.

When the relevant concepts are identified, i.e. the comfort classes in our case, the
analyst will take decisions based on concepts that fit best to his or her goals. To help
the analyst to quick identify intervals in the concepts and compare with other concepts
in the lattice, we created a new visualisation based on a “conceptual heat map” where
each concept is depicted as an array of rectangles (Figure 3). Each rectangle represents
an attribute, its color indicates the interval of the attribute value in a continuous color
scale from blue to red. Its width is proportional to the size of the range. If an attribute
is not present in the concept the corresponding rectangle is empty in order to keep the
order of attributes consistent.

5 Applying SFCA to Aircraft Cabin Test Case

5.1 Using Similarity Threshold to Express Constraints to Guide Data
Exploration Process

In the previous section, SFCA formalisation is given from a numerical data perspec-
tive. Such a formalisation can also be done on other data formats which makes SFCA
approach generic and flexible. In this case, appropriate similarity measures need to be
defined accordingly to handle complex data. Once similarity measures are defined, the
application of SFCA follows the intuition of “grouping together similar data”. As shown
above, this operation also needs the definition of threshold which can be a subjective
task strongly related to the data analysis process. The variation of similarity thresholds
yields a variation in the obtained MV lattices in terms of number of MV concepts as
well as in terms of concept granularity and it has been shown that both aspects are
related [9].

In the current work, we are interested in identifying the input requirements which
guarantee a convenient output situations based on a set of simulation data. This means
that we first need to formulate “convenient” output situations in terms of constraints.
Then, we use such constraints to guide the SFCA classification process in order to
obtain the appropriate values of input parameters satisfying these constraints. In the
previously shown example (Table 2 and Figure 2) the choice of the threshold θ =
(10,10,10,10,1,1) follows the idea of defining constraints on the output parameters T 1
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Fig. 3: The MV concept view for the lattice in Figure 2. Color indicates position in the range
(from blue to red), width shows the length of the interval.

and V 1 in order to extract the appropriate ranges of the input parameters T Ext, Tair In,
Tair P and Uair In. Indeed, value of θi = 10 defined as threshold for each input pa-
rameter exceeds the difference between the minimal and the maximal values of each
of the four input parameters. Consequently, there is no effective constraint in group-
ing together these parameters while forming the MV concepts. However, the thresholds
θi = 1 for T 1 and V 1 mean that values of T 1 (respectively V 1) can be grouped together
if and only if their difference is less than 1. This constraint is expressed to obtain a
lattice formed by MV concepts where intervals of values of T 1 and V 1 are not larger
than 1 and without any constraint on the other attributes. Having such a MV lattice one
can directly read the maximal range of each input parameter which allows to obtain
a temperature in given interval. For example, MV concept with extent {2,4} in Fig-
ure 2 shows that values of Uair In, Tair P, Tair In and T ext respectively in intervals
[1.78,1.95], [23.11,23.95], [22.6,22.71], and [-56.68,-51.11] ensure to obtain a value of
T1 in [21.42,22.34]. Knowing intervals of temperature values corresponding to a com-
fort situation, it is then possible to deduce the required inputs to ensure such a comfort.
Based on this idea we develop and apply a data analysis strategy to deal with the aircraft
cabin design test case.

5.2 Simulation Dataset of the Aircraft Cabin Test Case

In the reminder of this paper we will consider the previously introduced aircraft design
case study. The considered dataset corresponds to the simulation results of 100 ran-
domly chosen configurations of design parameters (the 13 input parameters). 9 output
criteria have been defined to assess the quality of each configuration in terms of passen-
gers comfort and energy cost. The mean values of temperature and velocity of each of
the four seats are computed which resulted in 8 criteria associated with the comfort of
the passengers. The dissipated energy is computed based on the velocity as a measure
of the loss of energy due to the fluid viscosity.

In order to quickly appreciate the comfort in each seat and hence simplify the dataset
exploration and the experiments evaluation, comfort scores were computed for the val-
ues of the comfort output criteria (temperature and velocity). The scores are in a three
points scale (0: uncomfortable, 1: acceptable, 2: comfortable) computed according to
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ANSI/ASHRAE Standards [12] as follows:

score(T) =





0 if T < 21 or T > 24
1 if 21≤ T < 22.5 or 23.5< T ≤ 24
2 if 22.5≤ T ≤ 23.5

score(V) =





0 if V > 1
1 if 0.2<V ≤ 1
2 if V ≤ 0.2

These scores are then used instead of their corresponding values of temperature and
velocity in the classification process by SFCA.

5.3 Extracting Comfort Classes and Their Corresponding Design Parameters’
Ranges

Our objective is to determine the design parameters that are important to qualify the
experiments such that all of the four passengers are satisfied. We make the assumption
that the temperature is more important than the velocity to define the thermal comfort
of the passengers. Therefore, we focus our analysis on the experiments that offer the
maximum comfort for the passengers from the temperature point of view only: we keep
only the experiments such that the score for the temperature is 2 and we called this
subset Ssilver. Then, following the previously detailed strategy for thresholds choice, we
applied SFCA to build the corresponding MV lattice shown on Figure 4.

Fig. 4: MV lattice generated on Ssilver

By analyzing this MV lattice, it turns out that Ssilver can be described using three
distinct main comfort classes: (i) ”Maximum comfort” (concept n◦3): maximum score
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for both temperature and velocity for the 4 seats, (ii) ”Intermediate comfort” (concepts
n◦2 and 5): the score for velocity for seat 4 is not maximum, and (iii) ”Poor comfort”
concept (concept n◦2, 4, and 6): the score for velocity for seats 2 and 4 is not maximum.

These three comfort classes can be directly read on Figure 4. Each class is given
by one MV concept in the lattice and the order defined on the MV concepts also holds
for the comfort classes : Concepts 3, 5 and 6 corresponding respectively to maximum,
intermediate, and poor comfort classes. The colors linked to concept scores in Figures 4
and 3 allow to quickly identify the concepts corresponding to the most relevant design
configurations and to extract ranges of variation of the corresponding design parame-
ters. These extracted ranges are given in Table 3.

Table 3: Extracted ranges of the 13 comfort design problem parameters for different classes of
comfort.

Parameter Range “Maximum comfort” “Intermediate comfort” “Poor comfort”
range range range

Alpha 1 (◦) [-90, -80] [-86.61, -83.05] [-89.83, -80.56] [-89.83, -80.56]
Alpha 2 (◦) [-100, -45] [-96.65, -54.66] [-96.65, -46.52] [-96.65, -46.52]
Alpha 3 (◦) [-135, -90] [-133.35, -100.3] [-134.22, -91.59] [-134.22, -91.59]
Alpha 4 (◦) [-120, -80] [-105.77, -87.14] [-105.77, -81.15] [-105.77, -81.15]
Uair 1 (m/s) [0.2, 0.7] [0.30, 0.69] [0.20, 0.69] [0.20, 0.69]
Uair 2 (m/s) [0.2, 0.7] [0.38, 0.67] [0.23, 0.67] [0.23, 0.67]
Uair 3 (m/s) [0.2, 0.7] [0.39, 0.63] [0.20, 0.63] [0.20, 0.63]
Uair 4 (m/s) [0.2, 0.7] [0.24, 0.64] [0.24, 0.68] [0.24, 0.68]
Uair In (m/s) [0.6, 3] [2.59, 2.82] [1.68, 2.98] [0.81, 2.98]
Tair In (◦C) [22, 25] [22.82, 23.45] [22.71, 23.53] [22.71, 24.65]
Tair P (◦C) [22, 25] [22.08, 22.88] [22.08, 24.29] [22.08, 24.74]
T ext (◦C) [-65, -50] [-64.84, -52.86] [-64.97, -50.25] [-64.97, -50.25]

Kappa F (W/K) [1e−4, 4e−4] [1.03e−4, 1.28e−4] [1.03e−4, 1.99e−4] [1.03e−4, 1.99e−4]

5.4 Evaluating the Extracted Design Parameters’ Ranges Through New
Simulations

In order to evaluate the obtained results, we considered the extracted ranges of input
parameters corresponding to the maximum comfort class for new simulations to check
wether the output values of temperature and velocity belong to the same comfort class.
We performed 12 new simulations for which input parameters take randomly chosen
values in the ranges of the maximal comfort class previously extracted. All of the twelve
simulations resulted in maximal comfort values for temperature and velocity mean val-
ues for each of the four seats. That is, in each seat, the mean value of temperature is
between 22.5◦C and 23.5◦C and the mean value of velocity is less than 0.2. The ob-
tained values are in the following ranges: T1: [22.57, 23.16], T2: [22.64, 23.30], T3:
[22.84, 23.40], T4: [22.76, 23.29], V1: [0.013, 0.041], V2: [0.016, 0.062], V3: [0.001,
0.004], and V4: [0.148, 0.2].
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The ranges of the input parameters for the new simulations extracted from this lat-
tice are shown in Table 4 (column: New range).

Compared to the ranges previously obtained for the maximum comfort class (also
given in Table 4, column: Maximum comfort range), the new ranges are almost the same
as the maximum comfort ranges for all the input parameters. As the new simulations
resulted in values of temperature and velocity in full compliance with the maximum
comfort class values, this means that the simulations converge to the ranges obtained
for the maximum comfort class. These ranges can then be confirmed by the system de-
signer as one possible optimal solution for the multidimensional problem of passengers
comfort in the aircraft cabin.

We proceeded in the same way to evaluate the extracted ranges of the intermedi-
ate comfort class. The twelve simulations performed for values of input parameters
randomly chosen in the ranges corresponding to the intermediate comfort class have
produced values of temperature in the interval [22.5,23.5]. However velocity values in
seat 4 resulted in values in the interval [0.2,1] for eleven simulations which correspond
to intermediate comfort. These results also confirm the ones previously obtained. In ad-
dition, input parameter ranges are included or equal to the ones obtained in the previous
case which means that the simulations converge as in the case of maximum comfort
class.

The evaluation of the extracted parameters ranges for the poor comfort class in the
same way produced similar results and confirmed the convergence of the simulations to
the solution extracted from the MV lattice given in Figure 4.

These results show the usefulness of the presented approach for supporting a sys-
tem designer to improve and validate the choice for a design solution of a complex sys-
tem based on simulation results. In addition, the genericity and the flexibility of SFCA
formalism makes it possible to adapt the presented approach and apply it to similar
problems.

6 Conclusion

In this paper we presented an approach based on conceptual structures to support com-
plex system designers in the identification of relevant design configurations. The ap-
proach takes advantage of SFCA formalism to study the thermal comfort of 4 passen-
gers in an aircraft cabin whose ventilation system is parametrized by 13 design param-
eters. The design problem takes into account 9 decision criteria defining the passengers
comfort and energy consumption of the air ventilation system. A dataset of 100 ran-
domly chosen simulated configurations is considered for the aircraft case study. The
use of SFCA following a smart analysis strategy through the choice of appropriate sim-
ilarity thresholds allows to directly deduce the ranges of values of input parameters
which guarantee different levels of passengers comfort. In addition, an adapted visual-
isation of MV lattices delivers a tractable and easy way to read them easing the design
and decision making process. The obtained results are then evaluated by new simula-
tions which converged to the same solutions in terms of passengers comfort as well as
in terms of input parameters ranges.
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Table 4: Extracted ranges of the 13 comfort design problem parameters for the maximum comfort
class and for the new simulations.

Parameter “Maximum comfort” range New range
Alpha 1 (◦) [-86.61, -83.05] [-86.27, -83.30]
Alpha 2 (◦) [-96.65, -54.66] [-95.38, -56.82]
Alpha 3 (◦) [-133.35, -100.3] [-131.51, -103.58]
Alpha 4 (◦) [-105.77, -87.14] [-103.08, -87.87]
Uair 1 (m/s) [0.30, 0.69] [0.33, 0.68]
Uair 2 (m/s) [0.38, 0.67] [0.39, 0.60]
Uair 3 (m/s) [0.39, 0.63] [0.39, 0.63]
Uair 4 (m/s) [0.24, 0.64] [0.26, 0.59]
Uair In (m/s) [2.59, 2.82] [2.61, 2.82]
Tair In (◦C) [22.82, 23.45] [22.86, 23.42]
Tair P (◦C) [22.08, 22.88] [22.14, 22.88]
T ext (◦C) [-64.84, -52.86] [-64.27, -54.27]

Kappa F (W/K) [1.03e−4, 1.28e−4] [1.07e−4, 1.27e−4]
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Abstract. Classification is an important task in data analysis and learn-
ing. Classification can be performed using supervised or unsupervised
methods. From the unsupervised point of view, Formal Concept Analysis
(FCA) can be used for such a task in an efficient and well-founded way.
From the supervised point of view, emerging patterns rely on pattern
mining and can be used to characterize classes of objects w.r.t. a priori
labels. In this paper, we present a hybrid classification method which is
based both on supervised and unsupervised aspects. This method relies
on FCA for building a concept lattice and then detects the concepts
whose extents determines classes of objects sharing the same labels.
These classes can then be used as reference classes for classifying un-
known objects. This hybrid approach has been used in an experiment in
chemistry for classifying inhibitors of the c-Met protein which plays an
important role in protein interactions and in the development of cancer.

Keywords: Formal Concept Analysis, supervised classification, unsu-
pervised classification, emerging patterns, pattern mining

1 Introduction

In this paper, we present a classification approach based on a combination of
knowledge discovery methods which are all interconnected. This approach has
to guide two processes, classification and prediction, for analyzing the c-Met re-
ceptor protein, a molecule showing an abnormally elevated expression in cancer
disease [1]. Activation of this receptor can be inhibited by different biochemical
compounds (inhibitors). We collected a group of 100 molecules (“complete set
of inhibitors”) which are known to be c-Met inhibitors. Inhibitors act on c-Met
through a “binding pocket” and an associated “binding mode”. We know the
binding modes for 30 inhibitors of the dataset (so called “training set”). Accord-
ing to the spatial regions involved in the binding pocket, three main binding
modes have been determined: “Type-1”, “DFG-out”, and “C-Helix-out” (the
names are given w.r.t. spatial configuration of proteins). The “Type-1” binding
mode is very mixed, probably meaning that it should be divided into more spe-
cialized modes. Chemists are working on the definition of a fourth binding mode,
close to “Type-1” and termed as “Type-1bis”.

c© 2012 by the paper authors. CLA 2012, pp. 211–222. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



To ensure the best and adapted inhibition, it is important to know the binding
mode of an inhibitor, and this can only be done through chemical experiments,
which are long and expensive. Thus, two main questions arise here:

– Is it possible to classify the complete inhibitor set of 100 molecules according
to the functionality (based on functional groups) and particular substruc-
tures detected in the 30 molecules of the training set?

– Is it possible then to predict the binding mode or “class” of the 70 inhibitors
based on the classification of the complete inhibitors set?

For answering the two questions, we introduce a combined classification/pre-
diction process involving supervised and unsupervised classification within the
framework of FCA, graph mining and the so-called “Jumping Emerging Pat-
terns” (JEPs). More precisely, we first want to classify a set of molecules (of
the training set) according to their structure and their functionality (the func-
tionality determines the behavior of a molecule during reaction and is linked
to special substructures called functional groups). For analyzing the structures
of the molecules in the training set, we consider molecules as graphs and apply
graph mining techniques [2, 3] to extract frequent substructures. Then, these sub-
structures are used as attributes in a formal context where objects are molecules
of the training set. This formal context is “augmented” in the sense that each
molecule in the training set has a “type” or a “class” according to its binding
mode. A concept lattice is built from the formal concept. Moreover, the class
information is used for characterizing the concepts whose extents include ob-
jects of a single class or binding mode. The intents of these particular concepts
are JEPs. Closed JEPs have already been studied in the framework of FCA
(see [4–6], where they are called JSM-hypotheses). The set of all JEPs forms a
“disjunctive version space” which was related to FCA in [7].

The last step involves a “hierarchical agglomerative clustering” process. Based
on the knowledge of JEPs and of functional groups, inhibitors are represented as
vectors where components are filled with functional groups and JEPs (55 com-
ponents where 42 are functional groups and 13 are JEPs). The cosine similarity
is used for building a dendrogram which is used for explaining the “proximity”
of some inhibitors and for predicting the binding mode of inhibitors for which
this information is still unknown.

This classification process which calls for a variety of knowledge discovery
methods is totally original and is designed for solving a real-world problem. Here,
an original combination of supervised and unsupervised classification works in
relation with graph mining and clustering. This shows also the flexibility of
the FCA process to be combined with other classification methods for giving
actual and substantial results. Experiments are still running but preliminary
results have been reached and show that the approach should be continued and
improved.

The paper is organized as follows. In Section 2 a motivating example is intro-
duced. Then Section 3 describes the classification flow. Section 4 introduces the
main definitions on FCA, JEPs and how they are extracted. Section 5 details
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H
P A
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F O
=

319 x x x x x
320 x x x x x
L5G x x x
ZZY x x x x

(a) Formal Context

Molecule Binding Mode

319 DFG-out
320 DFG-out
L5G Type-1
ZZY Type-1

(b) Molecule Binding Modes

Table 1: Running Example. In 1a, objects (the rows) are molecules; attributes
(the columns) are functional groups. A cross in the cell (i, j) means that the
molecule i includes the functional group j as a substructure. In 1b the last
column designates the ”class” of an object, i.e. the binding mode of the molecule.

the preparation of the molecular data that are processed with FCA. The clus-
tering method and its application are following. The main results are discussed
in Section 7 before the conclusion of the paper.

2 Running Example

Formal Concept Analysis (FCA) is briefly introduced hereafter. FCA is based
on a formal context which is a triple (G,M, I), where G is a set of objects, M
is a set of attributes and I ⊆ G×M is a relation between G and M [8].

A running example is shown in Table 1. Molecules are objects which are
described by substructures, corresponding to attributes. The selection of these
particular substructures is discussed later.

Concept A Set of Molecules (Extent) A Set of Substructures (Intent)

C0 H, CAD, OH, P, AAE, F, O=

C1 ZZY H, P, AAE, F

C2 319 H, CAD, P, F, O=

C3 320 H, CAD, AAE, F, O=

C4 L5G CAD, OH, O=

C5 319, 320 H, CAD, F, O=

C6 320, ZZY H, P, F

C7 319, ZZY H, AAE, F

C8 319, 320, L5G CAD, O=

C9 319, 320, ZZY H, F

C10 319, 320, L5G, ZZY

Table 2: A set of formal concepts w.r.t context on Table 1a.

For every set of molecules A it is possible to find the maximal set of substruc-
tures B, included into every molecule from A. This operation is denoted as (·)′
with B = A′. For example, molecules 319 (BMS WO/2005/117867 24) and ZZY

(UCB Celltech azaindole) include the following substructures: H (Halogen),
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AAE (Alkyl Aryl Ether) and F (Figure 2a). Dually, for every set of substructures
B it is possible to find the maximal set of molecules, including all substructures
from B, denoted by A = B′. Substructures CAD (Carboxilic Acid Derivative) and
O= (Figure 2b) are included into molecules 319 , 320 (molecule BMS WO/2006-

/004636 132) and L5G (Amgen WO/2008/008539 123). The attribute P stands for
substructure Primary Amine while the attribute OH stands for OH-Compound.

The pairs (A,B) –whereA is a set of molecules andB is a set of substructures–
such that A′ = B and A = B′ are called “formal concepts”. The set A is the
extent and the set B is the intent of the concept. The whole set of formal concepts
for the running example is given in Table 2.

Formal concepts are partially ordered w.r.t. inclusion of set of objects or
of set of attributes: (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 or dually B2 ⊆ B1. This
partial ordering gives rise to a concept lattice. Figure 1 shows the concept lattice
related to the running example, where reduced notation is used. There are many
algorithms for computing formal concepts and the associated concept lattice
[9–11].

Fig. 1: The FCA-lattice for the context on Table 1.

(a) (b)

Fig. 2: Some substructures for running example in Table 1.

Additional information associated with the molecules is given in Table 1b.
The table indicates the binding mode of the molecule with the c-Met protein.
This additional column will allow us to process the molecule in a supervised way.

Among concepts in Table 2, it is possible to select concepts whose extent
contains only molecules of the same class, e.g. C1, C2, C3, C4, C5. The sets of
substructures in the intents of these concepts are considered as JEPs and they
describe sets of molecules with the same binding mode.
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It can be noticed that concept C5 is more general than concepts C2 and C3

since the extent of C5 includes a wider set of molecules and its intent includes
a narrower set of substructures than in extents and intents of C2 and C3. As
the extent of C5 only contains molecules of the same type (“DFG-out”), it can
be inferred that the substructures in the intent of C5 characterize this binding
mode in a “general and sufficient” way. Accordingly, we are interested in the most
general concepts able to describe the binding modes. Here, we obtain concepts
C1, C4, C5, and their intents correspond to the most general JEPs.

Since every most general JEP is likely a characteristic of a binding mode,
it is worth including these JEPs into molecule descriptions for any clustering
or classification purposes. Molecules of the running example can be clustered
as shown in Figure 3. This figure should be read as follows: molecules 319 and
320 are close to each other, and are forming a cluster. This cluster is close
to molecule ZZY and thus molecules 319, 320, and ZZY are forming a cluster
at the next level. Finally, the four molecules are agglomerated into one larger
cluster. This clustering process shows the “proximity” of each molecule w.r.t.
the binding mode. In this way, clustering can be used to predict the binding
mode of an unknown molecule.

Fig. 3: The clustering result for the context on Table 1a.

3 The Classification Flow

A typical supervised classification task involves a database divided into a training
set and a test set. The training set and the test set are sets of objects with their
descriptions, where every object of the training set is labeled with a given class.
Then a supervised classification method searches for rules in the training set,
which can classify objects of the test set.

In our case, the database consists of public and known inhibitors of the
c-Met protein. Here we consider 100 molecules, 30 in the training set and 70
in the test set (some molecules are shown in Figure 5). As indicated in the
introduction, inhibitors can interact with the c-Met protein w.r.t. three different
binding modes, plus one hypothetical binding mode under study [1]. Thus, in
this work, four binding modes were used for labeling molecules in the training
set. The objective is then to predict the binding modes of the molecules lying in
the test set.

Figure 4 depicts the global classification flow. The first step is to choose
the way how a molecule should be described. One way is to take into account
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Fig. 4: Diagram of the Classification Flow.

domain knowledge and to consider a molecule as a set of functional groups that
are involved into interactions. But some other substructures are also involved
into interactions, which are detected as follows:

1. Molecules from a dataset are considered as graphs, where vertexes correspond
to atoms and edges to bonds between atoms.

2. A graph miming method is used to find all frequent subgraphs, i.e. subgraphs
that belong to a significant part of molecules in the dataset.

3. A formal context is built in the following way:

– Molecules are considered as objects.

– Extracted substructures are considered as attributes.

– A molecule m and a substructure s are related iff the molecule m includes
s as a substructure.

4. JEPs (the sets of attributes that characterize only objects of the same class)
are extracted from the formal context.

In the supervised classification task, the extracted substructures are used
with functional groups to cluster molecules and to predict the binding mode of
molecules in the test set.
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4 Jumping Emerging Pattens (JEPs)

JEPs were introduced as a means for classification in itemset mining [12, 13], but
the underlying idea had appeared and had been studied much earlier, e.g., within
the framework of disjunctive version spaces [14, 15] or JSM-hypotheses. Consider
an “augmented context”, i.e. a context (G,M, I) taken with an additional “class
attribute” giving “class information”, i.e. the class of each object in G. For a
concept (A,B) the set of attributes B is a JEP if every object in A is of the
same class. In Table 1, the set of attributes {F, O=} is a JEP because objects
319 and 320 including these attributes are of the same class “DFG-out”.

Since a JEP characterizes a class of objects, it can be used for analyzing this
class and for guiding a clustering method. Usually, the set of attributes associated
with a single object is trivially a JEP, but there are especially interesting JEPs
characterizing a class of objects. The set of JEPs can be partially ordered w.r.t.
the subset relation: if there are two JEPs J1 and J2 such that J1 is a subset
of J2, then J1 is more general, since it describes all the objects described by
J2 and some other objects. For example, the JEP J1 ={H, CAD, F, O=} is more
general than the JEP J2 ={H, CAD, P, F, O=} since J2 describes object 320while
J1 describes objects 320and 319.

Relying on the JEP definition, the intent of a formal concept is a JEP if
all objects in the concept extent are in the same class. Thus it is possible to
compute the set of concepts for a given context and then to extract the JEPs by
checking the class of objects in the concept extents. Moreover, the most general
JEPs can be selected for further analysis and for clustering.

5 Graph Mining

A molecule is a complex structure composed of atoms connected by bonds, that
can be considered as a graph. Vertexes of the molecule graph correspond to
the atoms of the molecule and are labeled with atom names. The edges of the
molecule graph are labeled with types of bonds between the corresponding atoms.
For applying FCA and for finding a set of JEPs, a molecular graph can be
described as as a set of subgraphs. Then, a formal context can be built with G
as a set of molecules, M as a set of subgraphs or substructures and I the relation
meaning that a molecule g has a substructure m. The problem now is to find
“valid” and “interesting” substructures.

One way to select valid and interesting substructures is to search for frequent
subgraphs –that often appear in molecular graphs– using graph mining. For a
set of graphs G and a frequency threshold Fmin, a graph s is frequent iff s is a
subgraph of at least Fmin graphs from G, i.e. |{g ∈ G | s ⊆ g}| ≥ Fmin.

For example, considering the set of molecular graphs G in Figure 5 and
Fmin = 3, the subgraphs “N-H” and “O=C” are frequent as they occur in all
molecular graphs while subgraph “C-OH” only occurring in graph (b) (Figure 5b)
and subgraph “F-C” only occurring in graph (c) (Figure 5c) are not frequent.

For discovering frequent subgraphs, different graph mining algorithms may
be applied [2, 3]. Here we used gSpan and set Fmin = 10 for the dataset of 100

A Hybrid Classification Approach based on FCA and Emerging Patterns 217



(a) Imatinib
or Gleevec R©

(b) K-252a (c) CKK

Fig. 5: Examples of molecules from database.

molecular graphs. This frequency threshold is sufficiently low to have a set of
specific subgraphs characterizing every molecule, and it is sufficiently high to
obtain feasible processing time.

The set of mined subgraphs can be divided into groups, where a group con-
sist of a set of subgraphs appearing in the same set of molecular graphs. Thus,
the group forms an equivalence class and can be represented by only one sub-
graph. Furthermore, the largest subgraphs preserve the sufficient information on
substructures related to binding modes. In the present experiment, around 106

frequent subgraphs were extracted, then divided into 104 groups.

It can be noticed that if there are two frequent subgraphs g1 and g2 such
that g1 ⊆ g2 then every closed JEP containing the subgraph g2 contains the
subgraph g1. Thus, if a JEP contains g2, there is no need to consider g1.

6 Hierarchical Agglomerative Clustering (HAC)

Here we describe a hierarchical agglomerative clustering process (see [16]) based
on the extracted JEPs and background knowledge on functional groups. Molecules
are described by vectors having 55 components, including 42 functional groups3

and 13 JEPs. The 13 JEPs are selected as the most representative for the
molecules in the training set. Each attribute of the vector therefore corresponds
either to a chemical functional group or to a substructures of a JEP with value
set to 1 when this chemical function/substructure is present and null other-
wise. The choice of a proper similarity is crucial for ensuring the quality of the
clustering. Here, the cosine similarity was chosen according to the results of sev-
eral specialized studies [17, 18]. If m1 and m2 are the description vectors of two
molecules, then ((m1,m2) denotes the scalar product of two vectors):

3 The functional groups were extracted thanks to the specialized algorithm “Check-
mol” http://merian.pch.univie.ac.at/ nhaider/cheminf/cmmm.html.
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simcos(m1,m2) =
(m1,m2)

|m1| · |m2|
(1)

The “centroid” of a cluster of molecules C, denoted by centr(C), is calcu-
lated as follows:

centr(C) =
1

|C|
∑

mi∈C

mi (2)

Similarity between two clusters or between a molecule and a cluster is calcu-
lated with the same formula (1) by substituting the cluster C with its centroid
centr(C).

The HAC clustering is a bottom-up process working as follows. For every
molecule a unique cluster is created. Actually, all these clusters will be progres-
sively merged until only one unique cluster remains. Considering at some step
the set of remaining clusters C = {C1, C2, .., Ck}, a new cluster Ck+1 is created
by merging the two clusters Ci and Cj maximizing the similarity measure be-
tween them. The new cluster is added to the set of clusters while Ci and Cj are
deleted from C. Finally, the process stops when only one cluster remains, |C| = 1.

(Ci, Cj) = argmax
Ci,Cj∈C,Ci 6=Cj

simcos(centr(Ci), centr(Cj)) (3)

Ck+1 := Ci ∪ Cj (4)

C := C ∪ {Ck+1} \ {Ci, Cj} (5)

The result of HAC is shown on a dendrogram (see Figures 3 and 6). Each
“vertex” of the dendrogram corresponds to a merging step of the algorithm.
The number attached to the vertex represents the similarity between the two
clusters at the lower level. The correlation between chemical similarities and
binding modes is discussed below.

7 Results and Discussion

After applying graph mining on the set of molecules, a formal context including
30 objects (molecules) and 104 attributes (substructures) was built. The car-
dinalitiy of the sets of most general JEPs for the different binding modes are
distributed as follows:

– 35 JEPs for Type-1 binding mode;
– 1 JEP for DFG-out binding mode;
– 1 JEP for C-Helix-out binding mode;
– 3 JEPs for Type-1bis binding mode.
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Type-1 DFG-out C-Helix-out Type-1bis

Table 3: Examples of the result JEPs. Every column corresponds to one JEP.
Only some of structures for every JEP were exemplified. According to the
dataset, all the molecules including all the substructures of the second (for exam-
ple) column are of DFG-out binding mode. These sets of substructures belongs
to disjoint sets of molecules.

Examples of extracted JEPs for different binding modes are shown in Table 3.
Substructures associated with the most general JEPs were used in the description
of a molecule for the clustering. A molecule was described by a set of functional
groups and by the set of JEPs extracted by the mining process. The resulting
dendrogram is shown in Figure 6. Two small clusters (0.485071 and 649934) are
covering Type-1 molecules, while one small cluster (0.673565) is covering DFG-
out molecules and a quite large cluster (0.681201) is covering DFG-out molecules
as well as C-Helix-out molecules and one Type-1 molecule. The C-Helix-out
molecules may appear in that cluster since they are quite similar while this
Type-1 molecule share some chemical properties with the DFG-out molecules. It
should be noticed that the dendrogram shows a better cohesion for molecules of
the same binding mode and a better separation between molecules of different
binding modes, than the dendrogram built from molecules only described by
functional groups, and this is mainly due to JEPs substructures,

An extended dendrogram will be tested for the set of 100 molecules to check
whether the class of some unknown molecule can be determined with respect to
its “proximity” to other molecules in the dendrogram.

8 Conclusion

In this paper, we have shown how to classify a set of molecules with respect
to their structure. Actually, we combined two classification aspects: supervised
and unsupervised classifications. First, molecules are represented by molecular
graphs and graph mining is applied to these graphs for extracting interesting
substructures. Then, FCA is applied on an “augmented” context where there
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Fig. 6: The clustering result for 30 known molecules, described by functional
groups and JEPs.

is a “class” information for objects. This allows one to extract JEPs. Then,
JEPs and functional groups are used to cluster the molecules and to obtain a
dendrogram showing the proximity between molecules.

In future work, we are going to use the dendrogram for prediction with the
supervision of chemists. There are several ways to do that. One way to classify
an unknown molecule is to find the closest cluster of molecules sharing the same
label. Another way is to cluster all the molecules (complete set of inhibitors)
and then to predict the class of unknown molecules, using information in the
common class of molecules in the same cluster.

Another direction of the future work is to study and apply a knowledge-based
evaluation function in graph mining, for selecting the relevant subgraphs from
the chemical point of view instead of frequent ones. Finally, following [19], we
are planning to combine a similarity-based approach with FCA, to avoid the
clustering step and to build a lattice including all interesting information.
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The dependence graph of a lattice

Karell Bertet
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Abstract: In this paper, we introduce the dependence graph of a lattice
defined on the set of its join-irreducible elements. This graph, issued from the
dependence relation on a lattice, is a nice structure encoding together the min-
imal generators and the canonical direct basis of a lattice. Then, we propose a
new generation algorithm.

Keywords: lattice, closed set lattice, dependence graph, implicational sys-
tem, closure system, canonical direct basis, minimal generators

1 Introduction

From the year 2000, the increasing interest into Formal Concept Analysis (FCA)[7]
in various domains of computer science, such as data-mining and knowledge rep-
resentation, as well as the fields of ontology or databases, has brought to light
the structure of concept lattice. A concept lattice can be introduced as a directed
acyclic graph with the lattice property, defined from data described by a binary
table object x attribute, named a context. The nodes of the graph are concepts -
a concept is a maximal subset of objects possessing common attributes. This lat-
tice composed of concepts connected by a generalization- specialization relation,
supplies a very intuitive representation of the data.

FCA’s increasing importance has many reasons. For one, new scientific ar-
eas have recently begun to incorporate computer technologies on a large scale
through data-bases, whence a large production of data and the need for handling
them. Secondly, the increasing power of computers permits the automatization
of tasks that might have, in the worst case, exponential time-space costs. Among
them, the typical problems from FCA related to the representation of a lattice
that could have exponential size relative to the size of the original data.

In data mining, the problem of classification is naturally related to the notion
of concept from FCA. Unsupervised classification consists in grouping objects
that have close attributes while separating those having distant attributes; su-
pervised classification groups objects having a same label (called class), while it
distinguishes those having different labels. The notion of concept is then repeat-
edly used in applications to classify data, in a supervised or unsupervised way.
Dependencies between attributes are classically represented by rules. Associative
rules, well-known in data mining, can be either exact or approximate rules. For
relational data-bases, systems of rules are known under the name of functional
dependencies. The combinatorial explosion of the number of rules and the grow-
ing volume of data to be handled have made the use of concise representations,
called bases, necessary.

c© 2012 by the paper authors. CLA 2012, pp. 223–231. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
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In lattice theory, a fundamental representation theorem establishes that ev-
ery lattice is the concept lattice of its binary table [1] defined from irreducible
elements of the lattice - particular elements that are not a join or a meet of other
elements. A second and less known representation theorem states that every fi-
nite lattice is isomorphic to a lattice of closed sets, where the closure operator
can be defined by a basis of rules defined on the join-irreducible elements of the
lattice.

There can be many equivalent bases, where two bases are equivalent if they
give rise to the same closed set lattice. The canonical direct basis is the only
one that is direct, meaning that the closure of an arbitrary set can be computed
by just one application of the rules to the set, and that, at the same time, is
minimal among the direct systems. Moreover, it has been shown in [2] that this
basis is equivalent to five other bases whose rules are called minimal functional
dependency in the domains of relational databases [10], and proper implications
in the data-mining area research [13] whose premises are minimal generators of
the lattice.

In this paper, we introduce the dependence graph as a representation of a
lattice defined on the set of its join-irreducible elements. This graph, issued from
the dependence relation on a lattice [1], is a nice structure encoding together the
minimal generators and the canonical direct basis of a lattice. Representation of
a lattice in the form of an edge-labeled graph was first suggested in [11]. This
OD-Graph is closely associated to the D-relation on the set of join-irreducibles
of a lattice, subset of the dependence relation, that was crucial in the study of
free and lower bounded lattices [6].

After a first section of definitions, we define the dependence graph of a lat-
tice. In the last section, we discuss about existing generation algorithms of the
dependence graph, and we propose a new generation algorithm.

2 Definitions

Lattice. In lattice theory, the structure of lattice can been introduced either as an
algebraic structure provided with two operators named lower and upper bounds,
or as an ordered structure defined by the existence of particular elements called
upper and lower bounds [3].

More formaly, a lattice is an order relation ≤ on a set S (i.e. a reflexiv,
antisymmetic and transitiv relation) where every couple of elements has a a join
and a meet. The meet (resp. join) of x and y, denoted x∧ y (resp. x∨ y), is the
unique greatest lower bound (resp. least upper bound) of x and y.

Meet and join elements are defined in a more general but identical manner
for a subset X ⊆ S: the meet of X, noted ∨X, is the unique greatest element
of the predecessors of X, while the join of X, noted ∧X, is the unique least
element of the successors of X. As a direct consequence, any lattice admits a
unique maximal element called top and denoted > or 1, and a unique minimal
element called bottom and denoted ⊥ or 0.
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The strict order relation of any order relation ≤, denoted <, is an antisym-
metric, transitive and irreflexive relation defined by x < y if x ≤ y and x 6= y.
It corresponds to the reflexive reduction of ≤. The cover relation of ≤, denoted
≺, is an antisymmetric relation defined by x ≺ y if x < y, and there is no z so
that x < z < y. We then say that y cover x. It corresponds to the reflexive and
transitive reduction of ≤. The Hasse diagram is a graphical representation of an
order where only the arcs of the cover relation ≺ are represented since reflexivity
and transitivity edges can be deduced.

Irreducibles elements. An element of a lattice is called reducible if it corresponds
to a meet and a join of two distinct elements. Otherwise, it is called irreducible.
More precisely, an element j is called a join-irreducible if for any subset X of
elements, j = ∨X implies that j ∈ X. An element m is called meet-irreducible
if for any subset X of elements, m = ∧X implies that m ∈ X. The set of join-
irreducibles of a lattice L is usually denoted JL, and the set of meet-irreducibles
ML. In particular, we have ⊥ = ∨∅ and > = ∧∅ implying that ⊥ is not a
join-irreducible, and > is not a meet-irreducible.

A nice characterization establishes that an element is a join-irreducible if,
and only if, it covers only one element, denoted j−, while an element is a meet-
irreducible if, and only if, it is covered by only one element, denoted m+.

Any element x ∈ S of a lattice L is the join of its predecessors, and the meet
of its successors. The latticial property implies a reduction to join-irreducible
predecessors and meet-irreducible successors:

x = ∨Jx = ∨{y ∈ JL : y ≤ x} (1)

x = ∧Mx = ∧{y ∈ML : y ≥ x} (2)

Therefore, irreducible elements are enough to build the lattice in its en-
tirety, using either join irreducibles for reconstruction by upper bound, or meet-
irreducibles for reconstruction by lower bound. Moreover, JL and ML are mini-
mal set allowing reconstruction.

Minimal generators. Consider one element x ∈ S. Although x is the join of Jx,
Jx is not always the minimal subset to define x as a join. A minimal subset to
obtain x as a join, including in Jx, is named a basis, a minimal generating set or
a minimal generator for x. More formally, a minimal generator of x is a subset
B of Jx such that x = ∨B and B is inclusion-minimal, i.e for all A ⊂ B, then
x 6= ∨A. The family Bx of minimal generators of x is then:

Bx = {B ⊆ Jx : x = ∨B and x 6= ∨A for all A ⊂ B} (3)

The dual observation for Mx is valid for a reconstruction of x as meet. The
number of minimal generators of x can be exponential in the cardinality of Jx
in the worst case.

Consider the example of lattice in Figure 1(a). Six elements possess a single
incoming arc, forming all join-irreducibles ; the meet-irreducibles, characterized
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(a) A lattice (b) The isomorphic lattice with the sets Jx and
Mx inside each node x

Fig. 1. Example of lattice

by a single outcoming arc, are heigth:

J = {a, b, c, d, e, f} (4)

M = {b, c, d, i, k, l,m, n} (5)

These irreducible elements are used to describe more precisely the elements of the
lattice (see Figure 1) where node of each element x contains its join-irreducible
predecessors Jx and its meet-irreducible successors Mx. Minimal generators are
given in Table 1. One can observe that each join-irreducible possesses itself as
unique minimal generator ; the top element possesses 4 minimal generators.

x a b c d e f g

Jx a b ac def e f ∅
Bx {a} {b} {c} {d} {e} {f} {∅}
x h i j k l m n

Jx ef adef abcdef aef bf af ae

Bx {ef} {ad} {ab, bc, bd, dc} {aef} {bf} {af} {ae}

Table 1. Minimal generators of the lattice in Figure 1(a)
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3 Dependence graph and canonical direct basis of a
lattice.

Dependence graph. The dependence graph of a lattice is defined on the set
JL of join-irreducible elements.It is an edge-labeled directed graph whose edges
corresponds to the dependence relation δ of a lattice [1], and are labeled by some
minimal generators, thus a size that can be exponential in the cardinality of JL.
More precisely, the dependence graph of a lattice L is a pair (δ, ω) where:

– δ is the dependence relation [1] defined on JL by jδj′ if there exists x ∈ S
such that j 6≤ x, j′ 6≤ x and j < j′ ∨ x. We note jδxj

′.
– ω is a label of the edges defined on P(JL), for each relation jδj′, by:

ω(j, j′) = {minimal generators of x : jδxj
′ and x minimal in the lattice

A pair (j, j′) ∈ δ can be denoted either jδxj
′ or jδBj

′, with B minimal generator
of x. Figure 2 represents the dependence graph of lattice in Figure 1(a).

Fig. 2. Dependence graph of the lattice in Figure 1(a)

The subgraph δ∅ of the dependence graph to the edges containing the empty
set as label corresponds to the subgraph of the lattice induced by its join-
irreducible, since j < j′ implies j < j′ ∨ ⊥ and ω(j, j′) = J⊥ = {∅}. As a
direct consequence, a lattice is distributive when edge-labels of its dependence
graph all are the empty set.
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Canonical direct unit basis. A set of unit implication (or rules) Σ is a binary
relation between P(S) and S where a rule (X, y), generaly denoted X → y,
means that X”implies” y, with X called the premisse and y the conclusion.

The dependence graph encodes a set of rules defined on the join-irreducibles
JL of a lattice, with a rule B + j′ → j for each (j, j′) ∈ δB . This set of rules
forms a particular basis of the lattice called the canonical direct unit basis, and
denoted Σcdb [2].

Morover, an important result establishes that every lattice is isomorphic to
the closed set lattice (F ,⊆) of its canonical direct basis, where F is a family on
JL. This family contains all the closures of the basis where a closure is a subset
X of JL verifying all rules, i.e. for each rule B → y, if B ⊆ X then y ∈ B.

Therefore, the dependence graph of a lattice encodes the canonical direct
basis from which the lattice reconstruction is possible as a closed set lattice.

4 Generation algorithm

Since the size of the dependence graph can be exponential in the size of the
lattice, this generation problem belongs to the more general class of problems
having an input of size n, and an output of size N bounded by 2n. For this
class of problems, a classical worst-case analysis makes them exponential, thus
NP-hard, with an exponential space. However, a more precise information can
be obtained by output-sensitive analysis techniques (see a survey in [9]). These
analyzes are relevant since the recent improvements in storage and processing
capacity increasingly often allow to handle some exponential data, what was
not possible even some time ago. The idea is to consider the time complexity
needed to generate only one element of the output (i.e. one rule or one minimal
generator in our case).

The time complexity per Σcdb-rule has then to be considered. Although the
most common algorithms have an exponential delay complexity, there exist some
algorithms with a polynomial delay complexity.

The definition of minimal generators for an element x induces an exponen-
tial generation since any subset of Jx as to be tested. Another strategy is issued
from the equivalence between minimal generators and minimal transversals of
a closed set, problem known to be exponential. This strategy has been capital-
ized by Pfaltz’s incremental algorithm [12], and by Jen’s algorithm [5] used in
data-mining to compute minimal generators. Jen’s algorithm computes minimal
generators from the faces of x defined by considering immediate predecessors of
x in the lattice.

However, in logic area, the algorithm attributable to Ibaraki et al. ([8]) com-
putes a Σcdb-rule - and thus the dependence graph - in polynomial time with a
family F of closed set as input.

Algorithm 1 generates the dependence graph with the same polynomial com-
plexity per rule or per minimal generator.
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Name: dependenceGraph
Data : A lattice L = (S,≤)

Result : The dependence graph of the lattice

begin
compute the set JL of join-irreducibles of the lattice;
initialize a graph G with join-irreducibles as nodes;
compute a topological sort T of the lattice;
foreach x ∈ T do

foreach (j, j′) ∈ J × J such that x ∨ j′ ≥ j do
add the edge (j, j′) in G;
compute the set Jx of join-irreducible predecessors of x;
initalize the empty family GMx;
let G′ subgraph of G induced by Jx on nodes and edges’s labels;
foreach edge (k, k′) of G′ do

foreach valuation B of the edge (k, k′) do
if B ∨ k′ = x then add the set B + k′ to the family GMx

end
end
if GMx is empty then GMx = {Jx};

end
end
label the edge (j, j′) with GMx;
return G;

end

Algorithm 1: Generation of the dependence graph of a lattice

The dependence graph of a lattice 229



Proposition 1. Algorithm 1 generates the dependence graph, the minimal gen-
erators, or the canonical direct basis of a lattice L = (S,≤) in O(|Σcdb||S||JL|3),
i.e. in O(|S||JL|3) per Σcdb-rule or per minimal generator.

Proof. First, computation of the relation δ on the join-irreducibles can be done
in O(|S|2|JL|2) by determining, for each x ∈ S, if x is a minimal element in the
lattice such that jδxj

′.
Computation of edges’s labels is more difficult. One can observe that minimal

generators are recursively defined according to the relation ≤ in the lattice.
Indeed, if we consider two join-irreducibles such that jδxj

′ - with x an element
of the lattice - or equivalently jδBj

′ - with B minimal generator of x - then
B+ j′ is a minimal generator of x∨ j′, thus recursively defined from B. One can
distinguish between two cases:

– When B is strictly included in Jx, then B can be deduced from a minimal
generator of a predecessor of x.

– When B = Jx, then Jx is the only minimal generator of x.

Therefore, a travel of the lattice from the bottom to the top allows to recursively
compute minimal generators in O(|Σcdb||S||JL|3).

The dependence graph of a lattice, and thus its canonical direct basis and its
minimal generators, can easily be generated with a binary table as input, after
its concept lattice generation. In particular, Bordat’s algorithm [4] generates the
Hasse diagram of the concept lattice of a binary table from the botom to the
top using a successor function. Therefore, another strategy would consists in
computing the dependence graph along with the lattice generation.

5 Conclusion

In this paper, we introduced the dependence graph as a representation of a
finite lattice encoding both its canonical direct basis and its minimal generators.
We propose a new generation algorithm with an improvment complexity. This
structure can be used in various domains of computer science, such as data-
mining and knowledge representation. Indeed, the canonical direct basis of rules
is a nice basis to represent dependencies between attributes, in a classification
task for example. The use of minimal generators could gives raise to an attributs
set reduction, usefull for data indexation for example.
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Abstract. Continuing our categorical study of L-fuzzy extensions of
formal concept analysis, we provide a representation theorem for the
category of L-Chu correspondences between L-formal contexts and prove
that it is equivalent to the category of completely lattice L-ordered sets.

1 Introduction

This paper deals with an extremely general form of Formal Concept Analysis
(FCA) based on categorical constructs and L-fuzzy sets. FCA has become an
extremely useful theoretical and practical tool for formally describing structural
and hierarchical properties of data with “object-attribute” character, and this
applicability justifies the need of a deeper knowledge of its underlying mecha-
nisms: and one important way to obtain this extra knowledge turns out to be
via generalization and abstraction.

Several approaches have been presented for generalizing the framework and
the scope of formal concept analysis and, nowadays, one can see works which
extend the theory by using ideas from fuzzy set theory, rough set theory, or
possibility theory [1, 10,18,20–22,24].

Concerning applications of fuzzy formal concept analysis, one can see papers
ranging from ontology merging [9], to applications to the Semantic Web by using
the notion of concept similarity or rough sets [11,12], and from noise control in
document classification [19] to the development of recommender systems [7].

We are concerned in this work with the category L-ChuCors, built on top
of several fuzzy extensions of the classical concept lattice, mainly introduced by
Bělohlávek [3,5,6], who extended the underlying interpretation on classical logic
to the more general framework of L-fuzzy logic [13].

The categorical treatment of morphisms as fundamental structural proper-
ties has been advocated by [17] as a means for the modelling of data translation,
communication, and distributed computing, among other applications. Our ap-
proach broadly continues the research line which links the theory of Chu spaces
with concept lattices [25] but, particularly, is based on the notion of Chu corre-
spondences between formal contexts developed by Mori in [23]. Previous work
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c© 2012 by the paper authors. CLA 2012, pp. 233–244. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



in this categorical approach has been developed by the authors in [14, 16]. The
category L-ChuCors is formed by considering the class of L-contexts as objects
and the L-fuzzy Chu correspondences as arrows between objects. Recently, the
authors developed a further abstraction [15] aiming at formally describing struc-
tural properties of intercontextual relationships of L-contexts.

The main result in this work is a constructive proof of the equivalence be-
tween the categories of L-formal contexts and L-Chu correspondences and that
of completely lattice L-ordered sets and their corresponding morphisms. In order
to obtain a reasonably self-contained document, Section 2 introduces the basic
definitions concerning the L-fuzzy extension of formal concept analysis, as well
as those concerning L-Chu correspondences; then, the categories associated to
L-formal contexts and L-CLLOS are defined in Section 3 and, finally, the proof
of equivalence is in Section 4.

2 Preliminaries

2.1 Basics of L-fuzzy FCA

Definition 1. An algebra 〈L,∧,∨,⊗,→, 0, 1〉 is said to be a complete resid-
uated lattice if

– 〈L,∧,∨, 0, 1〉 is a complete lattice with the least element 0 and the greatest
element 1,

– 〈L,⊗, 1〉 is a commutative monoid,
– ⊗ and→ are adjoint, i.e. a⊗b ≤ c if and only if a ≤ b→ c, for all a, b, c ∈ L,

where ≤ is the ordering in the lattice generated from ∧ and ∨.

Definition 2. Let L be a complete residuated lattice, an L-fuzzy context is a
triple 〈B,A, r〉 consisting of a set of objects B, a set of attributes A and an L-
fuzzy binary relation r, i.e. a mapping r : B×A→ L, which can be alternatively
understood as an L-fuzzy subset of B ×A.

Definition 3. Consider an L-fuzzy context 〈B,A, r〉. Mappings ↑ : LB → LA

and ↓ : LA → LB can be defined for every f ∈ LB and g ∈ LA as follows:

↑ (f)(a) =
∧

o∈B

(
f(o)→ r(o, a)

)
↓ (g)(o) =

∧

a∈A

(
g(a)→ r(o, a)

)

Definition 4. An L-fuzzy concept is a pair 〈f, g〉 such that ↑ (f) = g and
↓ (g) = f . The first component f is said to be the extent of the concept, whereas
the second component g is the intent of the concept.

The set of all L-fuzzy concepts associated to a fuzzy context 〈B,A, r〉 will be
denoted as L-FCL(B,A, r).

An ordering between L-fuzzy concepts is defined as follows: 〈f1, g1〉 ≤ 〈f2, g2〉
if and only if f1 ⊆ f2 (f1(o) ≤ f2(o) for all o ∈ B) if and only if g1 ⊇ g2
(g1(o) ≥ g2(o) for all a ∈ A).
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Theorem 1 (See [5]). The poset (L-FCL(B,A, r),≤) is a complete lattice
where

∧

j∈J
〈fj , gj〉 =

〈 ∧

j∈J
fj , ↑

( ∧

j∈J
fj)
〉

∨

j∈J
〈fj , gj〉 =

〈
↓
( ∧

j∈J
gj),

∧

j∈J
gj

〉

Moreover a complete lattice V = 〈V,≤〉 is isomorphic to L-FCL(B,A, r) iff
there are mappings γ : B × L → V and µ : A × L → V , such that γ(B × L)
is
∨

-dense and µA× L is
∧

-dense in V, and (k ⊗ l) ≤ r(o, a) is equivalent to
γ(o, k) ≤ µ(a, l) for all o ∈ B, a ∈ A and k, l ∈ L.

Bělohlávek has extended the fundamental theorem of concept lattices by
Dedekind-MacNeille completion in fuzzy settings by using the notions of L-
equality and L-ordering. All the definitions and related constructions given until
the end of the section are from [6].

Definition 5. A binary L-relation ≈ on X is called an L-equality if it satisfies

1. (x ≈ x) = 1, (reflexivity),
2. (x ≈ y) = (y ≈ x), (symmetry),
3. (x ≈ y)⊗ (y ≈ z) ≤ (x ≈ z), (transitivity),
4. (x ≈ y) = 1 implies x = y

L-equality is a natural generalization of the classical (bivalent) notion.

Definition 6. An L-ordering (or fuzzy ordering) on a set X endowed with an
L-equality relation ≈ is a binary L-relation � which is compatible w.r.t. ≈ (i.e.
f(x)⊗ (x ≈ y) ≤ f(y), for all x, y ∈ X) and satisfies

1. x � x = 1, (reflexivity),
2. (x � y) ∧ (y � x) ≤ (x ≈ y), (antisymmetry),
3. (x � y)⊗ (y � z) ≤ (x � z), (transitivity).

If � is an L-order on a set X with an L-equality ≈, we call the pair 〈〈X,≈〉 �〉
an L-ordered set.

Clearly, if L = 2, the notion of L-order coincides with the usual notion of
(partial) order.

Definition 7. An L-set f ∈ LX is said to be an L-singleton in 〈X,≈〉 if it is
compatible w.r.t. ≈ and the following holds:

1. there exists x0 ∈ X with f(x0) = 1
2. f(x)⊗ f(y) ≤ (x ≈ y), for all x, y ∈ X.

Definition 8. For an L-ordered set 〈〈X,≈〉 �〉 and f ∈ LX we define the L-sets
inf(f) and sup(f) in X by
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1. inf(f)(x) = (L(f))(x) ∧ (UL(f))(x)
2. sup(f)(x) = (U(f))(x) ∧ (LU(f))(x)

where

– L(f)(x) =
∧

y∈X
(
f(y)→ (x � y)

)

– U(f)(x) =
∧

y∈X
(
f(y)→ (y � x)

)

inf(f) and sup(f) are called infimum or supremum, respectively.

Definition 9. An L-ordered set 〈〈X,≈〉 �〉 is said to be completely lattice
L-ordered set if for any f ∈ LX both sup(f) and inf(f) are ≈-singletons.

By proving of all the following lemmas some of the properties of residuated
lattices are used. All details could be found in [4]. Some of needed properties are
listed below.

1. (k → (l→ m)) = ((k ⊗ l)→ m) = ((l ⊗ k)→ m) = (l→ (k → m))
2. k → ∧

i∈I mi =
∧

i∈I(k → mi)
3. (

∨
i∈I mi)→ k =

∧
i∈I(mi → k)

Lemma 1. For any pair of L-concepts 〈fi, gi〉 ∈ L-FCL(B,A, r) (i ∈ {1, 2}) of
any L-context 〈B,A, r〉 the following equality holds.

∧

o∈B

(
f1(o)→ f2(o)

)
=
∧

a∈A

(
g2(a)→ g1(a)

)

Proof.

∧

o∈B

(
f1(o)→ f2(o)

)
=
∧

o∈B

(
f1(o)→ ↓ (g2)(o)

)

=
∧

o∈B

(
f1(o)→

∧

a∈A

(
g2(a)→ r(o, a)

))

=
∧

a∈A

(
g2(a)→

∧

o∈B

(
f1(o)→ r(o, a)

))

=
∧

a∈A

(
g2(a)→ ↑ (f1)(a)

)

=
∧

a∈A

(
g2(a)→ g1(a)

)
ut

Definition 10. We define an L-equality ≈ and L-ordering � on the set of for-
mal concepts L-FCL(C) of L-context C as follows:

1. 〈f1, g1〉 � 〈f2, g2〉 =
∧

o∈B
(
f1(o)→ f2(o)

)
=
∧

a∈A
(
g2(a)→ g1(a)

)

2. 〈f1, g1〉 ≈ 〈f2, g2〉 =
∧

o∈B
(
f1(o)↔ f2(o)

)
=
∧

a∈A
(
g2(a)↔ g1(a)

)

where k ↔ m is defined as (k → m) ∧ (m→ k) for any k,m ∈ L.
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Definition 11. Let C = 〈B,A, r〉 be an L-fuzzy formal context and γ be an L-
set from LL-FCL(C). We define L-sets of objects and attributes

⋃
B γ and

⋃
A γ,

respectively, as follows:

1. (
⋃

B γ)(o) =
∨

〈f,g〉∈L-FCL(C)

(γ(〈f, g〉)⊗ f(o)), for o ∈ B

2. (
⋃

A γ)(a) =
∨

〈f,g〉∈L-FCL(C)

(γ(〈f, g〉)⊗ g(a)), for a ∈ A

Theorem 2. Let C = 〈B,A, r〉 be an L-context. 〈〈L-FCL(C),≈〉,�〉 is a com-
pletely lattice L-ordered set in which infima and suprema can be described as
follows: for an L-set γ ∈ LL−FCL(C) we have:

1 inf(γ) =
{〈
↓
(⋃

A

γ
)
, ↑↓

(⋃

A

γ
)〉}

1 sup(γ) =
{〈
↓↑
(⋃

B

γ
)
, ↑
(⋃

B

γ
)〉}

Moreover a completely lattice L-ordered set V = 〈〈V,≈〉,�〉 is isomorphic
to 〈〈L-FCL(〈B,A, r〉),≈1〉,�1〉 iff there are mappings γ : B × L → V and µ :
A×L→ V , such that γ(B×L) is {0, 1}-supremum dense and µ(A×L) is {0, 1}-
infimum dense in V, and ((k ⊗ l) → r(o, a)) = (γ(o, k) � µ(a, l)) for all o ∈ B,
a ∈ A and k, l ∈ L. In particular, V is isomorphic to 〈〈L-FCL(V, V,�),≈1〉,�1〉.

2.2 L-Chu correspondences

Definition 12. Consider two L-fuzzy contexts Ci = 〈Bi, Ai, ri〉, (i = 1, 2), then
the pair ϕ = (ϕL, ϕR) is called a correspondence from C1 to C2 if ϕL and ϕR

are L-multifunctions, respectively, from B1 to B2 and from A2 to A1 (that is,
ϕL : B1 → LB2 and ϕR : A2 → LA1).

The L-correspondence ϕ is said to be a weak L-Chu correspondence if
the equality

∧

a1∈A1

(ϕR(a2)(a1)→ r1(o1, a1)) =
∧

o2∈B2

(ϕL(o1)(o2)→ r2(o2, a2)) (1)

holds for all o1 ∈ B1 and a2 ∈ A2.
A weak Chu correspondence ϕ is an L-Chu correspondence if ϕL(o1) is an

L-set of objects closed in C2 and ϕR(a2) is an L-set of attributes closed in C1 for
all o1 ∈ B1 and a2 ∈ A2. We will denote the set of all L-Chu correspondences
from C1 to C2 by L-ChuCors(C1, C2).

Definition 13. Given a mapping $ : X → LY , we define $+ : LX → LY for
all f ∈ LX by $+(f)(y) =

∨
x∈X

(
f(x)⊗$(x)(y)

)
.

3 Introducing the relevant categories

3.1 The category L-ChuCors

– objects L-fuzzy formal contexts
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– arrows L-Chu correspondences
– identity arrow ι : C → C of L-context C = 〈B,A, r〉
• ιL(o) =↓↑ (χo), for all o ∈ B
• ιR(a) =↑↓ (χa), for all a ∈ A

– composition ϕ2 ◦ ϕ1 : C1 → C3 of arrows ϕ1 : C1 → C2, ϕ2 : C2 → C3

(Ci = 〈Bi, Ai, ri〉, i ∈ {1, 2})
• (ϕ2 ◦ϕ1)L : B1 → LB3 defined as (ϕ2 ◦ϕ1)L(o1) = ↓3↑3

(
ϕ2L+(ϕ1L(o1))

)

where

ϕ2L+(ϕ1L(o1))(o3) =
∨

o2∈B2

ϕ1L(o1)(o2)⊗ ϕ2L(o2)(o3)

• and (ϕ2◦ϕ1)R : A3 → LA1 defined as (ϕ2◦ϕ1)R(a3) = ↑1↓1
(
ϕ1R+(ϕ2R(a3))

)

where

ϕ1R+(ϕ2R(a3))(a1) =
∨

a2∈A2

ϕ2R(a3)(a2)⊗ ϕ1R(a2)(a1)

All details about definition of the category L-ChuCors could be found in [15].

3.2 Category L-CLLOS

Here we define another category

Objects are completely lattice L-ordered sets (in short, L-CLLOS) i.e. our ob-
jects will be represented as V = 〈〈V,≈〉,�〉

Arrows are pairs of mappings between two L- CLLOSs i.e. 〈s, z〉 between V1
and V2, such that:
1. s : V1 → V2,
2. z : V2 → V1,
3. (s(v1) �2 v2) = (v1 �1 z(v2)), for all (v1, v2) ∈ V1 × V2.

Identity arrow of 〈〈V,≈〉,�〉 is a pair of identity morphisms 〈idV , idV 〉
Composition of arrows is based on composition of mappings: consider

two arrows 〈si, zi〉 : Vi → Vi+1, where i ∈ {1, 2}. Composition is defined
as follows:

〈s2, z2〉 ◦ 〈s1, z1〉 = 〈s2 ◦ s1, z1 ◦ z2〉.
Thus, given a pair of two arbitrary elements (v1, v3) ∈ V1 × V3 then:

(
(s2 ◦ s1)(v1) �3 v3

)
=
(
s2(s1(v1)) �3 v3

)

=
(
s1(v1) �2 z2(v3)

)

=
(
v1 �1 z1(z2(v3))

)

=
(
v1 �1 (z1 ◦ z2)(v3)

)

Associativity of composition follows trivially because of the associativ-
ity of composition of mappings between sets.
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4 The categories L-ChuCors and L-CLLOS are equivalent

In this section we start to build the equivalence by introducing a functor Γ from
L-ChuCors to L-CLLOS in the following way:

1. Γ (C) = 〈〈L-FCL(C),≈〉,�〉 for any L-context C will be its L-concept L-
CLLOS.

2. Γ (ϕ) = 〈ϕ∨, ϕ∧〉. To any L-Chu correspondence ϕ ∈ L-ChuCors(C1, C2),
Γ (ϕ) will be a pair of mappings 〈ϕ∨, ϕ∧〉 defined as follows:
– ϕ∨

(
〈f1, g1〉

)
=
〈
↓2↑2

(
ϕL+(f1)

)
, ↑2

(
ϕL+(f1)

)〉

– ϕ∧
(
〈f2, g2〉

)
=
〈
↓1
(
ϕR+(g2)

)
, ↑1↓1

(
ϕR+(g2)

)〉
where 〈fi, gi〉 ∈ L-FCL(Ci) for i ∈ {1, 2}.

Lemma 2. Γ (ϕ) ∈ L-CLLOS(Γ (C1), Γ (C2)) for any ϕ ∈ L-ChuCors(C1, C2).

Proof. Consider two arbitrary L-concepts 〈fi, gi〉 of 〈〈L-FCL(Ci),≈i〉,�i〉 for
i ∈ {1, 2}, such that Ci = 〈Bi, Ai, ri〉.
ϕ∨
(
〈f1, g1〉

)
�2 〈f2, g2〉
=
〈
↓2↑2

(
ϕL+(f1)

)
, ↑2

(
ϕL+(f1)

)〉
�2 〈f2, g2〉

=
∧

a2∈A2

(
g2(a2)→ ↑2

(
ϕL+(f1)

)
(a2)

)

=
∧

a2∈A2

(
g2(a2)→

∧

o2∈B2

( ∨

o1∈B1

(
ϕL(o1)(o2)⊗ f1(o1)

)
→ r2(o2, a2)

))

=
∧

a2∈A2

∧

o1∈B1

(
g2(a2)→

(
f1(o1)→

∧

o2∈B2

(
ϕL(o1)(o2)→ r2(o2, a2)

)))

=
∧

a2∈A2

∧

o1∈B1

(
f1(o1)→

(
g2(a2)→

∧

a1∈A1

(
ϕR(a2)(a1)→ r1(o1, a1)

)))

=
∧

o1∈B1

(
f1(o1)→

∧

a1∈A1

( ∨

a2∈A2

(
ϕR(a2)(a1)⊗ g2(a2)

)
→ r1(o1, a1)

))

=
∧

o1∈B1

(
f1(o1)→ ↓1

(
ϕR+(g2)

)
(o1)

)

= 〈f1, g1〉 �1

〈
↓1
(
ϕR+(g2)

)
, ↑1↓1

(
ϕR+(g2)

)〉

= 〈f1, g1〉 �1 ϕ∧
(
〈f2, g2〉

)

ut
Lemma 3. For the identity arrow ι ∈ L-ChuCors(C,C) of any L-context C =
〈B,A, r〉, Γ (ι) is the identity arrow from L-CLLOS(Γ (C), Γ (C)).

Proof. Consider any L-concept 〈f, g〉 from L-FCL(C).

↑
(
ιL+(f)

)
(a) =

∧

o∈B

(
ιL+(f)(o)→ r(o, a)

)

=
∧

o∈B

( ∨

b∈B

(
ιL(b)(o)⊗ f(b)

)
→ r(o, a)

)
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=
∧

o∈B

∧

b∈B

((
ιL(b)(o)⊗ f(b)

)
→ r(o, a)

)

=
∧

o∈B

(
f(b)→

∧

b∈B

(
ιL(b)(o)→ r(o, a)

)

=
∧

b∈B

(
f(b)→ ↑↓↑

(
χb

)
(a)
)

=
∧

b∈B

(
f(b)→ r(b, a)

)
= ↑ (f)(a)

Therefore, we have ι∨(〈f, g〉) = 〈f, g〉. The proof for ι∧ is similar. ut

Lemma 4. Consider arbitrary ϕi ∈ L-ChuCors(Ci, Ci+1) for i ∈ {1, 2} and any
element o1 ∈ B1 and g3 ∈ LA3 . Then

↓1
(
ϕ1R+

(
ϕ2R+(g3)

))
(o1) = ↓1

(
ϕ1R+

(
↑2↓2

(
ϕ2R+(g3)

)))
(o1).

Proof.

↓1
(
ϕ1R+

(
ϕ2R+(g3)

))
(o1)

=
∧

a1∈A1

(
ϕ1R+

(
ϕ2R+(g3)

)
(a1)→ r1(o1, a1)

)

=
∧

a1∈A1

( ∨

a2∈A2

(
ϕ1R(a2)(a1)⊗ ϕ2R+(g3)(a2)

)
→ r1(o1, a1)

)

=
∧

a2∈A2

(
ϕ2R+(g3)(a2)→

∧

a1∈A1

(
ϕ1R(a2)(a1)→ r1(o1, a1)

))

=
∧

a2∈A2

(
ϕ2R+(g3)(a2)→

∧

o2∈B2

(
ϕ1L(o1)(o2)→ r2(o2, a2)

))

=
∧

o2∈B2

(
ϕ1L(o1)(o2)→

∧

a2∈A2

(
ϕ2R+(g3)(a2)→ r2(o2, a2)

))

=
∧

o2∈B2

(
ϕ1L(o1)(o2)→ ↓2↑2↓2

(
ϕ2R+(g3)

)
(o2)

)

by applying the same chain of modifications in opposite way we will obtain

= ↓1
(
ϕ1R+

(
↑2↓2

(
ϕ2R+(g3)

)))
(o1)

ut

Lemma 5. Mapping Γ is closed under arrow composition.

Proof. Consider ϕi ∈ L-ChuCors(Ci, Ci+1) for i ∈ {1, 2}. Let 〈fi, gi〉 ∈ L-FCL(Ci)
be an arbitrary L-context for all i ∈ {1, 3}. Recall that

1. Γ (ϕ2 ◦ ϕ1) =
〈
(ϕ2 ◦ ϕ1)∨, (ϕ2 ◦ ϕ1)∧

〉

2. Γ (ϕ2) ◦ Γ (ϕ1) =
〈
ϕ2∨ ◦ ϕ1∨, ϕ1∧ ◦ ϕ2∧

〉
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The proof will be based on equality of corresponding elements of the previous
pairs: only one part will be proved, the other one is similar.

(ϕ1∧ ◦ ϕ2∧)
(
〈f3, g3〉

)
= ϕ1∧

(
ϕ2∧

(
〈f3, g3〉

))

=
〈
↓1 (ϕ1R+(↑2↓2 (ϕ2R+(g3)))), ↑1↓1 (ϕ1R+(↑2↓2 (ϕ2R+(g3))))

〉

by lemma 4 we have

=
〈
↓1 (ϕ1R+(ϕ2R+(g3))), ↑1↓1 (ϕ1R+(ϕ2R+(g3)))

〉
= ?

↓1 (ϕ1R+(ϕ2R+(g3)))(o1) =

=
∧

a1∈A1

( ∨

a2∈A2

(ϕ1R(a2)(a1)⊗ ϕ2R+(g3)(a2))→ r1(o1, a1)
)

=
∧

a1∈A1

( ∨

a2∈A2

(ϕ1R(a2)(a1)⊗
∨

a3∈A3

(ϕ2R(a3)(a2)⊗ g3(a3)))→ r1(o1, a1)
)

=
∧

a1∈A1

( ∨

a3∈A3

(
ϕ1R+(ϕ2R(a3))(a1)⊗ g3(a3)

)
→ r1(o1, a1)

)

=
∧

a3∈A3

(
g3(a3)→

∧

a1∈A1

(
ϕ1R+(ϕ2R(a3))(a1)→ r1(o1, a1)

))

=
∧

a3∈A3

(
g3(a3)→↓1↑1↓1

(
ϕ1R+(ϕ2R(a3))

)
(o1)

)

=
∧

a3∈A3

(
g3(a3)→↓1

(
(ϕ2 ◦ ϕ1)R(a3)

)
(o1)

)

=
∧

a3∈A3

(
g3(a3)→

∧

a1∈A1

(
(ϕ2 ◦ ϕ1)R(a3)(a1)→ r1(o1, a1)

))

=
∧

a1∈A1

∧

a3∈A3

((
g3(a3)⊗ (ϕ2 ◦ ϕ1)R(a3)(a1)

)
→ r1(o1, a1)

)

=
∧

a1∈A1

( ∨

a3∈A3

(g3(a3)⊗ (ϕ2 ◦ ϕ1)R(a3)(a1))→ r1(o1, a1)
)

=↓1
(
(ϕ2 ◦ ϕ1)R+(g3)

)
(o1)

? =
〈
↓1 ((ϕ2 ◦ ϕ1)R+(g3)), ↑1↓1 ((ϕ2 ◦ ϕ1)R+(g3))

〉

=(ϕ2 ◦ ϕ1)∧(〈f3, g3〉)

ut
Proposition 1. Γ is a functor from L-ChuCorrs to L-CLLOS.

Proof. Straightforward from the previous lemmas. ut
We continue by showing that the previous functor satisfies the conditions to

define a categorical equivalence, characterized by the following result:
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Theorem 3 (See [2]). The following conditions on a functor F : C → D are
equivalent:

– F is an equivalence of categories.
– F is full and faithful and ”essentially surjective” on objects: for every D ∈ D

there is some C ∈ C such that F (C) ∼= D.

Let us recall the definition of the notions required by the previous theorem:

Definition 14.

1. A functor F : C → D is faithful if for all objects A,B of a category C, the
map FA,B : HomC(A,B)→ HomD(F (A), F (B)) is injective.

2. Similarly, F is full if FA,B is always surjective.

In our cases, for proving fullness and faithfulness of the functor Γ we need
to prove surjectivity and injectivity of the mapping

ΓC1,C2
: L-ChuCors(C1, C2)→ L-CLLOS(Γ (C1), Γ (C2))

for any two L-contexts C1 and C2. This will be done in the forthcoming lemmas.

Lemma 6. Γ is full.

Proof. The point of the proof is to show that given any arrow 〈s, z〉 from the set
L-CLLOS(Γ (C1), Γ (C2)) there exists an L-Chu correspondence ϕ〈s,z〉 from the
set L-ChuCors(C1, C2), for any two L-contexts Ci = 〈Bi, Ai, ri〉 for i = {1, 2}.
Let us define the following mappings:

– ϕ
〈s,z〉
L (o1) = Ext

(
s
(
〈↓1↑1 (χo1), ↑1 (χo1)〉

))

– ϕ
〈s,z〉
R (a2) = Int

(
z
(
〈↓2 (χa2

), ↑2↓2 (χa2
)〉
))

↑2
(
ϕ
〈s,z〉
L (o1)

)
(a2) =

∧

o2∈B2

(
ϕ
〈s,z〉
L (o1)(o2)→ r2(o2, a2)

)

=
∧

o2∈B2

(
Ext(s(〈↓1↑1 (χo1), ↑1 (χo1)〉))(o2)→ ↓2 (χa2)(o2)

)

= s
(
〈↓1↑1 (χo1), ↑1 (χo1)〉

)
�2 〈↓2 (χa2

), ↑2↓2 (χa2
)〉

= 〈↓1↑1 (χo1), ↑1 (χo1)〉 �1 z
(
〈↓2 (χa2

), ↑2↓2 (χa2
)〉
)

=
∧

a1∈A1

(
Int(z(〈↓2 (χa2

), ↑2↓2 (χa2
)〉))(a1)→ ↑1 (χo1)(a1)

)

=
∧

a1∈A1

(
ϕ
〈s,z〉
R (a2)(a1)→ r1(o1, a1)

)

= ↓1
(
ϕ
〈s,z〉
R (a2)

)
(o1)

So ϕ〈s,z〉 ∈ L-ChuCors(C1, C2) and ΓC1,C2 is surjective, hence Γ is full. ut
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Lemma 7. Γ is faithfull

Proof. Now the point is to prove the injectivity of ΓC1,C2 .
Consider two L-Chu correspondences ϕ1, ϕ2 from L-ChuCors(C1, C2) such

that ϕ1 6= ϕ2, and let us fix the pair (o1, a2) ∈ B1 ×A2, such that

↑2
(
ϕ1L(o1)

)
(a2) = ↓1

(
ϕ1R(a2)

)
(o1) 6= ↑2

(
ϕ2L(o1)

)
(a2) = ↓1

(
ϕ2R(a2)

)
(o1)

Let us assume that either ↓1
(
ϕ1R(a2)

)
(o1) > ↑2

(
ϕ2L(o1)

)
(a2) or that both

values from L are incomparable, that is equivalent to the following:

↓1
(
ϕ1R(a2)

)
(o1)→ ↑2

(
ϕ2L(o1)

)
(a2) < 1

Now consider the L-concept 〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉 and let us compare its
images under the mappings ϕ1∨ and ϕ2∨.

↑2
(
ϕ2L+

(
↓1 (ϕ1R(a2))

))
(a2)

=
∧

o2∈B2

(
ϕ2L+(↓1 (ϕ1R(a2)))(o2)→ r2(o2, a2)

)

=
∧

o2∈B2

( ∨

b1∈B1

(
ϕ2L(b1)(o2)⊗ ↓1 (ϕ1R(a2))(b1)

)
→ r2(o2, a2)

)

=
∧

b1∈B1

(
↓1 (ϕ1R(a2))(b1)→

∧

o2∈B2

(
ϕ2L(b1)(o2)→ r2(o2, a2)

))

=
∧

b1∈B1

(
↓1 (ϕ1R(a2))(b1)→ ↑2 (ϕ2L(b1))(a2)

)

≤↓1 (ϕ1R(a2))(o1)→ ↑2 (ϕ2L(o1))(a2)

< 1 because of the restriction given above

Similarly, we can obtain:

↑2 (ϕ1L+(↓1 (ϕ1R(a2))))(a2) =

=
∧

b1∈B1

(
↓1 (ϕ1R(a2))(b1)→ ↑2 (ϕ1L(b1))(a2)

)

=
∧

b1∈B1

(
↓1 (ϕ1R(a2))(b1)→ ↓1 (ϕ1R(a2))(b1)

)
= 1

It means that ϕ1∨
(
〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉

)
6= ϕ2∨

(
〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉

)

Hence ϕ1∨(〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉) 6= ϕ2∨(〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉) and
ϕ1∨ 6= ϕ2∨. So ΓC1,C2

is injective and Γ is faithfull. ut
Proposition 2. The functor Γ is an equivalence functor between L-ChuCors
and L-CLLOS.

Proof. Fullness and faithfulness of Γ is given by previous lemmas. Essential sur-
jectivity on objects is ensured by the fact that given any object 〈〈V,≈〉,�〉 of
L-CLLOS there exists an L-context 〈V, V,�〉, such that Γ

(
〈V, V,�〉

) ∼= 〈〈V,≈〉,�〉.
Hence, we can state that Γ is the functor of equivalence between L-ChuCors and
L-CLLOS. ut
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3. R. Bělohlávek. Fuzzy concepts and conceptual structures: induced similarities. In

Joint Conference on Information Sciences, pages 179–182, 1998.
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5. R. Bělohlávek. Lattices of fixed points of fuzzy Galois connections. Mathematical

Logic Quartely, 47(1):111–116, 2001.
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Using intensifying hedges to reduce
size of multi-adjoint concept lattices

with heterogeneous conjunctors
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Abstract. In this work we focus on the use of intensifying hedges as a
tool to reduce the size of the recently introduced multi-adjoint concept
lattices with heterogeneous conjunctors.

1 Introduction and preliminaries

Formal concept analysis (FCA) is a very active topic for several research groups
throughout the world [6, 1, 3, 5, 7, 8, 10, 11]. In this work, the authors aim to
merge recent advances obtained in this area: on the one hand, the use of hedges
as structures which allow to modulate the size of fuzzy concept lattices [4] and,
on the other hand, the consideration of heterogeneous conjunctors in the general
approach to fuzzy FCA so-called multi-adjoint framework [9].

One of the key features of the latter approach is that some quasi-closure
operators arise which, although do not directly allow to prove the complete
lattice structure of the resulting set of concepts as usual, i.e. in terms of a
Galois connection, actually do provide means to manually build the operators
for suprema and infima of a set of concepts. The core notion in [9] is that of P -
connected pair of posets which, in some sense, turns out to be a more abstract
notion than a truth-stressing hedge. As a consequence of this observation, due to
Radim Belohlavek, we now focus on the use of the specific properties of hedges
in order to import some results related to the size of fuzzy concept lattices to
the more general framework of [9].

The structure of the paper is the following: in Section 2 the preliminary
definitions are introduced, interested readers will obtain further comment on
the intuitions underlying the definitions in the original papers [4, 9]; the main
results are presented in Section 3.
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2 Preliminaries

In this section, we introduce the basic definitions and preliminary results which
will be used later in the core of this work.

Definition 1. Let (L,�,>,⊥) be a complete lattice, a truth-stressing hedge in
L is a mapping ∗ : L→ L satisfying, for each x, y ∈ L,

∗(>) = >, (1)

∗(x) � x, (2)

x � y implies ∗ (x) � ∗(y), (3)

∗(∗(x)) = ∗(x) (4)

fix(∗) denotes set of fixed points of ∗ in L, i.e. fix(∗) = {a ∈ L | ∗(a) = a}.
In [3, 4] truth-stressing hedges were used to decrease size of a concept lattice

(in fact, the truth-stressing hedges were defined on a residuated lattice).

Later in this work, we will need the following lemmas.

Lemma 1. Let (L,�) be a complete lattice, for any mapping ∗ : L→ L satisfy-
ing (2), (3), and (4) we have, for each xi ∈ L,

∨

i∈I
∗(xi) = ∗(

∨

i∈I
∗(xi)) and ∗ (

∧

i∈I
∗(xi)) = ∗(

∧

i∈I
xi). (5)

In addition, if we have xj =
∨
i∈I xi for some j ∈ I then

∗(
∨

i∈I
xi) =

∨

i∈I
∗(xi). (6)

Similarly, if we have xj =
∧
i∈I xi for some j ∈ I then

∗(
∧

i∈I
xi) =

∧

i∈I
∗(xi). (7)

Lemma 2. (a) Let ∗ : L → L be a mapping satisfying (2), (3), and (4). Then
fix(∗) is a ∨-subsemilattice of L.

(b) Let K be a ∨-subsemilattice of L then the mapping ∗K : L→ L defined by

∗K(x) =
∨{y ∈ K | y ≤ x}

satisfies (2), (3), and (4).
(c) ∗fix(∗) = ∗ and fix(∗K) = K.

By Lemma 2 the set fix(∗) of truth-stressing hedge ∗ is a ∨-subsemilattice.
Now we will introduce the basic notions of multi-adjoint concept lattices with
heterogeneous conjunctors, in order to show how both frameworks, hedges and
heterogeneous conjunctors, can be merged.
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Firstly, let us introduced a bit of terminology: in the rest of this work we will
call a mapping ∗ : L → L satisfying (2), (3), and (4) an intensifying hedge,
following the terminology introduced in [2]. In terms of interior structures (L,�),
a mapping satisfying (2)–(4) is an interior operator on the lattice of truth degrees.

The two main notions on which multi-adjoint concept lattices with heteroge-
neous conjunctors is defined are given below: the P -connection between posets,
and the adjoint triples.

Definition 2. Given the posets (P1,≤1), (P2,≤2) and (P,≤), we say that P1

and P2 are P -connected if there exist non-decreasing mappings ψ1 : P1 → P ,
φ1 : P → P1, ψ2 : P2 → P and φ2 : P → P2 verifying that φ1(ψ1(x)) = x, and
φ2(ψ2(y)) = y, for all x ∈ P1, y ∈ P2.

Definition 3. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets, and consider mappings

&: P1 × P2 → P3, ↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2, then (&,↙,↖) is an
adjoint triple with respect to P1, P2, P3 if: x ≤1 z ↙ y iff x& y ≤3 z iff
y ≤2 z ↖ x, where x ∈ P1, y ∈ P2 and z ∈ P3.

From Lemma 2 we immediately obtain the following proposition:

Corollary 1. Consider the posets (P1,≤1), (P2,≤2) and (P,≤), and assume
that L1 and L2 are P -connected, then:

(a) If ψ1 ◦ φ1 is contractive (i.e. satisfies (2)) then P1 is isomorphic to a ∨-
subsemilattice of P .

(b) If ∗ : P1 → P1 is an intensifying hedge (i.e. satisfies properties (2), (3), and
(4)) then the composition ψ1 ◦ ∗ ◦ φ1 : P → P is an intensifying hedge in
fix(ψ1 ◦ φ1).

Lemma 3. Let (L,�), (L1,�1), (L2,�2) be lattices and let (&,↙,↖) be an ad-
joint triple. For a, ai ∈ L1, b, bi ∈ L2, we have

∨
i∈I(ai & b) = (

∨
1i∈Ia) & b and

∨
i∈I(a& bi) = a&(

∨
2i∈Ibi) (8)

Definition 4. A multi-adjoint frame is a tuple

(L1, L2, P,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where Li are complete lattices and P i a poset, such that (&i,↙i,↖i) is an
adjoint triple with respect to L1, L2, P for all i = 1, . . . , n.

Definition 5. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a multi-
adjoint context is a tuple (A,B,R, σ) such that A and B are non-empty sets
(usually interpreted as attributes and objects, respectively), R is a P -fuzzy rela-
tion R : A × B → P and σ : B → {1, . . . , n} is a mapping which associates any
element in B with some particular adjoint triple in the frame.
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Given a complete lattice (L,�) such that L1 and L2 are L-connected, a
multi-adjoint frame (L1, L2, P,&1, . . . ,&n), and a context (A,B,R, σ), we can
define the mappings ↑cσ : LB → LA and ↓

cσ

: LA → LB defined for all g ∈ LB
and f ∈ LA as follows:

g↑cσ (a) = ψ1(inf{R(a, b)↙σ(b) φ2(g(b)) | b ∈ B}) (9)

f↓
cσ

(b) = ψ2(inf{R(a, b)↖σ(b) φ1(f(a)) | a ∈ A}) (10)

The notion of concept is defined as usual. A concept is a pair 〈g, f〉 satisfying
g ∈ LB , f ∈ LA and that g↑cσ = f and f↓

cσ

= g.

Definition 6. Given the complete lattices (L1,�1), (L2,�2) and (L,�), where
L1 and L2 are L-connected, the set of multi-adjoint L-connected concepts asso-
ciated to a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and context (A,B,R, σ)
is given by ML = {〈g, f〉 | 〈g, f〉 is a concept}.

The main theorem of concept lattices in [9], proves that ML has the structure
of a complete lattice:

Theorem 1 ([9]). Given complete lattices (L1,�1), (L2,�2) and (L,�), where
L1 and L2 are L-connected, a context (A,B,R, σ), and a multi-adjoint frame
(L1, L2, L,&1, . . . ,&n), the multi-adjoint L-connected concept lattice ML is ac-
tually a complete lattice with the meet and join operators f,g : ML×ML →ML

defined below, for all 〈g1, f1〉, 〈g2, f2〉 ∈ML,

〈g1, f1〉f 〈g2, f2〉 = 〈ψ2 ◦ φ2(g1 ∧ g2), (f1 ∨ f2)↓
c↑c〉

〈g1, f1〉g 〈g2, f2〉 = 〈(g1 ∨ g2)↑c↓
c

, ψ1 ◦ φ1(f1 ∧ f2)〉

The order � which corresponds to f and g is defined as

〈g1, f1〉 � 〈g2, f2〉 iff φ2(g1) ≤ φ2(g2) (iff φ1(f2) ≤ φ1(f1))

In what follows M denotes multi-adjoint L-connected concept lattice of given
context (A,B,R, σ). We will also omit subscript σ(b) and write just ↙ instead
of ↙σ(b).

3 Reducing the size of multi-adjoint concept lattices

The size of the concept lattice M can be reduced either by a suitable selection
of a ∨-subsemilattice of L1 (and/or L2) and the use of a restriction of &. The
following proposition says that the selection of ∨-subsemilattices of L1 (resp. L2)
yields a reduction of size of concept lattice and, moreover, preserves intents (or
extents) of the original concept lattice, meaning that each intent of the reduced
concept lattice is an intent of the original concept lattice.
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Proposition 1. Let A = (L1, L2, P,&1, . . . ,&n),A′ = (K1, L2, P,&
′
1, . . . ,&

′
n)

be multi-adjoint frames, s.t. K1 is a ∨-subsemilattice of L1, and &′1, . . . ,&
′
n

are restrictions of &1, . . . ,&n to K1 × L2 and ψ′1 = ψ1, ψ′2 = ψ2, φ′2 = φ2,
φ′1 = ∗K1 ◦φ1, where ∗K1 is the hedge associated to K1 as introduced in Lemma 2.
Then, Int(MA′) ⊆ Int(MA) where Int(M) denotes the set of intents in M.

Proof (sketch). We have z ↖′ x = z ↖ x, for each x ∈ K1, z ∈ P , whence
f↓
′

= f↓, for each f : A→ ψ1(K1) where ψ1(K1) ∈ L is image of ψ1 (note that
↙′ is well-defined since K1 is ∨-subsemilattice) and thus by Proposition 16 in
[9] Ext(MA′) ⊆ Ext(MA). ut

Remark 1. One can state a dual proposition to Proposition 1 for intents. Let A =
(L1, L2, P,&1, . . . ,&n),A′ = (L1,K2, P,&

′
1, . . . ,&

′
n) be multi-adjoint frames,

s.t. K2 is a ∨-subsemilattice of L2, and &′1, . . . ,&
′
n are restrictions of &1, . . . ,&n

to L1 ×K2 and φ′2 = ∗K2 ◦ φ2.

The following proposition says that by selection of ∨-subsemilattices of both
L1 and L2 we obtain a reduction of the size as well. However, the preservation
of intents (or extents) is lost.

Proposition 2. Let A = (L1, L2, L,&1, . . . ,&n),A′ = (K1,K2, L,&
′
1, . . . ,&

′
n)

be multi-adjoint frames, s.t. K1 is a ∨-subsemilattice of L1, K2 is a ∨-subsemi-
lattice of L2, and &′1, . . . ,&

′
n are restrictions of &1, . . . ,&n to K1 × K2, and

φ′1 = ∗K1
◦ φ1, φ

′
2 = ∗K2

◦ φ2. Then we have |MA′ | ≤ |MA|.

Proof (sketch). By applying Proposition 1 and Remark 1 we obtain the result.
ut

In the next result we show how to generate new adjoint triples using hedges.

Lemma 4. Assume (&,↙,↖) is an adjoint triple with respect to L1, L2, P ,
and ∗1 : L1 → L1, ∗2 : L2 → L2 are hedges, then x&∗ y = ∗1(x) & ∗2(y) has two
residuated implications ↙∗,↖∗ which form a new adjoint triple with respect to
L1, L2, P , if and only if the following equalities hold:

∗1(z ↙ ∗2(y)) = ∗1(
∨
{x | x&

∗ y ≤ z}) (11)

∗2(z ↖ ∗1(x)) = ∗2(
∨
{y | x&

∗ y ≤ z}) (12)

Proof. “⇒”: Let (&∗,↙∗,↖∗) be an adjoint triple. We have

x&
∗ y ≤ z iff y �2 z ↖∗ x

by definition. In particular, we obtain

∗1(x) &
∗ ∗2(y) ≤ z iff ∗2 (y) �2 z ↖∗ ∗1(x)

and ∗1(x) &∗ ∗2(y) = ∗1(∗1(x)) & ∗2(∗2(y)) = ∗1(x) & ∗2(y) = x&∗ y. Hence, we
have

x&
∗ y ≤ z iff ∗2 (y) �2 z ↖∗ ∗1(x)

Using intensifying hedges to reduce size of multi-adjoint concept lattices 249



From (3) and (4) we obtain that

∗2(y) �2 z ↖∗ ∗1(x) implies ∗2 (y) �2 ∗2(z ↖∗ ∗1(x))

and due to (2) we have

∗2(y) �2 ∗2(z ↖∗ ∗1(x)) implies ∗2 (y) �2 z ↖∗ ∗1(x)

Therefore, we have

x&
∗ y ≤ z iff ∗2 (y) �2 ∗2(z ↖∗ ∗1(x)). (13)

Analogously, we obtain

∗1(x) & ∗2(y) ≤ z iff ∗2 (y) �2 ∗2(z ↖ ∗1(x)) (14)

By setting y = (z ↖ ∗1(x)), in Equation (13), and y = (z ↖∗ ∗1(x)), in Equa-
tion (15), we obtain equivalent inequalities ∗2(z ↖ ∗1(x)) � ∗2(z ↖∗ ∗1(x)),
∗2(z ↖ ∗1(x)) � ∗2(z ↖∗ ∗1(x)) respectively. Thus we have

∗2(z ↖ ∗1(x)) = ∗2(z ↖∗ ∗1(x)).

Which is equal to (12). The first equation (11) can be obtained dually.
“⇐”: Assume (12) holds true. By properties of adjointness, to show that &∗

generates an adjoint triple we need to show that

R = {y | ∗1(x) & ∗2(y) ≤ z}

has a greatest element.
In the previous part, we proven that

∗1(x) & ∗2(y) ≤ z iff ∗2 (y) �2 ∗2(z ↖ ∗1(x)) (15)

hence R = {y | ∗2(y) � ∗2(z ↖ ∗1(x))}. Now, if R has no greatest element, i.e.∨
R /∈ R, then we have ∗2(

∨
R) 6� ∗2(z ↖ ∗1(x)) which is a contradiction with

the assumption. By the contradiction we proved that R has a greatest element.
ut

Proposition 3. Let A = (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame ∗1, ∗2
be hedges on L1 and L2, respectively. Let A′ = (fix(∗1),fix(∗2), P,&′1, . . . ,&

′
n)

s.t. &′1, . . . ,&
′
n are restrictions of &1, . . . ,&n to fix(∗1)× fix(∗2), and φ′1 = ∗1 ◦

φ1, φ
′
2 = ∗2◦φ2. Let A∗ = (L1, L2, P,&

∗
1, . . . ,&

∗
n) be a multi-adjoint frame where

&∗i is defined by a&∗i b = ∗1(a) &i ∗2(b), for all i ∈ {1, . . . , n}, and the conditions
in Lemma 4 are satisfied. Then (MA′ ,�′) and (MA∗ ,�∗) are isomorphic.

Proof. Let K = (A,B,R, σ) be a formal context, denote by ↑, ↓ concept-forming
operators induced by K and A′ and denote by ⇑, ⇓ concept-forming operators
induced by K and A∗. Furthermore, denote compositions ψ1 ◦ ∗1 ◦ φ1 and ψ2 ◦
∗2 ◦ φ2 by •1 and •2 respectively.
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For each mapping g : B → L we have

•1(g⇑(a)) = •1(ψ1

∧
1
(R(a, b)↙∗ φ2(g(b))))

= ψ1 ∗1 (φ1ψ1

∧
1
(R(a, b)↙∗ (φ2(g(b)))))

= ψ1

∧
1
∗1 (
∨

1
{x | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b))})

(∆)
= ψ1

∧
1
(
∨

1
{∗1(x) | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b))})

= ψ1

∧
1
(
∨

1
{x ∈ fix(∗1) | x& ∗2(φ2(g(b))) ≤ R(a, b))})

= ψ1

∧
1
(R(a, b)↙′ ∗2(φ2(g(b))))

= ψ1

∧
1
(R(a, b)↙′ φ2ψ2 ∗2 (φ2g(b)))

= ψ1

∧
1
(R(a, b)↙′ φ2 •2 (g(b)))

= (•2 ◦ g)↑(a)

where (∆) is due to Lemma 1 (6) and the fact that & generates adjoint triple and
thus

∨
1{x | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b))}) has a greatest elements. Dually, we

have •2 ◦ (f⇓) = (•1 ◦ f)↓ for each mapping f : A→ L. From that we have

g↑ = •1 ◦ (g⇑) and f↓ = •2 ◦ (f⇓)

for each g : B → fix(•2), f : A → fix(•1). As a result of the previous equalities,
we have that •2 is a surjective mapping Ext(MA∗) → Ext(MA′) and •1 is a
surjective mapping Int(MA∗) → Int(MA′). In addition, for g ∈ Ext(MA∗) we
have

•2(g)⇑(a) = ψ1

∧
1
R(a, b)↙∗ φ2ψ2 ∗2 φ2(g(b))

= ψ1

∧
1

∨
2
{x | ∗1(x) & ∗2 ∗2 (φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1

∨
2
{x | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1
R(a, b)↙∗ φ2(g(b)))

= g⇑(a)

and dually •1(f)⇓ = f⇓. Putting it together, we have g = g⇑⇓ = •1(g⇑)⇓ =
•2(g)↑⇓ showing that ↑⇓ is injective; whence •1, •2 are bijections.

To show that •1, •2 are order-preserving let 〈g1, f1〉 , 〈g2, f2〉 ∈ MA∗ . An
extent of 〈g1, f1〉 ∧ 〈g2, f2〉 is equal to ψ2φ2(g1 ∧ g2) by the main Theorem in [9].

For g1, g2 ∈ Ext(MA∗) we have

•2ψ2φ2(g1 ∧ g2) = ψ2 ∗2 φ2ψ2φ2(g1 ∧ g2)

= ψ2 ∗2 φ2(g1 ∧ g2)

= ψ2 ∗2 φ2 •2 (g1 ∧ g2)

(∆)
= ψ2φ

′
2(•2(g1) ∧ •2(g2))
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Equality (∆) is due to Corollary 1(b) since note that g1, g2 are fixpoints of ψ2◦φ2.
Now, let g1, g2 ∈ Ext(MA′). We have

(ψ2φ
′
2(g1 ∧ g2))↑⇓ = (ψ2 ∗2 φ2(g1 ∧ g2))↑⇓

= (•1(g1 ∧ g2))↑⇓

= (•1(g↑↓1 ∧ g↑↓2 ))↑⇓

= (•1(•1(g↑⇓1 ) ∧ •1(g↑⇓2 ))↑⇓

(∆)
= (•1 •1 (g↑⇓1 ∧ g↑⇓2 ))↑⇓

= (•1(g↑⇓1 ∧ g↑⇓2 ))↑⇓

= (g↑⇓1 ∧ g↑⇓2 )⇑⇓

(∇)
= ψ2φ2(g↑⇓1 ∧ g↑⇓2 )

Equality (∆) is due to Corollary 1(b) since g1, g2 are fixpoints of ψ2◦φ2; equality
(∇) is due to [9, Lemma 21].

This proves that •1, •2, ↑⇓, and ↓⇑ are order-preserving. ut

Example 1. Consider the multi-adjoint frame depicted in Fig. 1 (structures are
the same as in [9, Example 3 (Fig. 2)] (where all &i’s coincide). Figure 2 de-
picts a formal context with two objects and two attributes, together with their
associated multi-adjoint concept lattice.

Concept lattices with truth-stressing hedges

In this part, we follow the way in which the hedges are used in [4], i.e. we
generalize concept-forming operators using intensifying hedges. Then we show
how this is related to the theory described above.

We define the concept-forming operators as follows

gM(a) = ψ1

∧
1b∈B

R(a, b)↙ ∗2(φ2(g(b))),

fO(b) = ψ2

∧
2a∈A

R(a, b)↖ ∗1(φ1(f(a))).

Note that this is not strictly the same approach as used in Proposition 3
since ↙ and ↖ are residua of the original adjoint operators &, not the altered
operators &∗. In fact, generally there is no base operation & such that (·)↙ ∗2(·)
and (·)↖ ∗1(·) are its residua, since we do not generally have

x ≤ z ↙ ∗2(y) iff y ≤ z ↖ ∗1(x)

for each x ∈ L1, y ∈ L2, z ∈ L.

Lemma 5. Assume (&,↙,↖) is an adjoint triple, ∗1, ∗2 are intensifying hedges,
and ↙�,↖� being defined as z ↙� y = z ↙ ∗2y, and z ↖� x = z ↖ ∗1x; then
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α

β

γ

δ

x

y
z

t
u

v

a

cb

d

a b c d

ψ1 x t u v

α β γ δ

ψ2 x y t v

x y z t u v

φ1 a b a b c d

x y z t u v

φ2 α β γ γ δ δ

& α β γ δ

a x x x x

b x y v v

c x y y t

d x y v u

↙ α β γ δ

t d d c c

u d d d d

v d d d b

x d a a a

y d d c a

z d a a a

↖ a b c d

t δ β δ β

u δ δ δ δ

v δ δ γ γ

x δ α α α

y δ β γ β

z δ α α α

Fig. 1. L1 (top left), L (top middle), L2 (top right), connection operators φ1, φ2, ψ1, ψ2

(middle), adjoint triple (〈&,↖,↙〉) (bottom).

1 2

1 u v
2 v y

(v, v)(u, x)

(u, v)(v, x)
(v, u)(u, t)

(u, u)(v, t)
(v, y)(u, v)

(u, y)(v, v)

Fig. 2. Multi-adjoint formal context with two objects and two attributes (left) and the
multi-adjoint concept lattice associated to the context (right).
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α

β

γ

δ

a

cb

d

(v, v)(x, x)

(v, x)(x, t)(x, t)(y, x)

(x, x)(t, t)

(v, v)(x, x)

(v, x)(x, y)(x, v)(y, x)

(x, x)(v, v)

Fig. 3. Intensifying hedge on L1 (top left) and L2 (top right); concept lattices MA′

(bottom left), MA∗ (bottom right) of the formal context in Fig. 2; labels of nodes of
MA′ and MA∗ represent characteristic vectors of corresponding extents and intents.
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↙�,↖� are part of an adjoint triple with conjunctor &� if and only if for all
x, y the following equality holds

x& ∗2(y) = ∗1(x) & y

and, in this case the previous value is the definition of &�.

Proof. For all x, y, z, on the one hand, we have

∗1(x) & y ≤ z iff y �2 z ↖ ∗1(x) iff y �2 z ↖� x.

On the other hand, we have

x& ∗2(y) ≤ z iff x �1 z ↙ ∗2(y) iff x �1 z ↙� y.
Thus we have

y �2 z ↖� x iff x �1 z ↙� y
is equivalent to

x& ∗2(y) ≤ z iff ∗1 (x) & y ≤ z,
which is equivalent to x& ∗2(y) = ∗1(x) & y. ut

However, the concept-forming operators M,O are in one-to-one correspon-
dence with concept-forming operators ↑, ↓ with restrictions of L1 and L2 to
subsemilattices fix(∗1) and fix(∗2):

•1(gM(a)) = •1(ψ1

∧
b∈B

R(a, b)↙ ∗2φ2(g(b)))

= ψ1 ∗1 (
∧

1b∈B
R(a, b)↙ ∗2(φ2(g(b))))

= ψ1

∧
1b∈B

∗1 (R(a, b)↙ ∗2(φ2(g(b))))

= ψ1

∧
1b∈B

∗1
∨

1
{x | x& ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1b∈B

∨
1
{∗1(x) | x& ∗2(φ2(g(b))) ≤ R(a, b)}

(∆)
= ψ1

∧
1b∈B

∨
1
{∗1(x) | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1b∈B

∨
1
{x ∈ fix(∗1) | x& ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1b∈B

∨
1
{x ∈ fix(∗1) | x&φ′2(g(b)) ≤ R(a, b)}

= ψ1

∧
1b∈B

R(a, b)↙ φ′2(g(b))

= g↑(a)

where equality (∆) holds because each x satisfying x& y ≤ z satisfies ∗2(x) & y ≤
z as well; and because each ∗2(x) such that ∗2(x) & y ≤ z there is x′ (explicitly,
∗2(x)) with ∗2(x′) = ∗2(x) such that x′& y ≤ z. Dually, one can show •2(fO) =
f↓.
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Abstract. Semantic indexing and retrieval is an important research area, as the
available amount of information on the Web is growing more and more. In this
paper, we introduce an original approach to semantic indexing and retrieval based
on Formal Concept Analysis. The concept lattice is used as a semantic index and
we propose an original algorithm for traversing the lattice and answering user
queries. This framework has been used and evaluated on a song dataset.

1 Introduction

Semantic indexing and retrieval refer to organizing a set of information items inside an
index according to the semantic relations and concepts that they share, and then search-
ing within this index to identify the items, the context of which matches a given user
query [7, 15]. Semantic retrieval is based on flexible and partial matching techniques
contrasting exact matching techniques. The organization and retrieval of information
based on context, if effectively carried out, can significantly improve the understanding
of information, as well as to provide users with richer and more meaningful search re-
sults, understanding context as a set of “external elements” which helps to understand
or to manipulate information. For these reasons, context-based methods of classifica-
tion and retrieval are applied on multiple types of information, ranging from text-based
documents to multimedia content.

In the past years, Formal Concept Analysis (FCA [6]) has been applied to docu-
ment indexation (an Information Retrieval task [10]) since it proposes a robust and for-
mal framework to exploit the relations that documents (objects) have through the terms
they share (attributes). For example, the work of Priss [13] uses concept lattices to im-
prove the representation of a document collection by merging it with information from
thesauri and thus creating a multi-faceted extended context. In a similar approach, the
work of Carpineto et al. [4] presents CREDO, a system that queries Google to construct
a faceted browser from a concept lattice to help the user on its search experience.
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Different from browsing support and automatic facet construction, some approaches
use the concept lattice directly as a document index and propose different strategies to
explore it in order to find those documents relevant for a given user query. In general,
given a document-term concept lattice and a conjunctive user query, these approaches
work by identifying a formal concept in the lattice that best represents the query. This
formal concept is then denominated as the “query concept”. Two strategies can be dis-
tinguished to explore the concept lattice in order to retrieve documents: the work in
[2] proposes a neighbourhood expansion strategy where concepts are ranked accord-
ing to the minimal distance they have from the “query concept”. In [11], the strategy
used is the exploration of the super-hierarchy (super-concepts) of the “query concept”.
Other approaches, like the system FooCA presented in [8], while based on the FCA
framework, do not rely on the lattice structure for an automated document retrieval. As
described in [3], there are few works in the area of concept lattice-based information
retrieval, and even though the first approaches were presented more than 40 years ago
[18], the state-of-the-art remains little explored.

In this paper we propose a semantic indexation and retrieval technique supported
over the FCA framework. It is based on the basic general idea of constructing a document-
term concept lattice and identifying a “query concept”, where we propose a novel ex-
ploration strategy based on the notion of “cousin concepts”. We illustrate this technique
using a song dataset, where songs are indexed using the terms appearing in their lyrics
(songs are documents). The specific goal of this approach is to retrieve relevant songs
to a user based on the terms provided in his query using a concept lattice as a semantic
index. In order to enrich the song descriptions we use Wordnet (an external knowledge
source which describes semantic relations among terms). As an additional characteris-
tic we address the problem of semantic indexing and retrieval as a 3-step knowledge
discovery on databases (KDD) process, comprising three main steps: data preparation,
discovery and filtering of the results.

The main contributions of this work are the following:

– The notion of cousin concepts.
– Highlighting the capabilities of using FCA and a concept lattice as a semantic index

and proposing a novel algorithm that traverses the lattice to retrieve information
based on the content of the concepts.

– Proposing the incorporation of semantic indexing to current song retrieval systems
and providing initial results, as a proof-of-concept of the potential that such an
application can have.

We have selected songs indexing as an application domain since few work have been
done in content-based indexation using lyrics. To the authors knowledge, the work in
this area mostly focus on using low-level features of songs [19, 5, 9] (such as bit-rate,
authors name, length, etc.) while high-level features (such as the semantics of the lyrics)
have been used mainly for sentiment analysis classification [12, 17].

The rest of this paper is organized as follows. Firstly, Section 2 introduces the use
of FCA for semantic indexing and querying and present our approach according to the
main steps of KDD. Next, Section 3 presents the evaluation results obtained for our
approach. Finally, Section 4 presents a discussion of the extension of our work and the
conclusions of our research.
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Table 1: Synsets retrieved for the word “soldier”from Wordnet
Synset Synonyms Definition
soldier.n.01 soldier an enlisted man who serves in an army
soldier.n.02 soldier a wingless sterile ant or termite having...
soldier.v.01 soldier serve as a soldier in the military

2 Semantic indexing based on FCA

The problem addressed in this paper can be defined as finding songs the lyrics of which
are related to a set of user-provided keywords, through a sufficient “closeness of mean-
ing”. Subsequently, our goal is to construct a semantic index, from a given set of songs
and their lyrics and a relation which will successfully support the context-based song
retrieval.

To address the above we first constructed a dataset of songs, where each song is
related to a number of semantic meanings as follows. Two sources of data, namely
musiXmatch and WordNet were used. MusiXmatch is a lyrics database, recently re-
leased as part of the MillionSong Dataset [1]. It was used to provide the lyrics for each
song, in the form of a bag-of-words, already preprocessed to eliminate morphological
word duplications. WordNet3 is a well-known semantic dictionary and it was used to
associate every word in the lyrics of a song with a set of synonym terms, called synsets,
where each synset corresponds to one specific meaning of the word. Synsets also have
semantic distances to one another, based on their position within WordNet’s semantic
hierarchy. The created dataset includes 357 songs, where each song is represented by
its title, lyrics (in the form of a bag-of-words) and each word of the lyrics is connected
to a set of synsets.

In the following, a song si is defined as a pair {ti, Li} where ti denotes the title and
Li the lyrics of the song in the form of a bag-of-words, as provided by musiXmatch.

2.1 Task 1: Lyrics Annotation

Given a song si = {ti, Li}, let synsets(Li) be the list of WordNet synsets that are
associated with each word wj in the lyrics Li. Each retrieved synset has a definition
and a set of synonyms. Word wj is part of the synonyms. As an example, Table 1
illustrates the synsets retrieved from WordNet for the word “Soldier”.

From the above example it can be understood that not every synset retrieved through
WordNet is valuable in the context of a song. For instance, in the context of a war, a
reference to a “soldier” would be clearly related to the definition of an enlisted man who
serves in an army and not to the definition of a soldier ant. The third definition can also
be disregarded since it is associated with a verb.

Therefore, to accurately annotate each song, we need to keep only those synsets that
correspond to the actual context of the song.

3 http://wordnet.princeton.edu
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To address this, a filtering process took place as follows: a well-known similarity
metric, namely the Wu-Palmer Similarity Measure [20], was used to measure the se-
mantic similarity between every pair of synsets in the synsets(Li) set. The Wu-Palmer
similarity measure wp(ss1, ss2) = [0, 1], ss1 ∈ synsets(Li) ∧ ss2 ∈ synsets(Li)
is provided by the WordNet API and measures semantic similarity using path distance
and the difference of levels in the synset tree. Then for each synset ssj we calculate the
average distance with every other synset ssk ∈ synsets(Li) as defined in equation 1.

avg sim(ssj) =

∑
j 6=k

wp(ssj , ssk)

|synsets(Li)|
(1)

The synset with the lowest avg sim is deleted from synsets(Li). The filtering is re-
peated until we reach to a threshold of 20 most similar elements in synsets(Li), which
will be considered to constitute the so-called semantic core of the song si, denoted as
core(si). The threshold of 20 synsets was selected heuristically, since it was found to
represent the semantic core of the songs, in the specific dataset, in a concise and non
redundant way. As an example, Table 2 shows some of the synsets selected to describe
the song titled “The Green Beret Balad”. As it may be observed, the synsets that do
not belong to the song’s context (which is mostly about the notions of war, battle, man,
etc.) will be less related to the rest of the song’s synsets, and therefore they will be
more likely to be omitted. In this example, the synset “soldier.n.01: an enlisted man or
woman who serves in an army” has been selected, instead of the other WordNet’s al-
ternative “soldier ant: soldier.n.02: a wingless sterile ant or termite having a large head
and powerful jaws adapted for defending the colony”.

Table 2: Synsets describing the “Green Beret Balad” song
Synset Mean Similarity Definition
serviceman.n.01 0.665785412147 someone who serves in the armed forces
young.n.01 0.652204776648 any immature animal
man.n.03 0.652204776648 the generic use of the word to refer to any human being
soldier.n.01 0.629664596273 an enlisted man or woman who serves in an army
brave.n.01 0.622338466487 a North American Indian warrior
green beret.n.01 0.606135516657 a soldier who is a member of the United States...
back.n.04 0.596281910309 (football) a person who plays in the backfield
wing.n.06 0.596281910309 a hockey player stationed in a forward position on either side
son.n.01 0.594639167088 a male human offspring
wife.n.01 0.594639167088 a married woman; a man’s partner in marriage
valet.n.01 0.569009183037 a manservant who acts as a personal attendant to his employer

The outcome of the filtering process is the set core(si), which is considered as the
final set of semantic annotations of the song si since it refers to a well-defined semantic
schema, i.e. WordNet, where each annotation contains a definition and relations with
other annotations.
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2.2 Task 2: Semantic Index Creation

We built the semantic song index as a concept lattice using Formal Concept Analysis
(FCA) following the lines of [11, 4, 13]. The basics of FCA are introduced in [6].

In the formal context of songs considered in this paper K = (G,M, I), the set
of objects G contains the songs of the dataset while the set of attributes M contains
all the WordNet synsets included in the semantic cores of the songs in G. The set I
contains the relations gIm which stand for “song g has synset m in its semantic core”.
Table 3 shows an example of a formal context created from 11 songs and 6 synsets.
The concept lattice obtained from this example context is illustrated in Figure 1. The
concept lattice is presented in its reduced notation where objects (songs) and attributes
(synsets) are shown only next to their object/attribute-concept, i.e. the most general
concept introducing the attribute (which is inherited from higher to lower levels), the
most specific concept having the object in its extent (the object being shared from lower
to higher levels).
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song1 x x x
song6 x
song10 x x x
song14 x x x
song16 x x x x x
song18 x x x
song24 x x
song27 x x x
song32 x x x x
song33 x x
song39 x x x x x

Table 3: Formal context example.

0

1 2 3 4

5 6 8 9

7

11

10 12 15

13 14 16

17

song39song32song16

song27song1, song10, song14, 

song18

serviceman

song24

white

song33

buddy

song6man son bolshevik

Fig. 1: The semantic index as a concept
lattice obtained through FCA. Each
concept is labelled with a unique
identifier.

2.3 Task 3: Semantic Index querying

A simple query to the constructed semantic index (i.e. the concept lattice) is a pair
q = (Aq, Bq) where Aq denotes an empty extent to be filled and Bq = {ss} is a synset
to be searched for. Actually, the retrieval is based on two steps. The first one corresponds
to “exact matching” (as in [11]) and the second corresponds to “partial matching” based
on the cousin relation introduced hereafter. The first step consists of searching within
the concept lattice for the attribute-concept (Ass, Bss) of attribute ss, i.e. finding the
most general concept where ss appears in an intent (also denoted by µ(ss) in [6]). The
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extent of Ass contains the list of all songs which are directly associated with the synset
ss. This direct answer constitutes only a part of the answer. The second step is related
to partial matching based on the cousin relation defined in the following.

Definition of cousin concepts. Two concepts (A1, B1) and (A2, B2) which are not
comparable for ≤K are said to be cousins iff there exists (A3, B3) 6=⊥ such that
(A3, B3) ≤K (A1, B1) and (A3, B3) ≤K (A2, B2) and dK((A2, B2), (A3, B3)) = 1
(or dK((A1, B1), (A3, B3)) = 1), where ⊥ is the bottom concept and dK measures the
minimal distance between two formal concepts in the lattice K. Intuitively, this means
that (A1, B1) and (A2, B2) do not subsume each other and that (A3, B3) can be ei-
ther the lower bound or be subsumed by the lower bound (A1, B1) u (A2, B2) (where
(A1, B1) u (A2, B2) denotes the lower bound of (A1, B1) and (A2, B2). Actually,
(A3, B3) represents songs related to both (A1, B1) and (A2, B2): two songs are related
if their semantic cores share some elements, which is the case here, as A3 ⊆ A1 ∩ A2

and B3 ⊆ B1 ∪ B2. For example, in Figure 2, concept 3 is a cousin of 2 because of
concept 8, concept 11 is a cousin of concept 12 because of concept 16 and so on.

For a given attribute concept (Ass, Bss), the querying algorithm traverses the lattice
to extract all cousin concepts (Ai, Bi) of the synset ss, and then it moves down the
concept lattice, repeating the same extraction level by level. It should be noticed that
the original synset query ss is not present in any of the intents of the cousin concepts
Bi, this is why we can speak of “partial matching”. Every cousin concept (Ai, Bi) is
ranked according to the intersection that its extent has with the extent of the original
attribute concept using the following metric:

rank(Ai, Ass) =
|Ai ∩Ass|
|Ai|

(2)

This metric is two-fold since it allows the detection of concepts (Ai, Bi) which are
far from the original concept and share no common objects with the extent of (Ass, Bss)
(Ai ∩ Ass = ∅ and rank = 0) and those that are too abstract and describe too many
objects (|Ai| � |Ass| and rank ∼ 0).

Hereafter, we give details on the steps of the querying algorithm through the use of
an example, graphically illustrated in Figure 2. Let us consider a user query for songs
related to the synset “bolshevik.n.01” (concept 3 on Figure 2).

1. Find the attribute-concept (Ass, Bss) for the synset {ss}: concept 3.
2. Find the sub-hierarchy of (Ass, Bss) in the concept lattice, i.e. all concepts sub-

sumed by (Ass, Bss) and order them by levels: concepts 8, 11, 10, 15, 13, 16, 17
(solid arrows in Figure 2).

3. For each concept in this sub-hierarchy, find the super-concepts which are cousin
concepts of (Ass, Bss) (and then for the descendants of (Ass, Bss)): concept 2 is a
cousin of 3 because of 8, 4 is a cousin of 3 because of 11, 6 is a cousin of 8 because
of 10, etc. The final list is ordered by levels: concepts 2, 4, 5, 6, 9, 7, 12, 14 (dashed
arrows in Figure 2).

4. Calculate the rank value of each cousin concept (according to Eq. 2) and sort these
cousin concepts in descending order: concepts 6, 12, 9, 4, 2, 5, 7, 14.
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5. The result is composed of the songs in the extent of the attribute-concept (Ass, Bss)
and the extents of the cousin concepts.

The final result, in terms of the retrieved cousin concepts, their rankings and the
songs in their extents, is shown in Table 4.

Concept rank Songs
3 (AC) 16,26,39
6 66% 33
12 50% 32
9 50%
4 50%
2 29% 1,10,14,18
5 25% 24
7 17%
14 0%

Table 4: Ranked list of retrieved songs for
query “bolshevik.n.01”
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Fig. 2: Querying the semantic index. Start-
ing from attribute concept 3, bold ar-
rows show subhierarchy, dashed ar-
rows show cousin concepts depicted
next to their ranking value.

It can be noticed that the basic target of the algorithm proposed above is semantic
retrieval. The order in which the algorithm presents the retrieved groups of songs to
the user is a “recommendation decision”, which could depend on user preferences and
imply the use of a threshold to filter the final list of songs. Semantic retrieval does not
necessarily imply the use of a threshold, which is why, for the scope of this paper, we
present all the songs retrieved.

3 An application to song retrieval

As described in the previous section, the lattice is queried using a synset ss (e.g. bolshe-
vik.n.01). This synset is directly related to a set of songs (direct answerss), i.e. those
which are in the extent of the attribute concept (Ass, Bss) of that synset (in the case of
bolshevik.n.01, songs 16, 27 and 39). These songs will be retrieved along with the set of
songs found in the extents of the cousin concepts (indirect answerss) of (Ass, Bss)
(songs 1, 10, 14, 18, 24, 32 and 33).

Regarding the songs in direct answerss , we are interested in examining whether
our approach can find them if we apply it on a modified formal context where their
relations with the synset ss have been eliminated. Of course, in this case, these songs
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cannot be retrieved as directly related songs, but only as songs found in the extents of
cousin concepts. For example, if we eliminate the relation between song 16 and the
synset bolshevik.n.01 we want to know if this song can be retrieved by querying the
new lattice using the synset bolshevik.n.01.

Regarding the set indirect answerss, we are interested in examining how it changes
after the application of our approach on the modified formal context since the elimina-
tion of a (song,synset) relation will affect the structure of the concept lattice and hence
the output of the proposed retrieval algorithm. Small variations in the content of this set
will indicate robustness.

3.1 Leave-one-out cross validation, precision and recall

To evaluate the above and subsequently the definition of cousin concepts presented in
section 2.3 we used and adapted the leave-one-out cross validation (LOOCV) method-
ology, which is a special type of cross validation [14]. Our adaptation consists of in-
tentionally removing a single (song,synset) relation from a formal context (hereafter re-
ferred to as the primary formal context) and constructing its associated concept lattice
(i.e. removing a cross from the primary formal context). The modified formal context
is called a scenario. Therefore, each scenario is identified by a pair synset (ssscn) and
song (sscn), the relation of which was eliminated for the scenario’s construction.

For a given scenario, if song sscn can be retrieved by querying for synset ssscn we
mark the scenario as successful (e.g. querying for bolshevik.n.01 and retrieving song
16 for scenario with ssscn = bolshevik.n.01 and sscn = song 16). The number of
successful scenarios for a synset ss is given by successful scenarios(ss). The total
number of scenarios for a synset ss (given by total scenarios(ss)) is determined by
the number of songs where the synset appears in (i.e. the number of crosses on the
synset column in the primary formal context), since we only eliminate at each time a
single (song,synset) relation from the primary formal context (e.g. for the synset bol-
shevik.n.01 we construct 3 scenarios for songs 16, 27 and 39). We can then define
success rate(ss) as illustrated in equation 3.

success rate(ss) =
successful scenarios(ss)

total scenarios(ss)
(3)

Because the relation between a song and a synset is eliminated in a given scenario,
the song cannot be retrieved by the “exact matching” of the synset ss (the song will not
be contained in direct answerss). Instead, the method proposed using cousin concepts
has to be used and the song should be found through “partial matching”. The test con-
sist on observing if the song can be found in indirect answerss. Hence, the measure
of success rate represents the tendency of how related are those songs found through
“partial matching” with the query and the usefulness of the proposed method.

To evaluate the changes in the set indirect answerss, we compare the full set of
retrieved songs from each scenario with the respective set of songs retrieved from the
primary concept lattice (i.e. the concept lattice constructed from the primary formal
context). We calculate precision defined in Eq. 4 as the proportion of true positives over
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the retrieved list of songs in a scenario. Accordingly, we calculate recall, in Eq. 5, as the
proportion of true positives over the retrieved list of songs in the primary concept lattice,
i.e. the concept lattice without any removal. The expression Ret(scn, ss) denotes the
total set of songs retrieved from scenario scn (direct answerss∪ indirect answerss)
querying for synset ss while primary denotes the primary concept lattice.

precision(scn, ss) =
Ret(scn, ss) ∩Ret(primary, ss)

Ret(scn, ss)
(4)

recall(scn, ss) =
Ret(scn, ss) ∩Ret(primary, ss)

Ret(primary, ss)
(5)

3.2 Results

For each synset we calculate the mean precision and recall from all their scenarios.
From our test set of 357 songs and 1848 synsets we selected 192 synsets and simulated
1027 scenarios (working with approximately 1000 scenarios allows a lower volume of
computation and more different trials). Table 5 shows the values of these measures for
10 synsets. For example, it can be seen that synset anteroom.n.01 has relations with 4
songs. A success rate of 1 means that all simulations were successful. Recall of 0.9 and
Precision of 0.96 mean that for an elimination of 25% of the relations for the synset (1
over 4 songs), still 90% of the information was retrieved and 96% of the information
was correct. There is a positive relation between the number of songs in which the synset
appears and the success rate measure. This is not strange since synsets appearing in a
few songs will be in fewer concepts in the lattice and hence the simulation affects them
in the worst manner. For example, for the synset bar.n.03, the elimination of one relation
with a song leads to the elimination of 50% of its relations (1/2), while for the synset
battle.n.01 the elimination of one relation with a song leads to the elimination of only
5% of its relations (1/20).

Figure 3 shows the distribution of success rate, recall and precision (in the interval
of [0, 1] in axis y) over the number of songs where synsets appear in (in axis x). The
success rate maintains a growing tendency showing that better results are obtained with
synsets which appear in a greater number of songs. In a wider sense, precision and
recall maintain their values over 70% over all the samples. This is especially important
in values of songs per synset below 5 since losing a single connection could disconnect
songs more significantly. In the case of the first point (2.5 songs per synset) losing one
connection means losing 40% of the connections of the attribute concept, however over
70% of the original set of songs is retrieved.

It should be noticed that a certain degree of bias, caused by the inclusion of the
directly related songs in the measures of precision/recall, is to be expected. That is,
given that for each scenario we are eliminating only one (song, synset) relation, the
remaining directly related songs will be present in both sets retrieved when querying
the scenario and the primary concept lattice. Therefore, the precision/recall measures
are meant to be used, in the context of this paper, as a means of examining how the set
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of cousin concepts is affected for each synset, and they should not be considered as a
medium of comparison with other information retrieval approaches.

Finally, even if more experiments have to be completed, we can conclude that the
definition of cousin concepts is valuable and allows the use of a concept lattice as a
semantic index to retrieve objects not directly related to a query.

synset songs success rate recall precision
anteroom.n.01 4 1.0 0.9 0.964
bustle.n.01 3 0.333 0.564 0.611
ambition.n.01 9 0.888 0.888 0.938
child.n.03 13 0.923 0.945 0.982
arrest.n.02 4 0.25 0.75 0.807
battle.n.01 20 0.9 0.956 0.989
champion.n.02 2 0.0 0.083 1.0
better.n.03 3 0.0 0.641 0.694
attack.n.01 2 1.0 0.730 0.791
bar.n.03 2 0.0 0.083 1.0

Table 5: Simulations results.
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Fig. 3: Distribution of measures over songs per synset.

4 Discussion and Conclusion

In this paper we propose an approach for semantic indexing and retrieval of songs based
on Formal Concept Analysis and exploiting the representation of a song’s lyrics as a
collection of relevant WordNet synsets.

A number of limitations may be found to the present work. First the evaluation
focuses, at this stage, mainly on examining the robustness of the cousin concepts. This
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evaluation choice was made on the basis of two reasons: i) the definition of cousin
concepts is the core of the proposed approach and therefore its efficiency is the first
parameter that needs to be evaluated and ii) the literature reports an absence of other
approaches that perform indexing and retrieval based on the semantics of song lyrics,
and which could be used as a comparison benchmark. Given the above, and in view of
the positive results that the current evaluation has yielded, the next stage is to proceed
with a user evaluation study, which will allow us to examine the relativeness of the
retrieved results according to the intended meaning of specific users’ queries.

A second limitation refers to the requirements of the proposed approach in case
it is intended for a large-scale application. Specifically, at this stage a relatively small
dataset of 357 songs was used, however additional experiments would be necessary to
examine how the size of the dataset affects the performance of the approach. Another
necessity refers to defining in more detail the way that a user query can be matched to
a set of synsets, which can then be used to query the lattice-based song index.

Future work includes two directions: i) enriching the semantic song representation
with other information resources such as DBpedia and ii) expanding the proposed ap-
proach to different data collections.

On the first direction, additional information about the meaning of the songs can be
found in external user-contributed sources, such as Wikipedia and its semantic equiv-
alent DBPedia. Therefore, as a first future direction we plan to enrich the constructed
semantic song representations with categorical knowledge, i.e. regarding the broader
“topic” that each song is about, from DBPedia. To take advantage of this categorical
knowledge we plan to extend the proposed FCA-based approach with Relational Con-
cept Analysis [16], in order to create a semantic index where songs are related not only
through their lyrics but also through their categories.

A second potential extension we consider applying the proposed approach to other
types of information content, such as scientific papers or news information, to examine
its generalization capability and to facilitate comparison with other benchmark tech-
niques of semantic search and retrieval.

As a conclusion, in this paper we propose a novel contribution to the field of se-
mantic indexing and retrieval, which is based on Formal Concept Analysis. We use the
concept lattice as a semantic index and propose a novel algorithm to traverse the lat-
tice in order to match user queries with semantically relevant information items. The
approach was tested on a song dataset and the obtained results show good capabilities.
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Vandœuvre-lès-Nancy Cedex, France

napoli@loria.fr

Abstract. Rare itemsets are important sort of patterns that have a wide
range of practical applications, in particular, in analysis of biomedical
data. Although mining rare patterns poses specific algorithmic problems,
it is yet insufficiently studied. In a previous work, we proposed a levelwise
approach for rare itemset mining that traverses the search space bottom-
up and proceeds in two steps: (1) moving across the frequent zone until
the minimal rare itemsets are reached and (2) listing all rare itemsets.
As the efficiency of the frequent zone traversal is crucial for the overall
performance of the rare miner, we are looking for ways to speed it up.
Here, we examine the benefits of depth-first methods for that task as such
methods are known to outperform the levelwise ones in many practical
cases. The new method relies on a set of structural results that helps save
a certain amount of computation and eventually ensures it outperforms
the current levelwise procedure.

1 Introduction

Pattern mining is a basic data mining task whose aim is to uncover the hidden
regularities in a set of data records, called transactions [1]. These regularities
typically manifest themselves as repeating co-occurrences of properties, or items,
in the transactions, i.e., item patterns. As there is a potentially huge number
of patterns, quality measures are applied to filter only promising patterns, i.e.,
patterns of potential interest to the analyst.

Designing a faithful interestingness metric in a domain independent fashion
is not realistic [2]. Indeed, without an access to the semantics of the items or
another source of domain knowledge, it is impossible for the mining tool to assess
the real value behind a pattern. As a simplifying hypothesis, the overwhelming
majority of pattern miners chose to look exclusively on item combinations that
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are sufficiently frequent, i.e., observed in a large enough proportion of the trans-
actions. This roughly translates the intuition that significant regularities should
occur often within a dataset.

Yet such a hypothesis fails to reflect the entire variety of situations in data
mining practice [3]. More precisely, it ignores some of the key factors for the suc-
cess of the mining task, namely, the expectations of the analyst and further to
that, her/his knowledge of the dataset and of the domain it stems from. Indeed,
while an analyst with little or no knowledge of the dataset will most probably
be happy with the most frequent patterns thereof, a better informed one may
find them of little surprise and hence barely useful. More generally speaking,
in some specific situations, frequency may be the exact opposite of pattern in-
terestingness. The reason behind is that in these cases, the most typical item
combinations from the data correspond to widely-known and well-understood
phenomena, hence there is no point in presenting them to the analyst. In con-
trast, less frequently occurring pattern may point to unknown or poorly studied
aspects of the underlying domain [3].

The above schematic description fits to a wide range of mining situations
where biomedical data are involved. For instance, in pharmacovigilance, one
is interested in associating the drugs taken by patients to the adverse effects
the latter may present as a result (safety signals or drug interactions in the
technical language of the field). To do that, a now popular way is to mine the
databases of pharmacovigilance reports, where each individual case is thoroughly
described, for such associations. However, as the data is accumulated throughout
the years, the most frequent associations tend to translate well-known signals and
interactions. The new and potentially interesting associations are less frequent
and hence ”hidden” behind these most often occurring combinations.

The problem of unraveling them is a non-trivial one: In [4], a method based
on frequent pattern mining has been shown to only be able of dealing with a small
proportion of the existing pharmacovigilance datasets. The main difficulty is that
the data cannot be advantageously segmented as the new signals/interactions
may appear in any record. Alternatively, the problem cannot be approached
as outlier detection as a potential manifestation of a new signal need not have
any exceptional characteristics. Moreover, in order for an association to be val-
idated, it must occur in at least a given minimal number of patient records
(typically, five). Yet mining all patterns with only this weak constraint results in
an enormously-sized output whereby the overwhelming majority brings no new
insights.

The conclusion we drew out of that study was that the not-as-frequent, or
rare, patterns need to be addressed by specially designed algorithms rather than
by standard frequent miners fed with lower enough support. Similar observations
have been made in the pattern mining literature more than half a decade ago [3].
Since that time, a variety of methods that target non-frequent datasets have been
published, most of them adapting the classical levelwise mining schema exempli-
fied by the Apriori algorithm [1] to various relaxations of the frequent itemset
and frequent association notions [5,6,7] (see [8] for a recent survey thereof).
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In our own approach, we focus on limiting the computational effort dedi-
cated to the traversal of irrelevant areas of the search space. In fact, as indicated
above, the rare itemsets represent a band of the underlying Boolean lattice of all
itemsets that is located “above” the frequent part thereof and “below” the excep-
tional part (itemsets that occur in a tiny number, possibly none, of transactions).
Thus, in a previous paper [9], we proposed a bottom-up, levelwise approach that
traverses the frequent zone of the search space either exhaustively or in a more
parsimonious manner by listing uniquely frequent generator itemsets. We also
provided a levelwise method for generating all rare itemsets up to the minimal
frequency required by the task (could be one in the worst case).

In this paper we are looking for a more efficient manner for traversing the
frequent part of the Boolean lattice. In fact, the rapidity of pinpointing the
minimal rare itemsets turned out to be a dominant factor for the overall perfor-
mance of the rare pattern miner. It is therefore natural to investigate manners
to speed it up. Further to that idea, and breaking with the dominant levelwise
algorithmic schema, we study a depth-first method. Indeed, depth-first frequent
pattern miners have been shown to outperform breadth-first ones on a number
of datasets. We therefore decided to check the potential benefits of the approach
in the rare pattern case. To that end, we have shown a set of structural results
that allows for a sound substitution within the overall rare pattern mining ar-
chitecture. Our experimental results show that the new method is most of the
time much faster than the previous one.

The main contribution of this paper is a new algorithm called Walky-G for
mining minimal rare itemsets. The algorithm limits the traversal of the frequent
zone to frequent generators only. This traversal is achieved through a depth-first
strategy.

The remainder of the paper is organized as follows. We first recall the basic
concepts of frequent/rare pattern mining and then summarize the key aspects of
our own approach. Next, we present a set of structural results about the search
space and the supporting structure of the depth-first traversal of the pattern
space. Then, the depth-first frequent zone-traversal algorithm is described and
its modus operandi illustrated. A comparative study of its performance to those
of the current breadth-first methods is also provided. Finally, lessons learned
and future work are discussed.

2 Basic Concepts

Consider the following 6 × 5 sample dataset: D = {(1, ABCDE), (2, BCD),
(3, ABC), (4, ABE), (5, AE), (6, DE)}. Throughout the paper, we will refer
to this example as “dataset D”.

Consider a set of objects or transactions O = {o1, o2, . . . , om}, a set of at-
tributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O×A. A set of items
is called an itemset. Each transaction has a unique identifier (tid), and a set of
transactions is called a tidset. The tidset of all transactions sharing a given item-
set X is its image, denoted by t(X). The length of an itemset X is |X|, whereas

Efficient Vertical Mining of Minimal Rare Itemsets 271



an itemset of length i is called an i-itemset. The (absolute) support of an itemset
X, denoted by supp(X), is the size of its image, i.e. supp(X) = |t(X)|.

A lattice can be separated into two segments or zones through a user-provided
“minimum support” threshold, denoted by min supp. Thus, given an itemset X,
if supp(X) ≥ min supp, then it is called frequent, otherwise it is called rare (or
infrequent). In the lattice in Figure 1, the two zones corresponding to a support
threshold of 2 are separated by a solid line. The rare itemset family and the
corresponding lattice zone is the target structure of our study.

Definition 1. X subsumes Z, iff X ⊃ Z and supp(X) = supp(Z) [10].

Definition 2. An itemset Z is a generator if it has no proper subset with the
same support.

Generators are also known as free-sets [11] and have been targeted by dedi-
cated miners [12].

Property 1. Given X ⊆ A, if X is a generator, then ∀Y ⊆ X, Y is a generator,
whereas if X is not a generator, ∀Z ⊇ X, Z is not a generator [13].

Proposition 1. An itemset X is a generator iff supp(X) 6= mini∈X(supp(X \
{i})) [14].

Each of the frequent and rare zones is delimited by two subsets, the maximal
elements and the minimal ones, respectively. The above intuitive ideas are for-
malized in the notion of a border introduced by Mannila and Toivonen in [15].
According to their definition, the maximal frequent itemsets constitute the pos-
itive border of the frequent zone1 whereas the minimal rare itemsets form the
negative border of the same zone.

Definition 3. An itemset is a maximal frequent itemset (MFI) if it is frequent
but all its proper supersets are rare.

Definition 4. An itemset is a minimal rare itemset (mRI) if it is rare but all
its proper subsets are frequent.

The levelwise search yields as a by-product all mRIs [15]. Hence we prefer
a different optimization strategy that still yields mRIs while traversing only
a subset of the frequent zone of the Boolean lattice. It exploits the minimal
generator status of the mRIs. By Property 1, frequent generators (FGs) can
be traversed in a levelwise manner while yielding their negative border as a
by-product. It is enough to observe that mRIs are in fact generators:

Proposition 2. All minimal rare itemsets are generators [9].

1 The frequent zone contains the set of frequent itemsets.

272 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli and Robert Godin



Fig. 1. The powerset lattice of dataset D.

Finding Minimal Rare Itemsets in a Levelwise Manner

As pointed out by Mannila and Toivonen [15], the easiest way to reach the
negative border of the frequent itemset zone, i.e., the mRIs, is to use a levelwise
algorithm such as Apriori. Indeed, albeit a frequent itemset miner, Apriori yields
the mRIs as a by-product.

Apriori-Rare [9] is a slightly modified version of Apriori that retains the
mRIs. Thus, whenever an i-long candidate survives the frequent i − 1 subset
test, but proves to be rare, it is kept as an mRI.

MRG-Exp [9] produces the same output as Apriori-Rare but in a more effi-
cient way. Following Proposition 2, MRG-Exp avoids exploring all frequent item-
sets: instead, it looks after frequent generators only. In this case mRIs, which are
rare generators as well, can be filtered among the negative border of the frequent
generators. The output of MRG-Exp is identical to the output of Apriori-Rare,
i.e. both algorithms find the set of mRIs.

3 Finding Minimal Rare Itemsets in a Depth-First
Manner

Eclat [16] was the first FI-miner to combine the vertical encoding with a depth-
first traversal of a tree structure, called IT-tree, whose nodes are X× t(X) pairs.
Eclat traverses the IT-tree in a depth-first manner in a pre-order way, from
left-to-right [16,17] (see Figure 2).
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Fig. 2. Left: pre-order traversal with Eclat ; Right: reverse pre-order traversal with
Eclat. The direction of traversal is indicated in circles

3.1 Talky-G

Talky-G [18] is a vertical FG-miner following a depth-first traversal of the IT-
tree and a right-to-left order on sibling nodes. Talky-G applies an inclusion-
compatible traversal: it goes down the IT-tree while listing sibling nodes from
right-to-left and not the other way round as in Eclat.

The authors of [19] explored that order for mining calling it reverse pre-order.
They observed that for any itemset X its subsets appear in the IT-tree in nodes
that lay either higher on the same branch as (X, t(X)) or on branches to the
right of it. Hence, depth-first processing of the branches from right-to-left would
perfectly match set inclusion, i.e., all subsets of X are met before X itself. While
the algorithm in [19] extracts the so-called non-derivable itemsets, Talky-G uses
this traversal to find the set of frequent generators. See Figure 2 for a comparison
of Eclat and its “reversed” version.

3.2 Walky-G

In this subsection we present the algorithm Walky-G, which is the main contri-
bution of this paper. Since Walky-G is an extension of Talky-G, we also present
the latter algorithm at the same time. Walky-G, in addition to Talky-G, retains
rare itemsets and checks them for minimality.

Hash structure. In Walky-G a hash structure is used for storing the already
found frequent generators. This hash, called fgMap, is a simple dictionary with
key/value pairs, where the key is an itemset (a frequent generator) and the value
is the itemset’s support.2 The usefulness of this hash is twofold. First, it allows a
quick look-up of the proper subsets of an itemset with the same support, thus the
generator status of a frequent itemset can be tested easily (see Proposition 1).
Second, this hash is also used to look-up the proper subsets of a minimal rare
candidate. This way rare but non-minimal itemsets can be detected efficiently.

Pseudo code. Algorithm 1 provides the main block of Walky-G. First, the

2 In our implementation we used the java.util.HashMap class for fgMap.
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Algorithm 1 (main block of Walky-G):

1) // for quick look-up of (1) proper subsets with the same support
2) // and (2) one-size smaller subsets:
3) fgMap← ∅ // key: itemset (frequent generator); value: support
4)
5) root.itemset← ∅ // root is an IT-node whose itemset is empty
6) // the empty set is included in every transaction:
7) root.tidset← {all transaction IDs}
8) fgMap.put(∅, |O|) // the empty set is an FG with support 100%
9) loop over the vertical representation of the dataset (attr) {

10) if (min supp ≤ attr.supp < |O|) {
11) // |O| is the total number of objects in the dataset
12) root.addChild(attr) // attr is frequent and generator
13) }
14) if (0 < attr.supp < min supp) {
15) saveMri(attr) // attr is a minimal rare itemset
16) }
17) }
18) loop over the children of root from right-to-left (child) {
19) saveFg(child) // the direct children of root are FGs
20) extend(child) // discover the subtree below child
21) }

IT-tree is initialized, which involves the creation of the root node, representing
the empty set (of 100% support, by construction). Walky-G then transforms
the layout of the dataset in vertical format, and inserts below the root node all
1-long frequent itemsets. Such a set is an FG whenever its support is less than
100%. Rare attributes (whose support is less than min supp) are minimal rare
itemsets since all their subsets (in this case, the empty set) are frequent. Rare
attributes with support 0 are not considered.

The saveMri procedure processes the given minimal rare itemset by storing
it in a database, by printing it to the standard output, etc. At this point, the
dataset is no more needed since larger itemsets can be obtained as unions of
smaller ones while for the images intersection must be used.

The addChild procedure inserts an IT-node under a node. The saveFg pro-
cedure stores a given FG with its support value in the hash structure fgMap.

In the core processing, the extend procedure (see Algorithm 2) is called
recursively for each child of the root in a right-to-left order. At the end, the IT-
tree contains all FGs. Rare itemsets are verified during the construction of the
IT-tree and minimal rare itemsets are retained. The extend procedure discovers
all FGs in the subtree of a node. First, new FGs are tentatively generated from
the right siblings of the current node. Then, certified FGs are added below the
current node and later on extended recursively in a right-to-left order.

The getNextGenerator function (see Algorithm 3) takes two nodes and re-
turns a new FG, or “null” if no FG can be produced from the input nodes. In
addition, this method tests rare itemsets and retains the minimal ones. First,
a candidate node is created by taking the union of both itemsets and the in-
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Algorithm 2 (“extend” procedure):

Method: extend an IT-node recursively (discover FGs in its subtree)
Input: an IT-node (curr)

1) loop over the right siblings of curr from left-to-right (other) {
2) generator ← getNextGenerator(curr, other)
3) if (generator 6= null) then curr.addChild(generator)
4) }
5) loop over the children of curr from right-to-left (child) {
6) saveFg(child) // child is a frequent generator

7) extend(child) // discover the subtree below child

8) }

tersection of their respective images. The input nodes are thus the candidate’s
parents. Then, the candidate undergoes a frequency test (test 1). If the test fails
then the candidate is rare. In this case, the minimality of the rare itemset cand
is tested. If all its one-size smaller subsets are present in fgMap then cand is
a minimal rare generator since all its subsets are FGs (see Property 1). From
Proposition 2 it follows that an mRG is an mRI too, thus cand is processed
by the saveMri procedure. If the frequency test was successful, the candidate
is compared to its parents (test 2): if its tidset is equivalent to a parent tidset,
then the candidate cannot be a generator. Even with both outcomes positive, an
itemset may still not be a generator as a subsumed subset may lay elsewhere in
the IT-tree. Due to the traversal strategy in Walky-G, all generator subsets of
the current candidate are already detected and the algorithm has stored them
in fgMap (see the saveFg procedure). Thus, the ultimate test (test 3) checks
whether the candidate has a proper subset with the same support in fgMap. A
positive outcome disqualifies the candidate.

This last test (test 3) is done in Algorithm 4. First, one-size smaller subsets
of cand are collected in a list. The two parents of cand can be excluded since
cand was already compared to them in test 2 in Algorithm 3. If the support
value of one of these subsets is equal to the support of cand, then cand cannot
be a generator. Note that when the one-size smaller subsets are looked up in
fgMap, it can be possible that a subset is missing from the hash. It means that
the missing subset was tested before and turned out to subsume an FG, thus the
subset was not added to fgMap. In this case cand has a non-FG subset, thus
cand cannot be a generator either (by Property 1).

Candidates surviving the final test in Algorithm 3 are declared FG and added
to the IT-tree. An unsuccessful candidate X is discarded which ultimately pre-
vents any itemset Y having X as a prefix to be generated as candidate and hence
substantially reduces the overall search space. When the algorithm stops, all fre-
quent generators (and only frequent generators) are inserted in the IT-tree and
in the fgMap structure. Furthermore, upon the termination of the algorithm,
all minimal rare itemsets have been found. For a running example, see Figure 3.
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Algorithm 3 (“getNextGenerator” function):

Method: create a new frequent generator and filter minimal rare itemsets
Input: two IT-nodes (curr and other)
Output: a frequent generator or null

1) cand.itemset← curr.itemset ∪ other.itemset
2) cand.tidset← curr.tidset ∩ other.tidset
3) if (cardinality(cand.tidset) < min supp) // test 1: frequent?

4) { // now cand is an mRI candidate; let us test its minimality:

5) if (all one-size smaller subsets of cand are in fgMap) {
6) saveMri(cand) // cand is an mRI, save it

7) }
8) return null // not frequent

9) }
10) // else, if it is frequent; test 2:

11) if ((cand.tidset = curr.tidset) or (cand.tidset = other.tidset)) {
12) return null // not a generator

13) }
14) // else, if it is a potential frequent generator; test 3:

15) if (candSubsumesAnFg(cand)) {
16) return null // not a generator

17) }
18) // if cand passed all the tests then cand is a frequent generator

19) return cand

Fig. 3. The IT-tree built during the execution of Walky-G on dataset D with
min supp = 2 (33%). Notice the two special cases: ACE is not an mRI because of
CE; ABE is not an FG because of BE.

4 Experimental Results

In our experiments, we compared Walky-G against Apriori-Rare [9] and MRG-
Exp [9]. The algorithms were implemented in Java in the Coron platform [20].3

The experiments were carried out on a bi-processor Intel Quad Core Xeon 2.33
GHz machine running under Ubuntu GNU/Linux with 4 GB of RAM. All times
reported are real, wall clock times as obtained from the Unix time command

3 http://coron.loria.fr
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Algorithm 4 (“candSubsumesAnFg” function):

Method: verify if cand subsumes an already found FG
Input: an IT-node (cand)

1) subsets← {one-size smaller subsets of cand minus the two parents}
2) loop over the elements of subsets (ss) {
3) if (ss is stored in fgMap) {
4) stored support← fgMap.get(ss) // get the support of ss

5) if (stored support = cand.support) {
6) return true // case 1: cand subsumes an FG

7) }
8) }
9) else // if ss is not present in fgMap

10) { // case 2: cand has a non-FG subset ⇒ cand is not an FG either

11) return true
12) }
13) }
14) return false // if we get here then cand is an FG

between input and output. For the experiments we have used the following
datasets: T20I6D100K, C20D10K, C73D10K, and Mushrooms. The T204 is
a sparse dataset, constructed according to the properties of market basket data
that are typical weakly correlated data. The C20 and C73 are census datasets
from the PUMS sample file, while the Mushrooms5 describes mushrooms char-
acteristics. The last three are highly correlated datasets.

The execution times of the three algorithms are illustrated in Table 1. The
table also shows the number of frequent itemsets, the number of frequent gen-
erators, the proportion of the number of FGs to the number of FIs, and the
number of minimal rare itemsets. The last column shows the number of mRIs
whose support values exceed 0.

The T20 synthetic dataset mimics market basket data that are typical sparse,
weakly correlated data. In this dataset, the number of FIs is small and nearly
all FIs are generators. Thus, MRG-Exp works exactly like Apriori-Rare, i.e. it
has to explore almost the same search space. Though Walky-G needs to explore
a search space similar to Apriori-Rare’s, it can perform much better due to its
depth-first traversal.

In datasets C20, C73, and Mushrooms, the number of FGs is much less than
the total number of FIs. Hence, MRG-Exp and Walky-G can take advantage of
exploring a much smaller search space than Apriori-Rare. Thus, MRG-Exp and
Walky-G perform much better on dense, highly correlated data. For example,
on Mushrooms at min supp = 10%, Apriori-Rare needs to extract 600,817
FIs, while MRG-Exp and Walky-G extract 7,585 FGs only. This means that
MRG-Exp and Walky-G reduce the search space of Apriori-Rare to 1.26%! The

4 http://www.almaden.ibm.com/software/quest/Resources/
5 http://kdd.ics.uci.edu/
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Table 1. Response times of Apriori-Rare, MRG-Exp, and Walky-G.

min supp execution time (sec.) # FIs # FGs #FGs
#FIs

# mRIs

Apriori-Rare MRG-Exp Walky-G (support > 0)

T20I6D100K

10% 3.25 3.24 1.61 7 7 100.00% 907
0.75% 30.22 30.92 11.80 4,710 4,710 100.00% 211,561
0.5% 49.30 48.82 15.89 26,836 26,305 98.02% 268,589
0.25% 115.35 117.11 33.47 155,163 149,447 96.32% 534,088

C20D10K

30% 21.92 5.49 0.57 5,319 967 18.18% 226
20% 56.43 9.70 0.62 20,239 2,671 13.20% 376
10% 157.09 18.27 0.77 89,883 9,331 10.38% 837
5% 366.34 28.35 0.93 352,611 23,051 6.54% 1,867
2% 878.93 40.77 1.47 1,741,883 57,659 3.31% 7,065

C73D10K

95% 35.97 6.97 0.84 1,007 121 12.02% 1,622
90% 453.93 48.65 0.90 13,463 1,368 10.16% 1,701
85% 1,668.19 117.62 0.95 46,575 3,513 7.54% 1,652

Mushrooms

40% 3.24 1.77 0.50 505 153 30.30% 251
30% 9.39 3.09 0.51 2,587 544 21.03% 402
15% 160.88 8.32 0.66 99,079 3,084 3.11% 1,741
10% 676.53 13.22 0.76 600,817 7,585 1.26% 2,916

advantages of the depth-first approach of Walky-G is more spectacular on dense
datasets: the execution times, with the exception of one case in Table 1, are
always below 1 second.

5 Conclusion and Future Work

We presented an approach for rare itemset mining from a dataset that splits
the problem into two tasks. Our new algorithm, Walky-G, limits the traversal of
the frequent zone to frequent generators only. This traversal is achieved through
a depth-first strategy. Experimental results prove the interest of our method
not only on dense, highly correlated datasets, but on sparse ones too. Our ap-
proach breaks with the dominant levelwise algorithmic schema and shows that
it outperforms its current levelwise competitors.
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Abstract. Formal concept analysis is used as the basis for two new
multiple keyword string pattern matching algorithms. The algorithms ad-
dressed are built upon a so-called position encoded pattern lattice (PEPL).
The algorithms presented are in conceptual form only; no experimental
results are given. The first algorithm to be presented is easily understood
and relies directly on the PEPL for matching. Its worst case complexity
depends on both the length of the longest keyword, and the length of
the search text. Subsequently a finite-automaton-like structure, called a
PEPL automaton, is defined which is derived from the PEPL, and which
forms the basis for a second more efficient algorithm. In this case, worst
case behaviour depends only on the length of the input stream. The
second algorithm’s worst case performance is the same as the match-
ing phase of the well-known (advanced) Aho-Corasick multiple-keyword
pattern matching algorithm—widely regarded as the multiple keyword
pattern matching algorithm of choice in contexts such as network in-
trusion detection. The first algorithm’s performance is comparable to
that of the matching phase of the lesser-known failure-function version
of Aho-Corasick.

1 Overview

The (multiple) keyword pattern matching problem (in which the patterns are
finite strings, or ‘keywords’) consists of finding all occurrences (including over-
lapping ones) of the keywords within an input string. Typically, the input string
is much larger than the set of keywords and the set of keywords are fixed, mean-
ing they can be preprocessed to produce data-structures for later use while pro-
cessing the input string. We also make these assumptions in this paper, as this
problem variant corresponds to many real-life applications in security, computa-
tional biology, etc [8]. Several decades of keyword pattern matching research have
yielded many well-known algorithms, such as Knuth-Morris-Pratt, Boyer-Moore,
Aho-Corasick, and Commentz-Walter. Overview articles are typically more ac-
cessible than the original literature—see [3, 4, 7] for comprehensive overviews and
[10, 2] for taxonomies and correctness proofs of such algorithms.

In this text, the idea of “position encoding” of a set of patterns is introduced.
This strategy serves as an alternative to traditional algorithms used to match

c© 2012 by the paper authors. CLA 2012, pp. 281–292. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



a set of patterns. These algorithms typically rely on common pattern prefixes,
suffixes and/or factors in general. The Aho-Corasick [1] algorithm (AC) is prob-
ably the best known and most widely used of these algorithms. Its best- and
worst-case performance are both being linear in the size of the input stream and
independent of the number of patterns to be matched.

Formal concept analysis (FCA) is used to leverage the potential benefits of po-
sition encoding. A formal context in which O is the set of objects, A is the
set of attributes, and I is an incidence relation between the objects and the
attributes will be denoted by K = 〈O, A, I〉. The concept lattice, B, derived
from the context 〈O, A, I〉 will be denoted by B(〈O, A, I〉). The extent, intent
and set of own objects of a concept c in a concept lattice will be denoted by
extent(c), intent(c), and ownobj(c) respectively. The infimum of a set of con-
cepts C will be denoted by inf(C). Finally, ⊤(b) denotes the attribute top of
attribute b—i.e. ⊤(b) is the largest concept whose intent contains b.

In Section 2, it is shown how FCA can be used to construct a concept lattice from
a position encoded set of patterns. Such a lattice is called a position encoded pat-
tern lattice (PEPL). A first algorithm, called PMatch, is developed in Section 3,
which takes such a PEPL together with text stream to be searched as input and
produces the desired match occurrences as output, albeit in a rather inefficient
way. As an alternative, a so-called PEPL automaton is defined in Section 4,
based on the information in a PEPL. A second algorithm given in Section 5 uses
this automaton and the text stream to be searched as input and also produces
the desired match occurrences as output. However, in this instance the theoreti-
cal performance of the algorithm corresponds to that of Aho-Corasick. In a final
section, we reflect on the implications of these results.

2 Position Encoded Pattern Lattices (PEPLs)

The length of string p will be denoted by |p| and its (i + 1)st element by pi for
i ∈ [0, |p|). A match occurrence of a single pattern p in target s is a pair 〈p, t〉,
such that ∀ k ∈ [0, |p|), pk = st+k. The problem of matching a set of patterns P
on target s can be defined as the requirement to construct the set of all match
occurrences, denoted by MO in our algorithms.

Definition 1 (Position encoding of a set of patterns). The position en-

coding of string w is the set of position-symbol pairs denoted by
→•
w and is given

by
→•
w = (

⋃
k : k ∈ [1, |w|] : {〈k, wk−1〉}).

The position encoding of a set of strings P is denoted
→•
P and is given by

→•
P =

(
⋃

w : w ∈ P :
→•
w )

For example, the position encoding of “pack” is
→•

pack = {〈1, p〉, 〈2, a〉, 〈3, c〉, 〈4, k〉},

and of “packet” it is
→•

packet = {〈1, p〉, 〈2, a〉, 〈3, c〉, 〈4, k〉, 〈5, e〉, 〈6, t〉}. In this
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case, the position encoding of the set of patterns P = {pack, packet} and of

“packet” happens to be the same, i.e.
→•
P =

→•
packet.

Given any set of patterns, we can now constitute a formal context K# along
the following lines. Regard the words in the set of patterns as a set of objects.
Let the position-symbol pairs of the position encoding of the set of patterns
serve as attributes of these objects: a given word has as its attributes all the
position-symbol pairs that make up its position-encoding.

As an example, consider the set of patterns P = {abc, aabc, abcc}. Table 1 shows
the cross table that represents the position encoded formal context derived from

P . This context can be denoted by 〈P,
→•
P , I

→•
P 〉, where I

→•
P is the incidence re-

lation between objects and attributes depicted in the cross table. The formal
concept lattice to be derived from such a context will be called a Position En-

coded Pattern Lattice (PEPL), denoted by
→•
P (〈P,

→•
P , I

→•
P 〉) or, more concisely,

by
→•
P . The cover graph of the underlying PEPL is shown in Figure 2.

〈P,
→•
P , I

→•
P 〉 〈1, a〉 〈2, a〉 〈2, b〉 〈3, b〉 〈3, c〉 〈4, c〉

abc × × ×
aabc × × ×
abcc × × × ×

Fig. 1: Position encoded context for P =
{abc, aabc, abcc}.

〈1, a〉

〈2, b〉〈3, c〉

〈2, a〉〈3, b〉

〈4, c〉

abc

aabc abcc

1

2 3

4 5

6

Fig. 2: Cover graph of PEPL for
P = {abc, aabc, abcc}.

If a search of text s is currently at position s[t], and it is found that s[t+n] = a,
then attribute 〈n, a〉 is said to positively check against s at t.

It is evident that the intent of a PEPL concept has the following property: If all
the attributes in the intent have been positively checked against a search text s
at position t, then the (one or more) words that are own objects of the concept
match the text, starting at position t. This is clearly the case for concepts 3, 4
and 5 with own objects “abc”, “aabc” and “abcc” respectively.

3 PEPL-based Matching Using PMatch

Algorithm 1 described below is based on the insights of the previous section. Its

top level procedure is called PMatch, which takes as input a PEPL
→•
P (〈P,

→•
P , I

→•
P 〉)

(or simply
→•
P ) and a text, s. It then finds in s all match occurrences of words
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in P , recording them in MO. The algorithm is articulated in Dijkstra’s guarded
command language (GCL), widely used for its conciseness and precision [5]. The
definition of PMatch assumes constant minlength(P) as the length of the short-

est keyword in P . To avoid notational clutter,
→•
P , s and MO are assumed to be

globally accessible to all procedures. A special symbol, nil, is used to designate
a non-existent concept, specifically the parent of the top concept.

PMatch calls matchIntent for each character in s where a match could possibly
start (i.e. the tail is ignored). The condition in the associated for-loop is intended
to signify that these probes are from left to right. In each call the intent of the
top of the lattice and its non-existent parent, nil, are used as parameters.

matchIntent takes a string position t, and two concepts, c and p, as parameters.
It is assumed that c is a child of p and the set difference, ∆, between their intents
is computed. The special case of ⊤, which has no parent, is catered for. A loop
checks whether all the attributes in ∆ indicate positional matches in the text
s as offset by the current search position, t—i.e. the loop removes from ∆ all
attributes of the form 〈i, α〉 such that s[t+ i] = α. If this reduces ∆ to the empty
set, then a match occurrence is considered to have been found for each own
object at c. Moreover, match(c, t) can be called to investigate whether further
match occurrences at t can be inferred by considering c’s children. match(p, t), in
turn, simply sweeps through the children of p, recursively invoking matchIntent
in each case.

Algorithm 1 PEPL Based Matching

proc PMatch(
→•
P , s)

MO, j := ∅,minlength(P );
{ Traverse target string s from left to right }
for (t ∈ [0, |s| − j + 1)) →

matchIntent(t, ⊤, nil)
rof

corp{ post : MO is the set of match occurrences of P in s }
proc matchIntent(t, c, p)

if (p = nil) → ∆ := intent(c)
[] (p 6= nil) → ∆ := intent(c) \ intent(p)
f i;
do (∃〈i, α〉 : 〈i, α〉 ∈ ∆ : (s[t + i − 1] = α)) →

∆ := ∆ \ {〈i, α〉}
od;
if (∆ = ∅) → MO := MO ∪ ownobj(c) × {t};

for all c′ ∈ children(c) → matchIntent(t, c′, c) rof
[] (∆ 6= ∅) → skip
fi

corp
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To illustrate how Algorithm 1 works, consider the keywords to match P =

{abc, aabc, abcc} and the target s = aaabcdabccd. The formal context 〈P,
→•
P , I

→•
P 〉

is given in Fig. 1 and the cover graph for the corresponding PEPL,
→•
P , is in Fig. 2.

For convenience, the intents and own object sets of each concept are made explicit
in Table 1. Table 2 provides a trace summary of calls to matchIntent. The first

Id of c intent(c) ownobj(c)
1 = ⊤ {〈1, a〉}
2 {〈1, a〉, 〈4, c〉}
3 {〈1, a〉, 〈3, c〉, 〈2, b〉} abc
4 {〈1, a〉, 〈4, c〉, 〈3, b〉, 〈2, a〉} aabc
5 {〈1, a〉, 〈4, c〉, 〈3, c〉, 〈2, b〉} abcc
6 = ⊥ {〈1, a〉, 〈4, c〉, 〈3, b〉, 〈3, c〉, 〈2, b〉, 〈2, a〉}

Table 1: Details of concepts of the PEPL in Fig. 2

column shows t, the offset into s from which matching positions are calculated.
The second and third columns show the lattice concept visited and its concept
participating in the call to matchIntent. The fourth column marked ∆ gives the
set difference between the intent of the child and parent concept. A column per
symbol in the string aaabcdabccd then follows. The last column gives the own
object set to be to be used to update MO when a match has been found. Note
that since minlength(P ) = 3 and |s| = 11, the trace ranges over t ∈ [0, 9). Each

t c p ∆ a a a b c d a b c c d ownobj(c)
0 1 nil {〈1,a〉} T ∅
0 2 1 {〈4,c〉} F
0 3 1 {〈2,b〉, 〈3,c〉} F
1 1 nil {〈1,a〉} T ∅
1 2 1 {〈4,c〉} T ∅
1 4 2 {〈2,a〉, 〈3,b〉} T T {aabc}
1 3 1 {〈2,b〉, 〈3,c〉} F
2 1 nil {〈1,a〉} T
2 2 1 {〈4,c〉} F
2 3 1 {〈2,b〉, 〈3,c〉} T T {abc}
2 5 3 {〈4,c〉} F
3 1 nil {〈1,a〉} F
4 1 nil {〈1,a〉} F
5 1 nil {〈1,a〉} F
6 1 nil {〈1,a〉} T ∅
6 2 1 {〈4,c〉} T ∅
6 4 2 {〈2,a〉, 〈3,b〉} F
6 5 2 {〈2,b〉, 〈3,c〉} T T {abcc}
6 3 1 {〈2,b〉, 〈3,c〉} T T {abc}
7 1 nil {〈1,a〉} F
8 1 nil {〈1,a〉} F

Table 2: Algorithm 1 trace: matching {abc, aabc, abcc} in aaabcdabccd

row is a matching step of the algorithm—i.e. every row represents a call of the
function matchIntent . As an example, the first row indicates that the matching
position t = 0 and the attribute set to match is ∆ = {〈1,a〉}. The first (and only)
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element of the set is 〈i,α〉 = 〈1,a〉. This means that position t + i = 1 is checked
for the symbol α = a, which is indeed the case as indicated by the “T” (for the
boolean value true) shown in the first column for the target string. All “T” entries
in the table indicate that attributes in ∆ have been successfully matched in the
do-loop of matchIntent. Once ∆ has been reduced to ∅, MO has to be updated.
Of course, if the concept has no own object—as is the case for the top concept
marked 1—then nothing is added to MO (i.e. ownobj(c)×{t} = ∅). Subsequent
calls to match without updating t, recursively deal with children concepts of the
one currently under test. The second row of the table therefore logs the results
the call to matchIntent made via match in respect of concept 2, the leftmost
child of concept 1. In this case, the intent difference set is ∆ = {〈4,c〉}, and since
∄〈i, α〉 : {〈4,c〉} : (s[t + i − 1] = α), (or, more explicitly, s[0 + 4 − 1] = b and not
c) matchIntent cannot reduce ∆ to ∅. This is indicated by “F” (for false) as an
entry in the relevant column of the table. Control now returns to match, where
the next child of concept 1, namely concept 3, is considered. Further rows of
the table illustrate the execution steps of Algorithm 1 for the rest of the target
string.

PMatch eliminates sets of words from P that do not match in s without ever
backing up in s, i.e. t is monotonically increasing. In this sense PMatch is an
online algorithm, similar to the AC algorithm. However, PMatch sometimes
revisits symbols in s. Such revisits are reflected by the multiple entries in various
columns representing symbols in aaabcdabccd in Table 2.

The execution complexity of the matching process per position checked in s is
bounded by the size of the PEPL. Table 2 shows how all concepts are visited when
t = 6. An (rather conservative) upper bound of the complexity of Algorithm 1 is

therefore (|
→•
P |×|s|). The advanced AC algorithm is of course more efficient than

this. Not only does it check every symbol in s exactly once; it also avoids the
application of the expensive set difference operator that is applied in matchIntent
of Algorithm 1. Instead, the advanced AC simply makes an automaton transition
and considers whether an accepting state has been entered. In the upcoming
sections, we refine our algorithm to arrive at a PEPL-based algorithm with
similar performance characteristics to advanced AC.

4 PEPL Automata

For PEPL based matching to achieve the same order-of-magnitude performance
as the advanced AC algorithm, this section defines a structure called a PEPL
Automaton.

Firstly, the position encoded formal context for the set of keywords P is aug-
mented. This augmented context has additional entries to reflect information
about each keyword p ∈ P whose first symbol matches the symbol at the mth

index of some other keyword, where m > 0.

286 Fritz J. Venter, Bruce W. Watson and Derrick G. Kourie



Definition 2 (Augmentation operator). For two strings p and y we define
the operator denoted # as

p#y =

{
{(p)y} if y 6= ε ∧ p 6= ε

∅ otherwise

Definition 3 (Augmentation of a string). We define the augmentation of
string y with respect to string x as

〈x, y〉# = (
⋃

p, s, r, t : ((x = p · s ∧ y = s · r ∧ s 6= ε) ∨ (x = p · y · t)) : p#y )

Thus, for each proper suffix3 s of x that is also prefix of y, we compute the
singleton set p#y (but possibly the empty set) and add all such singleton sets
into one big set. Note that there may be several such sets. For example, if x = aa
and y = aaaa then the following decompositions of x are relevant :
x = ε · aa; x = a · a; so that

〈x, y〉# = ε#aaaa ∪ a#aaaa

= ∅ ∪ {(a)aaaa}}
= {(a)aaaa}

Definition 4 (String-augmentation of a language). We define the string-
augmentation of language V with respect to string w as follows.

〈V, w〉# = (
⋃

v : v ∈ V : 〈v, w〉#)

Then

〈{x, y}, y〉# = {(a)aaaa, (aa)aaaa, (aaa)aaaa}
〈{x, y}, x〉# = {(a)aa, (aa)aa, (aaa)aa}

〈{x}, y〉# = {(a)aaaa}
〈{y}, x〉# = {(a)aa, (aa)aa, (aaa)aa}

Definition 5. For a set of patterns P we define the augmented patterns as

P# = P ∪ (
⋃

p : p ∈ P : 〈P \ {p}, p〉#)

Thus,

{x, y}# = {x, y} ∪ 〈{x}, y〉# ∪ 〈{y}, x〉#

= {aa, aaaa} ∪ {(a)aaaa}{(a)aa, (aa)aa, (aaa)aa}
= {aa, aaaa, (a)aaaa, (a)aa, (aa)aa, (aaa)aa}

3 By proper suffix, we mean that the empty string is not taken as a suffix.
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K# 〈1, a〉 〈2, a〉 〈2, b〉 〈3, c〉 〈4, c〉 〈3, b〉 〈5, c〉
abc × × ×
aabc × × × ×
abcc × × × ×
(a)abc × × × ×
(a)abcc × × × × ×

Table 3: Context derived by augmenting P = {abc, aabc, abcc}

Given set of patterns P , we can constitute a formal context denoted K# for a
PEPL using objects from the augmented set of patterns P# and attributes from
→•
P#.

Example 1. As an example, consider again the set of patterns P = {abc, aabc, abcc}
augmented with the set of patterns P# derived as follows:

P# = P ∪ 〈{aabc, abcc}, abc〉# ∪ 〈{abc, abcc}, aabc〉# ∪ 〈{abc, aabc}, abcc〉#
= P ∪ {(a)abc} ∪ ∅ ∪ {(a)abcc}
= P ∪ {(a)abc, (a)abcc}
= {abc, aabc, abcc, (a)abc, (a)abcc}

Table 3 depicts the context derived from the set of objects P# and their corre-
sponding position encoding as attributes.

Algorithm 2 discussed in Section 5 uses
•→
P to match a set of keywords P against

a target string. The algorithm relies on a second pre-processing step after
•→
P

has been generated from its context. This step traverses
•→
P to create a special

automaton, called a “Position Encoded Pattern Lattice Automaton” or simply
a PEPL Automaton. It is defined as follows.

Definition 6 (PEPL Automaton). Given
•→
P , the PEPL that has been de-

rived from set of patterns P#, the associated PEPL automaton is a five-tuple

〈Q
•→
P , V

•→
P , δ

•→
P , q0

•→
P , F

•→
P 〉 such that:

– Q
•→
P ⊆ {0} ∪ (

⋃
q, c : q = id(c) ∧ c ∈

•→
P : {q}) is regarded as the automa-

ton’s set of states, where id(c) simply gives a unique numerical identifier for
concept c.

– V
•→
P =

•→
P is regarded as the automaton’s alphabet, indicating position-symbol

pairs.

– δ
•→
P : Q

•→
P × V

•→
P 9 Q

•→
P × |P#

Max| is the automaton’s transition func-
tion. The mapping is generally determined by the recursive relationship:
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1
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4

5

6

7

abcaabc abcc(a)abc (a)abcc

〈1, a〉〈2, a〉 〈2, b〉〈3, c〉〈4, c〉〈3, b〉〈5, c〉

(a) Cover Graph for the PEPL for the con-
text of P#

1

2

3

4

5

6

7

〈1, a〉/2

〈2, a〉/3

〈3, b〉/4

〈5, c〉/6

〈4, c〉/5

〈2, b〉/3

〈3, c〉/4

〈4, c〉/5
〈3, a〉/3

〈3, a〉/2

〈3, b〉/1

abcaabc abcc(a)abc (a)abcc

〈1, a〉〈2, a〉 〈2, b〉〈3, c〉〈4, c〉〈3, b〉〈5, c〉

(b) PEPL Automaton superimposed on the
Cover Graph

Fig. 3: PEPL derived from P#

δ
•→
P (id(c), 〈i, α〉) = id(c′)/i′ where variables c′ and i′ are defined as follows:

〈c′, i′〉 =





〈c, i〉 if A(c, i, α) ∧ B(c, i, α)

〈⊤(〈1, α〉), 2〉 if A(c, i, α) ∧ ¬B(c, i, α) ∧ ⊤(〈1, α〉) 6= ⊥
〈⊤, 1〉 if A(c, i, α) ∧ ¬B(c, i, α) ∧ ⊤(〈1, α〉) = ⊥
〈inf({c, ⊤(〈i, α〉)}), i + 1〉 otherwise

where A(c, i, α) ≡ inf({c, ⊤(〈i, α〉)}) = ⊥ and B(c, i, α) ≡ 〈i − 1, α〉 ∈
intent(c)

The the first level recursion starts off with c = ⊤. The notation q/x means
that when a transition to state q is made, the automaton produces the addi-
tional value x.

– q0

•→
P = ⊤ is the automaton’s start state, which is also the top concept of the

PEPL.

– F
•→
P = (

⋃
q, c : q = id(c) ∧ c ∈ Q

•→
P ∧ |ownobj(c)| > 0 : {q}) is the

automaton’s set of final states.

The above definition embeds sufficient information to derive algorithmically a
DFA whose transition diagram can be superimposed on the cover graph of the
PEPL.
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It is assumed below that an function, getFA, is available which delivers a PEPL

automaton M
•→
P when provided with a PEPL. As an example, getFA(

•→
P ) will

return M
•→
P , the PEPL-Automaton (partially) shown in Fig. 3b, superimposed

over the cover graph for
•→
P . Note that in order to avoid clutter, a number of

arcs have not been shown in Fig. 3b. For example, the many of transitions to ⊤
have been left out.

5 Matching Using a PEPL-Automaton

Viewed as a DFA, a PEPL automaton could be used to test whether a given
sequence of its alphabet are in the regular set of patterns that it describes.
For example, it can easily be seen in Figure 3 that, starting from ⊤, successive
transitions on elements of the string 〈〈1, a〉, 〈2, b〉, 〈3, c〉〉 lead to the final state
6, affirming that this sequence is indeed part of the set of patterns described by
the automaton, and and since abc is an own object of 6, affirming that abc is in
the original set of patterns, P .

However, the PEPL is not primarily intended to be used in this way. Instead,
the PEPL is used in Algorithm 2 to find all match opportunities in P in a text
s. The algorithm’s do processes symbols of s, updating variables c and i to keep
track of partial matches in that part of s already processed. This is expressed as
loop invariant Inv(c, i, t) ≡
– MO contains all matches in s[0,t−i+1). (These are the matches already pro-

cessed.)

– And s[t−i+1,t) matches the first i− 1 characters of all patterns in extent(c).
(These are the partial matches in progress.)

To illustrate matching as executed by Algorithm 2, consider the steps logged in
Table 4 when matching the set of patterns abc,aabc,abcc against the target string
aaabcdabccd. The first five entries of each row in this table shows the values of
variables t, s[t], c, i as they have been updated as a result of the statements in the
body of the main loop in Algorithm 2. The next set of entries in the respective
row are all empty except for the position where s[t] has been matched. At such a
position a “T” or “F” is shown depending on the result of the match. The next
entry in the row shows the size of the intent of c. The last entry in this row gives
the patterns matched at the step represented by the row.

Algorithm 2 PEPL Automaton Based Matching

proc PAutMatch(
•→
P , s)

MO := ∅;

M
•→
P := getFA(

•→
P );

〈c, i〉, t := 〈q0

•→
P , 1〉, 0; { Recall that q0

•→
P = ⊤ }
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{ invariant: Inv(c, i, t) }
do (t < |s|) → 〈c, i〉, t := δ

•→
P (c, 〈i, s[t]〉), t + 1;

if (i = |intent(c)|) → MO := MO ∪ ({t} × ownobj(c))
[] (i 6= |intent(c)|) → skip
fi

od
corp { post : MO is the set of match occurrences of P in s }

As an example we present an explanation of the steps up to the first matched
patterns being recorded. Consider the first row of Table 4. This row represents
the first step of the matching process. After this step, a transition is made from
the start state (c = ⊤) to the same state (c′ = ⊤). The transition is due to the

transition function δ
•→
P (c, 〈i, s[t]〉) returning the value ⊤/2 for the offset variable

i = 1 and symbol s[t = 0] = a. The last entry in the row is empty as the
top node does not contain any own objects. The next row shows the transition

δ
•→
P (⊤, 〈2, a〉) = 3/3 due to value of the variable t being incremented from its

value in the previous step. This process continues until the patterns aabc, (a)abc
are recorded when the variables i and t are both (coincidentally) equal to 4 and
state 4 is reached in the 5th row of the table. Recall that a match is recorded for a
state that is represented by a concept such that the size of such concept’s intent
(as shown in the second last entry) is the same as the offset variable i.

co io t s[t] c i a a a b c d a b c c d |intent(c′)| {Patterns Matched}
⊤ 1 0 a ⊤ 2 T 1 ∅
⊤ 2 1 a 3 3 T 2 ∅
3 3 2 a 3 3 T 4 ∅
3 3 3 b 3 4 T 4 ∅
3 4 4 c 4 5 T 4 {aabc,(a)abc}
4 5 5 d ⊤ 1 F 5 ∅
⊤ 1 6 a ⊤ 2 T 5 ∅
⊤ 2 7 b 7 3 T 3 ∅
7 3 8 c 7 4 T 3 {abc}
7 4 9 c 6 5 T 4 {abcc}
6 5 10 d ⊤ 1 F 5 ∅

Table 4: Positions visited in aaabcdabccd when matching abc,aabc,abcc

We have arrived at a particularly efficient algorithm, thanks to two observations

about PAutMatch . Firstly, transitions in the PEPL-Automaton (δ
•→
L ) can be

done in constant time using a lookup table. Secondly, the if statement can be
made in constant time, and consists of simple integer arithmetic to advance
through the lattice and target s, and an update of MO (only if a match has
been found). The latter can be done using a precomputed lookup table, as is
done in the advanced AC algorithm. These two characteristics are also found in
the advanced AC algorithm, and is unavoidable in pattern matching algorithms,
giving us the same exact (worst- and best-case) running time of |s|.
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The example in Table 4 illustrates how, in contrast to the example in Table 2,
each symbol in the string aaabcdabccd is visited exactly once to match the key-
words {abc, aabc, abcc}.

6 Conclusion

The application of FCA in pattern matching was first introduced in [9]. There,
two-dimensional pattern information was encoded into a concept lattice which
was subsequently used as the basis for traversing a two-dimensional space in
search of a specific pattern. Here, by contrast, common information about multi-
ple keywords is encoded into a PEPL, to form the basis for discovering positional
information about matching instances of those keywords in a linearly streamed
text. The two new pattern matching algorithms are shown to have theoretical
running-time comparable to the Aho-Corasick family of algorithms.

Ongoing work involves benchmarking the new algorithms against the Aho-Corasick
and other multiple keyword pattern matching algorithms. We are also find-
ing ways in which FCA can be effectively used in other stringology contexts
[6].
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Factor analysis of sports data
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Abstract. The aim of this paper is to present experimental results on
a recently developed method of factor analysis of data with graded,
or fuzzy, attributes. The method utilizes formal concepts of data with
graded attributes. In our previous papers, we described the factor model,
the method, an algorithm to compute factors, and provided basic exam-
ples. In this paper, we perform a more extensive experimentation with
this method. In particular, we apply the method to factor analysis of
sports data. The aim of the paper is to demonstrate that the method
yields reasonable factors, explain in detail how the factor model and the
factors are to be understood, and to put forward new issues relevant to
the method.

1 Introduction

1.1 Aim of This Paper

Recently, a considerable effort was devoted to the development of factor analysis
and related methods for new types of data such as Boolean (binary) or ordinal. In
our previous papers, we developed a method of factor analysis of Boolean data
[5], i.e. data with Boolean attributes, and extended the problem and method
to data with graded attributes [4, 6]. In the present paper, we use the method
as well as the algorithm from [4, 6]. Due to the limited scope and the aim of
this paper, we only provide a brief, mainly informal overview of the key notions
involved, illustrate these notions by examples and refer the reader to [4, 6] for
technical details. Our aim is to provide information sufficient to understand the
experiments described in this paper. A full version of this paper will contain a
detailed description of the method, a more comprehensive experimental section,
formal treatment of some issues that we only discuss informally in this paper
(cf. also Section 3), as well as a section putting the method being discussed into
perspective of related methods of data analysis.
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1.2 The Method, Factors, and Their Interpretation

In a broad sense, our method may be considered as implementing the general
idea of factor analysis [1, 12]: Given an n × m object-attribute matrix I, one
finds a decomposition

I = A ◦B (1)

of I into a product of an n×k object-factor matrix A, a k×m matrix B, reveal-
ing thus k factors, i.e. new, possibly more fundamental attributes (or variables),
which explain the original m attributes. We want k < m and, in fact, k as small
as possible to achieve parsimony: The n objects described by m attributes via
I may then be described by k factors via A, with B representing a relation-
ship between the original attributes and the factors. Contrary to classic factor
analysis, which uses the calculus of real-valued matrices, we use the calculus of
matrices over residuated lattices. That is, the entries of matrices involved are el-
ements of a residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, i.e. Iij , Ail, Blj ∈ L. The
elements of L represent truth degrees, 0 and 1 are the smallest and largest one
and correspond to “(fully) false” and “(fully) true”; ∧ and ∨ denote the infimum
and supremum, and ⊗ and → denote the truth functions on many-valued logic
connectives of conjunction and implication. The product ◦ in (1) is defined by

(A ◦B)ij =
∨k

l=1Ail ⊗Blj . (2)

Importantly, the entries of I, A, and B are interpreted the following way:

Iij is the truth degree of the proposition “object i has attribute j”,

Ail is the truth degree of the proposition “factor l applies to object i”,

Blj is the truth degree of “attribute j is one of the manifestations of factor l”.

For the moment, think of i, j, and l as a particular athlete (object), good per-
formance in long jump (attribute), and good speeding ability (factor). Using
the principles of fuzzy logic [11], (2) and hence the whole factor model has the
following meaning (this is even easy to see using intuition knowing that “exists”
and “and” are modeled by

∨
and ⊗):

object i has attribute j if and only if

there exists factor l such that i has l (or, l applies to i) (3)

and j is one of the particular manifestations of l.

In principle, our method works as follows. We compute from I, using a greedy
approximation algorithm from [6], a set

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(X,Y, I) (4)

of formal fuzzy concepts of I, which gives us the decomposition as follows. Put

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j), (5)

i.e. AF is an n × k matrix in which the lth column consists of grades assigned
to objects by the lth concept extent Cl and BF is a k × m matrix in which
the lth row consists of grades assigned to attributes by the lth intent Dl. Then
I = AF ◦ BF , i.e. the matrices AF and BF induced by F provide us with
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a decomposition of I. Moreover, the optimal decompositions (i.e. with least k
possible) may in principle be obtained this way, in which sense using formal
concepts as factors is an optimal strategy. Note however, that our algorithm
computes suboptimal decompositions since the problem to compute an optimal
decomposition is an NP-hard optimization problem.

We revisit these notions, particularly in Section 2.1, where we explain the
notions involved using a particular example.

2 Examples and Experiments

Our aim in this section is to present the results of selected analyses, and thus to
demonstrate a usefulness of the method, as well as to explain in detail the process
of analysis, possibly even for a user who is not familiar with the technicalities of
the method.

First, we point out some features common to the examples presented below.
As the complete residuated lattice, we use as five-element  Lukasiewicz chain.
That is, the matrix degrees are taken from the set

L = {0, 0.25, 0.5, 0.75, 1}
and the operation ⊗ is given by

a⊗ b = max(0, a+ b− 1).

Many other choices are available, see e.g. [10]. We represent the degrees by shades
of gray as follows (this also emphasizes the fact that the truth degrees have a
symbolic, rather than numerical, meaning):

0.00 0.25 0.50 0.75 1.00 .
Note that due to the well-known Miller’s 7±2 phenomenon [15], small scales

with up to 7±2 degrees are preferable to use because humans can understand and
use such scales easily. For a reader not familiar with basics of many-valued logics
let us note that the  Lukasiewicz ⊗ (such as other many-valued conjunction) may
be seen as a natural conjunction-like aggregation: the higher the truth values a
and b of propositions A and B, the higher the truth value a⊗b of the conjunction
A&B.

2.1 2004 Olymphic Games Decathlon—Top 5

We start with a detailed description of factor analysis of top 5 athletes in the
2004 Olympic Decathlon and use this example as a reference example in the sub-
sequent sections (this data is also used in [6], but our analysis here is slightly dif-
ferent since we use a different transformation of the athletes’ results to grades).
Our method is particularly suitable for analyzing such data for the following
reasons. The raw data, i.e. the actual results in the ten disciplines of decathlon,
can naturally be transformed to data with graded attributes, i.e. to a matrix I.
Namely, for every discipline d, one may consider a graded attribute “good perfor-
mance in d”. That is, such an attribute applies to an athlete (object) to a degree

Factor analysis of sports data via decomposition of matrices with grades 295



to which we consider the performance of the athlete a good performance. This
is a natural, generally applicable idea. However, in our case, the IAAF (Interna-
tional Association of Athletics Federations) provides us with decathlon scoring
tables (http://www.iaaf.org, IAAF Scoring Tables for Combined Events) using
which one transforms the actual results to scores from an ordinal scale, namely
the interval of integers [0, 1, . . . , 1400], which is common to all disciplines. For
example, the result of 10.75sec in 100m gets 962 points, the result of 204cm in
high jump gets 927 points, etc. A table with actual scores may then be trans-
formed to a matrix I with graded attributes using an appropriate set L of truth
degrees and an appropriate transformation function.

The top table in Tab. 1 contains the results of top 5 athletes according to the
IAAF scoring tables. The second table from the top contains the corresponding
matrix I, i.e. the matrix with degrees from the five-element scale L, and the
bottom table contains its graphical representation. The transformation from the
table with scores to the matrix with degrees from L = {0, 0.25, 0.5, 0.75, 1} is
accomplished using functions

sj : [0, . . . , 1400]→ L defined by sj(p) = round

(
p− Lj

Hj − Lj

)

where j is an attribute (discipline), and Lj and Hj are the lowest and the highest
scores achieved by all the athletes (i.e. not only the top 5) who participated in
the competition, and round is the function rounding the numbers in [0, 1] to their
closest values in L. Note that in this competition, we have L10 = 746, Llj = 723,
Lsp = 657, Lhj = 644, L40 = 673, Lhu = 755, Ldt = 622, Lpv = 673, Ljt = 598,
L15 = 466, and H10 = 989, Hlj = 1050, Hsp = 873, Hhj = 944, H40 = 968,
Hhu = 978, Hdt = 905, Hpv = 1035, Hjt = 897, H15 = 791. Therefore, the degree
assigned to Sebrle in 400m is round( 892−673

968−673 ) = round(0.74 . . . ) = 0.75. The
matrix I allows us to interpret the athletes’ results verbally. Namely, assigning
to the degrees from L linguistic labels such as “not at all” to 0, “little bit” to
0.25, “half” to 0.5, “quite” to 0.75, and “fully” to 1, or the like, one may say
that Sebrle’s performance in 400m was quite good. Even though we lose some
information using such rounding to five degrees, the information preserved still
allows us to perform a reasonable analysis, which is shown next.

The algorithm from [6] found a decomposition of I using six factors depicted
in Fig. 2. The corresponding decomposition I = AF ◦BF is depicted in Fig. 1. As
explained in Section 1, cf. (5), the columns of AF corresponding to Fl = 〈Cl, Dl〉
contain the degrees assigned to the athletes by Cl; likewise for the rows of BF ,
the attributes, and Dl.

Fig. 2 shows rectangular patterns using which the factors may be visualized.
Each rectangular pattern labeled Fl is actually the matrix Jl resulting as the
Cartesian product of the extent Cl and the intent Dl of Fl, i.e. we have (Jl)ij =
Cl(i) ⊗ Dl(j). (For readers familiar with the ordinary FCA, let us note that
these patterns are the rectangles corresponding to formal concepts and that in
the general situation with degrees, the concepts cannot be uniquely restored
from these patterns.)
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Table 1. 2004 Olympic Games Decathlon

Scores of Top 5 Athletes
10 lj sp hj 40 hu di pv ja 15

Sebrle 894 1020 873 915 892 968 844 910 897 680

Clay 989 1050 804 859 852 958 873 880 885 668

Karpov 975 1012 847 887 968 978 905 790 671 692

Macey 885 927 835 944 863 903 836 731 715 775

Warners 947 995 758 776 911 973 741 880 669 693

Matrix I with Graded Attributes (input to the method)

10 lj sp hj 40 hu di pv ja 15

Sebrle 0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75

Clay 1.00 1.00 0.75 0.75 0.50 1.00 1.00 0.50 1.00 0.50

Karpov 1.00 1.00 1.00 0.75 1.00 1.00 1.00 0.25 0.25 0.75

Macey 0.50 0.50 0.75 1.00 0.75 0.75 0.75 0.25 0.50 1.00

Warners 0.75 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75

Graphical Representation of Matrix I

Legend: 10—100 meters sprint race; lj—long jump; sp—shot put; hj—high jump;
40—400 meters sprint race; hu—110 meters hurdles; di—discus throw; pv—pole
vault; ja—javelin throw; 15—1500 meters run.

1
0 lj sp h
j

4
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u d
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Clay

Karpov
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F1 F2 F3 F4 F5 F6
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F2

F3

F4
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F6

Fig. 1. Decomposition I = AF ◦BF . I, AF , and BF are the bottom-right, bottom-left,
and top matrix, respectively.

F1 F2 F3

F4 F5 F6

Fig. 2. Factor Concepts as Rectangular Patterns.
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Table 2. Factor Concepts

Fi Extent Intent

F1 {.5/Sebrle,Clay,Karpov, .5/Macey, .75/Warners} {10, lj, .75/sp, .75/hj, .5/40, hu, .5/di, .25/pv, .25/ja, .5/15}
F2 {Sebrle, .75/Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, sp, hj, .75/40, hu, .75/di, .75/pv, ja, .75/15}
F3 {.75/Sebrle, .5/Clay, .75/Karpov,Macey, .5/Warners} {.5/10, .5/lj, .75/sp, hj, .75/40, .75/hu, .75/di, .25/pv, .5/ja, 15}
F4 {Sebrle, .75/Clay, .75/Karpov, .75/Macey,Warners} {.5/10, .75/lj, .5/sp, .5/hj, .75/40, hu, .25/di, .5/pv, .25/ja, .75/15}
F5 {.75/Sebrle, .5/Clay,Karpov, .75/Macey, .25/Warners} {.75/10, .75/lj, sp, .75/hj, 40, hu, di, .25/pv, .25/ja, .75/15}
F6 {.75/Sebrle,Clay, .25/Karpov, .5/Macey, .25/Warners} {.75/10, lj, .75/sp, .75/hj, .5/40, hu, di, .5/pv, ja, .5/15}

Fig. 3 demonstrates what portion of matrix I is explained using the first l
factors for l = 1, . . . , k. In particular, the matrix labeled 56% just shows the
rectangular pattern J1 corresponding to F1. The number indicates that 56% of
the entries in I have the same value as in J1, i.e. 56% of the data is explained
by the first factor. The second matrix contains J1 ∨ J2, i.e. it illustrates what
happens when we add the second factor. As we can see, 82% of the data is
explained by the first two factors. Since the first three factors explain 91% of
the data, one might say that the first three factors account for most of the data,
are most important, and the rest of the factors may be omitted. Nevertheless,
adding further the factors we see that the first four, five, and six factors explain
95%, 98%, and 100% of the data (the latter fact is obviously true because the
factors completely decompose matrix I). Note also, that several of the 18% =
100%−82% of the entries not explained by the first two factors have values close
to the corresponding entries of I, so a measure of closeness of Jl and I which
takes into account also close entries, rather than exactly equal ones only, would
yield a number larger than 82%. In any case, we can conclude from the visual
inspection of the matrices that already the first two or three factors explain the
data reasonably well. Note that the fact that the revealed factors are reasonable
was confirmed to us by an experienced decathlon coach who also pointed out to
us that F2 (explosiveness) is known to be well-developed by the Czech school of
decathlon (hence Sebrle).

56% 82% 91%

95% 98% 100%

Fig. 3.
∨

-superposition of Factor Concepts

Let us turn to the interpretation of the factors. For this purpose, Fig. 2 is
crucial since it contains all the information about the factors. Note however that
Fig. 2 is also helpful as it shows the clusters corresponding to the factor concepts
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which draw together the athletes and their performances in the events. Factor
F1: F1 applies to Sebrle to degree 0.5, to both Clay and Karpov to degree 1, to
Macey to degree 0.5, and to Warners to degree 0.75. Furthermore, this factor
applies to attribute 10 (100 m) to degree 1, to attribute lj (long jump) to degree
1, to attribute sp (shot put) to degree 0.75, etc. This means that an excellent
performance (degree 1) in 100 m, an excellent performance in long jump, a very
good performance (degree 0.75) in shot put, etc. are particular manifestations of
this factor. On the other hand, only a relatively weak performance (degree 0.25)
in javelin throw and pole vault are manifestations of this factor. All the mani-
festations of this factor with degree 1 are 100 m, long jump, and 110 m hurdles.
This factor can be interpreted as the ability to run fast for short distances. Note
that this factor applies particularly to Clay and Karpov which is well known
in the world of decathlon. Factor F2: Similarly, since the manifestations of this
factor with degree 1 are long jump, shot put, high jump, and javelin, F2 can be
interpreted as the ability to apply very high force in a very short term (explo-
siveness). F2 applies particularly to Sebrle, and then to Clay, who are known for
this ability. Factor F3: Manifestations with grade 1 are high jump and 1500 m.
This factor is typical for lighter, not very muscular athletes. Macey, who is ev-
idently that type among decathletes (196 cm and 98 kg) is the athlete to whom
the factor applies to degree 1. These are the most important factors behind data
matrix I.

2.2 2004 Olympic Games Decathlon Top 5 By Their Best Results

In this example, we take the top 5 athletes of the 2004 Olympic Decathlon but
we take their best performances during their decathlon competitions, instead of
their actual performances in a single event such as the 2004 Olympics. Taking
best performances may be reasonable if we want to avoid a possible bad luck in
a particular discipline such as a bad start in 100 m. Tab. 3 contains the scores.
The corresponding matrix I and its decomposition into AF ◦ BF is depicted in
Fig. 4. Here, the transformation from points to degrees is defined as follows. For
discipline j, we put

sj(p) =





1 for p ∈ [Hj , Hj − 100),
0.75 for p ∈ [Hj − 100, Hj − 200),
0.5 for p ∈ [Hj − 200, Hj − 300),
0.25 for p ∈ [Hj − 300, Hj − 400),
0 for p ≤ Hj − 400,

where Hj is the highest score ever achieved during a decathlon competition for
discipline j. Note that H10 = 1042; Hlj = 1117; Hsp = 1048; Hhj = 1061;
H40 = 1025; Hhu = 1064; Hdi = 993; Hpv = 1152; Hja = 1040; H15 = 963.

It seems natural that the factors in this case are different from those in the
example in Section 2.1. Nevertheless, we can see that F1 applies to degree 1 to
Clay and Karpov in both examples and applies to the other athletes to similar
degrees in both examples as well. Nevertheless, the intents of the first factor are
different although a reasonable similarity is apparent as well (presence of long

Factor analysis of sports data via decomposition of matrices with grades 299



Table 3. 2004 Olympic Games Decathlon

Scores of Top 5 Athletes
10 lj sp hj 40 hu di pv ja 15

Sebrle 942 1089 880 944 921 1002 859 972 907 798

Clay 1010 1050 868 887 944 1022 993 941 920 670

Karpov 931 1073 910 915 968 984 929 1004 743 729

Macey 940 1002 841 944 998 931 836 849 799 990

Warners 947 1022 800 831 978 973 824 886 692 693
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Fig. 4. Decomposition I = AF ◦BF .

jump and hurdles to degree 1, presence of 100 m and high jump to high degrees).
A similar observation can be made on F2 (connects Sebrle and Clay) and F3

which is typical of Macey.

2.3 2004 Olympic Games Decathlon—Top 10

The results of the 5th–10th athletes in the 2004 Olympic Decathlon are depicted
in Tab. 4. The matrix I corresponding to the top 10 athletes, along with a
decomposition I = AF ◦ BF computed by the algorithm is depicted in Fig. 5.
The same transformation from scores to degrees was used as in Section 2.1.

Table 4. 2004 Olympic Games Decathlon

Scores of the 5th–10th Athletes
10 lj sp hj 40 hu di pv ja 15

Zsivoczky 881 847 809 915 842 856 780 819 790 748

Hernu 867 859 768 831 874 942 761 849 704 782

Nool 906 942 744 698 870 874 706 1035 758 704

Bernard 931 930 777 915 855 953 762 731 667 704

Schwarzl 865 932 729 749 826 942 714 941 683 721

Compared to the factors from Section 2.1, the factors in this example are
generally different although some similarities are apparent. For example, factor
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Fig. 5. Decomposition I = AF ◦BF .

F2 here is exactly the same (has same intent) as F1 in Section 2.1, F12 is the
same as F6 in Section 2.1, and F4 is almost the same as F3 in Section 2.1.

We might nevertheless be interested in the question of how well the factors
from Section 2.1 explain the new dataset regarding the top 10 athletes. A rea-
sonable way to proceed is the following. Consider the set of 6 concepts of the
new, 10× 10 matrix I, namely,

G = {G1 = 〈P1, Q1〉, . . . , G6 = 〈P6, Q6〉}
obtained from the factors F1 = 〈C1, D1〉, . . . , F6 = 〈C6, D6〉 by

P1 = D↓1 , Q1 = P ↑1 , . . . , P6 = D↓6 , Q6 = P ↑6 ,

i.e. every factor Gl is the concept of the 10×10 matrix I generated by the intent
of Fl. This way, we do not have I = AG ◦ BG in general, as can be seen from
this example. Nevertheless, the first factor G1 explains 50% of the data, the first
two factors 69%, the first three factors 80%, the first four factors 86%, the first
five factors 89%, and all factors in G explain 91% of the data. Hence, one may
conclude that the factors of the top 5 athletes explain reasonably well also the
results of all the top 10 athletes. The matrices involved are depicted in Fig. 6.
Note that one may clearly observe the similarity between I (the original matrix)
and AG ◦BG (the matrix reconstructed from the factors in G).

2.4 2004 Olympic Games Modern Pentathlon

Another sport that contains several disciplines and may be interesting for fac-
tor analysis is the modern pentathlon. The five disciplines are, however, rather
diverse and it is therefore challenging to think of natural factors in this sport. Re-
call that modern pentathlon consists of pistol shooting, fencing, 200 m freestyle
swimming, show jumping, and a 3 km cross-country run. Except for the fencing
competition, athletes do not directly compete against one another in the five
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Fig. 6. Matrices AG ◦BG (bottom-right), AG (bottom-left), and BG (top).

events. Instead, a better absolute performance results in a higher score and the
sum of all the scores for the disciplines gives the overall total score of a given
athlete.

Tab. 5 contains the results of the 2004 Olympic Games modern pentathlon
of the top 10 athletes. The corresponding matrix I and its decomposition into
AF ◦BF is depicted in Fig. 7. To transform the scores of discipline j to degrees,
we used the function

sj(p) =





1 for p ∈ [Hj , Hj − 1
5 (Hj − Lj)),

0.75 for p ∈ [Hj − 1
5 (Hj − Lj), Hj − 2

5 (Hj − Lj)),
0.5 for p ∈ [Hj − 2

5 (Hj − Lj), Hj − 3
5 (Hj − Lj)),

0.25 for p ∈ [Hj − 3
5 (Hj − Lj), Hj − 4

5 (Hj − Lj)),
0 for p ≤ Hj − 4

5 (Hj − Lj),

where Hj and Lj are the highest and the lowest score achieve in discipline j in the
2004 Olympic Games modern pentathlon. Note that Hsh = 1168, Lsh = 892;
Hfe = 1000, Lfe = 664; Hsw = 1376, Lsw = 1140; Hri = 1172, Lri = 584;
Hru = 1116, Lru = 752.
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Sabirkhuzin

F1 F2 F3 F4 F5 F6
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F6

Fig. 7. Decomposition I = AF ◦BF .
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Table 5. 2004 Olympic Games Modern Pentathlon

Scores of Top 10 Athletes
sh fe sw ri ru

Moiseev 1036 1000 1376 1032 1036

Zadneprovskis 1000 916 1308 1088 1116

Capalini 1084 776 1336 1116 1080

Cerkovskis 1096 916 1252 1004 1088

Meliakh 1168 692 1332 1144 1004

Michalik 1108 888 1260 1144 932

Walther 952 832 1336 1116 1084

Balogh 1036 804 1240 1172 1044

Iagorashvili 988 916 1252 1172 948

Sabirkhuzin 1156 888 1216 908 1034

Legend: sh—shooting; fe—fencing; sw—swimming; ri—riding; ru—running.

Note that of all the factors computed, F2 is probably most interesting because
it is actually known in the world of modern pentathlon. Namely, F2’s manifes-
tations are riding and cross-country run which is typical for athletes who are in
a good physical shape and have good endurance. Each of the other factors more
or less corresponds to a single discipline which corresponds to the intuitive idea
that the disciplines are diverse and require diverse skills.

3 Concusions, Further Issues and Future Work

We presented several examples of factor analysis of sports data using a recently
developed method that utilizes formal concepts as factors. Our main aim was
to explain the method, to illustrate the key notions used in the method, and
to demonstrate how one can understand the results of the method. It turns out
from the examples that the method yields reasonable factors and that the results
of the method are easy to understand.

Due to the limited scope of this paper, we presented only a limited num-
ber of examples and limited comments on the presented examples. In addition
to the examples presented in this paper, we performed factor analyses of fur-
ther decathlon data (namely, the World Championships), figure skating, and ice
hockey players performance. We refrained from formalizing some of the issues
involved, such as “explanation of data by factors”, “similarity of factors”, how
well the factors of one dataset serve as good factors of another dataset, etc., and
used these notions with their informal meaning only. We therefore also skipped
theoretical results regarding these notions, as well as further notions and results
that may help us answer further natural questions that arise in the context of
the presented method, such as the influence of the choice of the scale of degrees,
the operation ⊗, the influence of the transformation from scores to degrees, and
the like.
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More examples with detailed comments as well as a detailed treatment of
some of issues mentioned above will appear in the full version of this paper. An
interesting question that is to be a subject of our future research is a compari-
son, experimental and possibly also theoretical, of relationships of the presented
method with related methods that involve matrix decomposition, notable the
non-negative matrix factorization [8, 14].
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Abstract. The paper explores a utilization of Boolean factorization as
a method for data preprocessing in classification of Boolean data. In
previous papers, we demonstrated that data preprocessing consisting in
replacing the original Boolean attributes by factors, i.e. new Boolean
attributes that are obtained from the original ones by Boolean factoriza-
tion, improves the quality of classification. The aim of this paper is to
explore the question of how the various Boolean factorization methods
that were proposed in the literature impact the quality of classification.
In particular, we compare three factorization methods, present experi-
mental results, and outline issues for future research.

1 Problem Setting

In classification of Boolean data, the objects to classify are described by Boolean
(binary, yes-no) attributes. As with the other classification problems, one may
be interested in preprocessing of the input attributes to improve the quality of
classification. With Boolean input attributes, we might want to limit ourselves
to preprocessing with a clear semantics. Namely, as it is known, see e.g. [2, 8],
applying to Boolean data the methods designed originally for real-valued data
distorts the meaning of the data and leads generally to results difficult to inter-
pret. In [9, 10], we proposed a method for preprocessing Boolean data based on
the Boolean matrix factorization (BMF) method, i.e. a decomposition method
for Boolean matrices, developed in [2]. The method consists in using for classi-
fication of the objects new Boolean attributes. The new attributes are actually
the factors computed from the original attributes. Since the factors are essen-
tially (some of the) formal concepts [4] associated to the input data, they have
a clear meaning and are easy to interpret [2]. Moreover, there exists a natural
transformation of the objects between the space of the original attributes and
the space of the factors [2] which is conveniently utilized by the method. It has
been demonstrated in [9, 10] that such preprocessing makes it possible to classify
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using a smaller number of input variables (factors instead of original attributes)
and yet improve the quality of classification. In addition to the method from
[2], there exist several other BMF methods described in the literature. In the
present paper, we therefore look at the question of how these methods influence
the quality of classification. In particular, we focus on three such methods and
provide an experimental evaluation using basically the same scenario as in [9,
10]. Doing so, we emphasize the need to consider not only coverage and the
number of extracted factors, but also additional criteria regarding quality of the
proposed BMF methods.

We use the following notation. We denote by X = {1, . . . , n} a set of objects
which are given along with their input Boolean attributes which form the set
Y = {1, . . . ,m}, and a class attribute c. The input attributes are described by
an n ×m Boolean matrix I with entries Iij (entry at row i and column j), i.e.
Iij ∈ {0, 1} for every i, j. Alternatively, I may be considered as a representation
of a binary relation between X and Y and, hence, we may speak of a formal
context 〈X,Y, I〉, etc. Since there is no danger of confusion, we conveniently
switch between the matrix and relational way of looking at things. The class
attribute c may be conceived as a mapping c : X → C assigning to every object
i ∈ X its class label c(i) in the set C of all class tables (note that C may contain
more than two labels).

The preprocessing method along with the three particular methods of Boolean
matrix factorization is described in Section 2. Section 3 describes the experiments
and provides their results. In Section 4 we conclude the paper and provide some
directions for future research.

2 Boolean Matrix Factorization and Its Utilization

2.1 General BMF Problem

We denote by {0, 1}n×m the set of all n ×m Boolean matrices and by Ii and
I j the ith row and jth column, respectively, of matrix I. In BMF, the general
aim is to find for a given I ∈ {0, 1}n×m (and possibly other parameters, see
Problem 1 and Problem 2) matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m for which

I is (approximately) equal to A ◦B, (1)

with ◦ being the Boolean matrix product given by

(A ◦B)ij =

k∨

l=1

Ail ·Blj , (2)

where
∨

denotes the maximum and · the ordinary product. Such an exact or
approximate decomposition of I into A◦B corresponds to a discovery of k factors
(new Boolean variables) that exactly or approximately explain the data. Namely,
factor l = 1, . . . , k, may be represented by A l (column l of A) and Bl (row l
of B): Ail = 1 indicates that factor l applies to object i while Blj indicates that
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attribute j is a particular manifestation of factor l (think of person A as object,
“being fluent in English” as attribute, and “having good education” as factor).
The least k for which an exact decomposition I = A ◦ B exists is called the
Boolean (or Schein) rank of I [2, 5, 8]. Then, according to (2), the factor model
reads “object i has attribute j if and only if there exists factor l such that l
applies to i and j is a particular manifestation of l”.

The matrices I, A, and B are usually called the object-attribute matrix,
the object-factor (or usage) matrix, and the factor-attribute (or basis vector)
matrix [2, 8]. The methods described in the literature are usually designed for
two particular problems. Consider the matrix metric [5, 8] (arising from the L1-
norm || · || of matrices, or Hamming weight in case of Boolean matrices) given
by

E(C,D) = ||C −D|| = ∑m,n
i=1,j=1 |Cij −Dij |. (3)

E(I, A ◦B) may be used to asses how well the product A ◦B approximates the
input matrix I.

Problem 1

input: I ∈ {0, 1}n×m, positive integer k
output: A ∈ {0, 1}n×k and B ∈ {0, 1}k×m minimizing ||I −A ◦B||.

This problem is called the discrete basis problem (DBP) in [8]. In [2], the following
problem is considered:

Problem 2

input: I ∈ {0, 1}n×m, positive integer ε
output: A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with k as small as possible such
that ||I −A ◦B|| ≤ ε.
The two problems reflect two important views on BMF, the first one em-

phasizing the importance of the first k (presumably most important) factors,
the second one emphasizing the need to account for (and thus to explain) a pre-
scribed portion of data. Note that the problem of finding an exact decomposition
of I with the least number k of factors possible is a particular instance of Prob-
lem 2 (put ε = 0). Note also that it follows from the known results that both
Problem 1 and Problem 2 are NP-hard optimization problems, see e.g. [2, 8], and
hence approximation algorithms are needed to obtain (suboptimal) solutions.

2.2 Use of BMF in Preprocessing of Boolean Data

The idea may be described as follows. For a given set X of objects, set Y of
attributes, Boolean matrix I, and class attribute c, we compute n×k and k×m
Boolean matrices A and B, respectively, for which A◦B approximates I reason-
ably well (either according to the scenario given by Problem 1 or Problem 2).
Then, instead of the original instance 〈X,Y, I, c〉 of the classification problem,
we consider a new instance given by 〈X,F,A, c〉, with F = {1, . . . , k} denoting
the factors, i.e. new Boolean attributes. Any classification model developed for
〈X,F,A, c〉 may then be used to classify the objects described by the original
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Boolean attributes from Y . Namely, one may utilize natural transformations
g : {0, 1}m → {0, 1}k and h : {0, 1}k → {0, 1}m between the space of the original
attributes and the space of factors which are given by

(g(P ))l =
∧m

j=1(Blj → Pj) and (h(Q))j =
∨k

l=1(Ql ·Blj)

for P ∈ {0, 1}m and Q ∈ {0, 1}k (
∧

and → denote minimum and implication).
These transformations are described in [2] to which we refer for more information.
In particular, given an object represented by P ∈ {0, 1}m (vector of values of the
m input attributes), we apply the classification method developed for 〈X,F,A, c〉
to g(P ), i.e. to the object representation in the space of factors. Any classification
model MF : {0, 1}k → C for 〈X,F,A, c〉 therefore induces a classification model
MY : {0, 1}m → C by MY (P ) = MF (g(P )) for any P ∈ {0, 1}m.

Note that since the number k of factors of I is usually smaller than the num-
ber m of attributes (see [2], which means a reduction of dimensionality of data)
and the transformation of objects from the attribute space to the factor space is
not an injective mapping, we need to solve the problem of assigning a class label
to objects in 〈X,F,A, c〉 with equal g(P ) representations transformed from ob-
jects in 〈X,Y, I, c〉 with different P representations and different assigned class
labels. We adopt the common solution of assigning to such objects in 〈X,F,A, c〉
the majority class label of class labels assigned to the objects in 〈X,Y, I, c〉.

2.3 Three Methods for Boolean Matrix Factorization Used in Our
Experiments

Asso [8] works as follows. From the input n×m matrix I, the required number
k of factors, and parameters τ, w+, and w−, the algorithm computes an m×m
matrix C in which Cij = 1 if the confidence of the association rule {i} ⇒ {j} is
at least τ . The rows of C are then the candidate rows for matrix B. The actual k
rows of B are selected from the rows of C in a greedy manner using parameters
w+ and w−. During the greedy selection, the k columns of A are selected along
with the k rows of B. This way, one obtains from I two matrices A and B such
that A◦B approximates I. Asso is designed for Problem 1. There is no guarantee
that Asso computes an exact factorization of I even for k = m, see [3]. In our
experiments, we used τ = 1 and w+ = w− = 1 because such choice guarantees
that for k = m all the 1s in I will be covered by the computed factors.

GreConD This algorithm, described in [2] where it is called Algorithm 2, utilizes
formal concepts of I as factors. Namely, the algorithm is selecting formal concepts
of I, one by one, until a decomposition of I into A ◦B is obtained. The selected
formal concepts are utilized in a simple way: The (characteristic vectors of the)
extents and intents of the concepts form the columns and rows of A and B.
The algorithm may be stopped after computing the first k concepts or whenever
||I − A ◦ B|| ≤ ε, i.e. the algorithm may be used for solving Problem 1 as well
as Problem 2. The formal concepts are selected in a greedy manner to maximize
the drop of the error function, in particular, on demand way, whence the name
Gre(edy)Con(concepts on)D(emand).
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GreEssQ This algorithm [3] utilizes formal concepts of I in the same way as
GreConD. The concepts are selected in a greedy manner, but contrary to Gre-
ConD, the concepts are selected using a particular heuristic that is based on the
information provided by certain intervals in the concept lattice of I. As with
GreConD, GreEssQ may be used to solve both Problem 1 and 2.

3 Experiments

We performed a series of experiments to evaluate the impact of the three Boolean
matrix factorization methods described in Section 2.3 on classification of Boolean
data when using factors as new attributes. The experiments consisted in com-
paring the classification accuracy of learning models created by selected machine
learning (ML) algorithms from the data with the original attributes replaced by
factors. The factors are computed from the input data by the three selected fac-
torization methods. The ML algorithms used in the comparison are: the reference
decision tree algorithms ID3 and C4.5 (entropy and information gain based), an
instance based learning method (Nearest Neighbor, NN), Naive Bayes learning
(NB) and a multilayer perceptron neural network trained by back propagation
(MLP) [7, 11]. The algorithms were borrowed and run from Weka1, a software
package that contains implementations of machine learning and data mining
algorithms in Java. Default Weka’s parameters were used for the algorithms.

Table 1. Characteristics of datasets used in experiments

Dataset No. of attributes (binary) No. of objects Class distribution

breast-cancer 9(51) 277 196/81

kr-vs-kp 36(74) 3196 1669/1527

mushroom 22(125) 282 187/95

vote 16(32) 232 124/108

zoo 15(30) 101 41/20/5/13/4/8/10

The experiments were done on selected public real-world datasets from UCI
Machine Learning Repository [1]. The selected datasets are from different ar-
eas (medicine, biology, zoology, politics, games). All the datasets contain only
categorical attributes with one class attribute and the datasets were cleared of
objects containing missing values. Basic characteristics of the datasets are de-
picted in Table 1 (note that the mushroom dataset was shrunk in the number
of objects due to computation time reasons). Note that “9(51)” means 9 cate-
gorical and 51 binary attributes obtained by nominal scaling. The classification
accuracy is evaluated using the 10-fold stratified cross-validation test [6] and the

1 Waikato Environment for Knowledge Analysis, available at
http://www.cs.waikato.ac.nz/ml/weka/
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following results are based on averaging 10 execution runs on each dataset with
randomly ordered objects.

The results are depicted in Figures 1 to 5. Each figure contains five graphs
for the five ML algorithms used. The graphs show the average percentage rates
of correct classifications on the preprocessed data, i.e. the data 〈X,F,A, c〉 de-
scribed by factors instead of 〈X,Y, I, c〉 described by the original attributes, cf.
Sections 2.2 and 2.3 for each of the three Boolean matrix factorization meth-
ods. The percentage rates of GreEssQ, GreConD, and Asso are depicted by the
dashed, dot-and-dashed, and dotted lines, respectively. The x-axis corresponds
to the factor decompositions obtained by the algorithms and, in particular, mea-
sures the quantity

|〈i, j〉 ; Iij = 1 and (A ◦B)ij = 0|
|〈i, j〉 ; Iij = 1| ,

i.e. the relative error w.r.t. 1s of the input matrix I that are left uncovered in
A◦B for the computed factorization given by A and B. The values on the x-axis
range from 0.9 (corresponding to a factorization with a small number of factors
that leave 90 % of the 1s in I uncovered) to 0 (corresponding to the number of
factors which decompose I exactly, i.e. I = A ◦B). The average percentage rate
of correct classification for the original data 〈X,Y, I, c〉 is depicted in each graph
by a constant solid line. All the graphs are computed for the testing parts of the
datasets used in the evaluation of classification only.

We can clearly see from the graphs for all datasets but breast-cancer that the
best results (average percentage rates of correct classifications) for preprocessed
data are obtained, for all ML algorithms used, by the GreEssQ algorithm, out-
performing both GreConD and, quite significantly, the Asso algorithm. GreConD
outperforms the Asso algorithm, again for all ML algorithms used, for datasets
kr-v-kp and mushroom, but not for the vote dataset. We can also see from the
graphs that sometimes the preprocessed data lead to a better classification ac-
curacy than the original data even with a few factors covering less than 100 % of
input data. This can be seen for instance for the kr-vs-kp dataset and Nearest
Neighbor and MLP or the mushroom dataset and ID.3, Naive Bayes and MLP.
See [9, 10] for indications of when, i.e. for which datasets and ML algorithms,
the data with original attributes replaced by factors (computed by GreConD)
covering 100 % of input data leads to a better classification accuracy compared
to the original data.

Particularly interesting seem the results for the breast-cancer dataset. As we
can see, the preprocessed data with factors instead of the original attributes are
(much) better classified compared to the original data and that this is observable
for all ML algorithms used except for Naive Bayes. Furthermore, the number of
factors leading to the best average percentage rates of correct classifications is
such that the factors cover just 40 % (which corresponds to 0.6 on the x-axis) of
input data! This indicates either many superfluous attributes or large noise in the
input data that is overcome by using the factors. The GreEssQ and GreConD
algorithms are of comparable performance here, both outperforming the Asso
algorithm.
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Fig. 1. Classification accuracy for breast-cancer dataset, for (from top to bottom) ML
algorithms ID.3, C4.5, NN, NB and MLP
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Fig. 2. Classification accuracy for kr-vs-kp dataset, for (from top to bottom) ML al-
gorithms ID.3, C4.5, NN, NB and MLP
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Fig. 3. Classification accuracy for mushroom dataset, for (from top to bottom) ML
algorithms ID.3, C4.5, NN, NB and MLP
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Fig. 4. Classification accuracy for vote dataset, for (from top to bottom) ML algorithms
ID.3, C4.5, NN, NB and MLP
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Fig. 5. Classification accuracy for zoo dataset, for (from top to bottom) ML algorithms
ID.3, C4.5, NN, NB and MLP
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4 Conclusions

We presented an experimental study which shows that when Boolean matrix fac-
torization is used as a preprocessing technique in Boolean data classification in
the scenario proposed in [9, 10], the particular factorization algorithms impact
in a significant way the accuracy of classification. For this purpose, we com-
pared three such algorithms from the literature. In addition to demonstrating
further the usefulness of Boolean factorization for classification of Boolean data,
the paper emphasizes Boolean factorization as a data dimensionality reduction
technique that may be utilized in a similar way as the matrix-decomposition-
based methods designed for real-valued data.

An extended version of this paper will include further factorization algo-
rithms in the experimental comparison (let us note in this respect that a techni-
cal problem with some such algorithms is that they are poorly described in the
literature). Furthermore, we intend to investigate and utilize further appropriate
transformation functions between the attribute and the factor spaces, in partic-
ular those suitable for approximate factorizations. A comparison with other data
dimensionality techniques, see e.g. the references in [12], in the presented sce-
nario is also an important topic for future research. In this respect, both the
impact on the classification accuracy as well as the transparency of the resulting
classification model are important aspects to be evaluated in such a comparison.
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The latti
e of all betweenness relations :Stru
ture and propertiesLaurent Beaudou, Mamadou Moustapha Kanté, and Lhouari NourineClermont Université, Université Blaise Pas
al, LIMOS, CNRS, Fran
elaurent.beaudou�univ-bp
lermont.fr, {mamadou.kante,nourine}�isima.frAbstra
t. We 
onsider impli
ation bases with premises of size exa
tly
2, whi
h are also known as betweenness relations. Our motivations isthat several problems in graph theory 
an be modelled using betweennessrelations, e.g. hull number, maximal 
liques. In this paper we 
hara
terizethe latti
e of all betweenness relations by giving its poset of irredu
ibleelements. Moreover, we show that this latti
e is a meet-sublatti
e of thelatti
e of all 
losure systems.1 Introdu
tionA 
onvexity spa
e on a ground set X is a subset of 2X that is 
losed underinterse
tion. Convexity spa
es were studied in [13℄ and are sometimes 
alledClosure systems. The members of a 
onvexity spa
e are 
alled 
onvex sets. Sin
ethe paper [13℄, 
onvexity spa
es are studied by several authors who des
ribeseveral of their properties (see the joint paper [8℄ of Edelman and Jamison for alist of publi
ations during the eighties), in parti
ular the set of 
onvexity spa
esforms a latti
e.In this paper we deal with betweenness relations whi
h are spe
ial 
ases of
onvexity spa
es. The notion of betweenness relation has appeared in the earlytwentieth 
entury when mathemati
ians fo
used on fundamental geometry [4℄.A betweenness relation B on a �nite set X is a set of triples (x, y, z) ∈ X3.The most intuitive betweenness relations are those 
oming from metri
 spa
es(a point y is between x and z if they satisfy the triangular equality). A 
onvexset of a betweenness relation B is a subset Y of X su
h that for all (x, y, z) ∈ B,if {x, z} ⊆ Y , then y ∈ Y . It is well-known that the set of 
onvex sets ofa betweenness relation is a 
onvexity spa
e. Betweenness relations have beenthoroughly studied by Menger and his students [16℄. Other betweenness relationshave arisen in resear
h �elds as probability theory with the work of Rei
henba
h[18℄. Betweenness relations have been also studied in graphs in order to generalizegeometri
al theorems [1,2,9℄ (see the survey [17℄ for a non exhaustive list ofbetweenness relations on graphs).We are interested in des
ribing the set of all betweenness relations on aground set X . We prove that the set of all 
onvexity spa
es on X derived frombetweenness relations on X forms a latti
e and is in fa
t a meet-sublatti
e of thelatti
e of all 
onvexity spa
es on X (we give an example showing that it is not

c© 2012 by the paper authors. CLA 2012, pp. 317–325. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



a sub-latti
e). We also des
ribe the set of meet and join-irredu
ible elements ofthe latti
e. We 
on
lude by showing that the set of 
onvexity spa
es obtainedfrom 
lique betweenness relations on graphs is a sublatti
e of the latti
e of all
onvexity spa
es of betweenness relations.This paper is motivated by understanding links between several parametersthat are 
onsidered in di�erent areas su
h as FCA, database, logi
 and graphtheory.Summary. Notations and de�nitions are given in Se
tion 2. The des
ription ofthe latti
e of 
onvexity spa
es of betweenness relations is given in Se
tion 3. The
onvexity spa
es of 
lique betweenness relations is des
ribed in Se
tion 4. Somequestions arising from algorithmi
 aspe
ts are given in Se
tion 5.2 PreliminariesLet X be �nite set. A partially ordered set on X (or poset) is a re�exive, anti-symmetri
 and transitive binary relation denoted by P := (X, ≤). For x, y ∈ X ,we say that y 
overs x, denoted by x ≺ y, if for any z ∈ X with x ≤ z ≤ y wehave x = z or y = z. A latti
e L := (X, ≤) is a partially ordered set with thefollowing properties:1. for all x, y ∈ X there exists a unique z, denoted by x ∨ y, su
h that for all
t ∈ X , t ≥ x and t ≥ y implies z ≤ t. (Upper bound property.)2. for all x, y ∈ X there exists a unique z, denoted by x ∧ y, su
h that for all
t ∈ X , t ≤ x and t ≤ y implies z ≥ t. (Lower bound property.)Let L = (X, ≤) be a latti
e. An element x ∈ X is 
alled join-irredu
ible(resp. meet-irredu
ible) if x = y ∨ z (resp. x = y ∧ z) implies x = y or x = z.A join-irredu
ible (resp. meet-irredu
ible) element 
overs (resp. is 
overed by)exa
tly one element. We denote by JL and ML the set of all join-irredu
ible andmeet-irredu
ible elements of L respe
tively.The poset of irredu
ible elements of a latti
e L = (X, ≤) is a representationof L by a bipartite poset Bip(L) = (JL, ML, ≤). The 
on
ept latti
e of Bip(L)is isomorphi
 to L (for more details see the books of Davey and Priestley [3℄,and Ganter and Wille [10℄).An impli
ation on X is an ordered pair (A, B) of subsets of X , denoted by

A → B. The set A is 
alled the premise and the set B the 
on
lusion of theimpli
ation A → B. Let Σ be a set of impli
ations on X . A subset Y ⊆ X is
Σ-
losed if for ea
h impli
ation A → B in Σ, A ⊆ Y implies B ⊆ Y . The 
losureof a set S by Σ, denoted by SΣ , is the smallest Σ-
losed set 
ontaining S.Let S be a subset of X . Algorithm 1 
omputes the 
losure of S by a between-ness relation Σ. It is known as forward 
haining pro
edure or 
hase pro
edure[11℄.The set of Σ-
losed subsets of X , denoted by FΣ , is a 
losure system on X(i.e 
losed under set-interse
tion), and when ordered under in
lusion is a latti
e.
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Algorithm 1: Set Closure(S, Σ)Data: A set S ⊆ X and Σ a betweennessResult: The 
losure SΣbeginLet SΣ := S;while ∃xy → z ∈ Σ s.t. {x, y} ⊆ SΣ and z /∈ SΣ do
SΣ = SΣ ∪ {z};endConversely, given a 
losure system F on X , a family Σ of impli
ations on Xis 
alled an impli
ational basis for F if F = FΣ . A subset K ∈ X is 
alled a keyif KΣ = X and K is minimal under in
lusion with this property. The name key
omes from database theory [15℄.De�nition 1. An impli
ation set Σ on X is 
alled a betweenness relation if forall A → B ∈ Σ, |A| = 2.Two betweenness relations Σ1 and Σ2 are said to be equivalent, denoted by

Σ1 ≡ Σ2, if FΣ1 = FΣ2 . We de�ne the 
losure of a betweenness relation Σ by
Σc = {ab → c | a, b, c ∈ X and Σ ≡ Σ ∪ {ab → c}}. Note that Σc is theunique maximal betweenness relation equivalent to Σ. In ea
h equivalen
e 
lasswe distinguish two types of betweenness relations:Canoni
al A 
anoni
al betweenness is the maximum in its equivalen
e 
lass.Optimal A betweenness Σ is optimal if for any betweenness relation Σ′ equiv-alent to Σ, we have |Σ| ≤ |Σ′|.A graph G is a pair (V (G), E(G)), where V (G) is the set of verti
es and
E(G) is the set of edges. We 
onsider simple graphs (for further de�nitions seethe book [6℄). Examples of betweenness relations arising from graph theory are
ΣG = {xy → z | z lies in a shortest path from x to y} and ΣG = {xy → V (G) |
xy ∈ E(G)}. Several other notions of 
onvexity spa
es are de�ned on graphs (see[17℄). Figure 1 gives an example of a graph and its 
onvex sets for the shortestpath betweenness.3 The Latti
e of all Betweenness RelationsLet X be a �nite set and Σ a betweenness relation on X . Given two sets A and
C in 2X su
h that A ⊆ C, we de�ne the set interval [A, C] as the family of allsets B in 2X su
h that A ⊆ B ⊆ C.Demetrovi
s et al. [5℄ gave a 
hara
terization of 
onvex sets of an impli
ationbasis. Proposition 1 is restri
ted to betweenness relations.
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c

d(a) A graph G

{}

{a,c}

{a}

{b,d}{b,c}{a,d}

{a,b,c,d}

{c} {d} {b}(b) Convex sets of G forshortest path betweennessFig. 1. A graph and its 
onvex sets for the shortest path betweenness relationProposition 1. [5℄ Let Σ be a betweenness relation on a set X. Then,
FΣ = 2X \

⋃

ab→c∈Σ

[{a, b}, X \ {c}].We denote by FX := {FΣ | Σ is a betweenness relation on X} the family ofall betweenness relations on X .Theorem 1. FX is a 
losure system and therefore a latti
e when stru
turedunder in
lusion.Proof. We have to prove that this stru
ture is 
losed under the interse
tion andit 
ontains a unique maximal element.Let F1, F2 ∈ FX , then there exist Σ1 and Σ2 indu
ing these families of 
onvexsets on X . Let F = F1 ∩ F2 and Σ be the betweenness de�ned by ab → c ∈ Σ if
ab → c ∈ Σ1 or ab → c ∈ Σ2. Then we 
laim that F = FΣ .Let C be a set in F . It is 
onvex for Σ1 and for Σ2. Therefore, for any a, b in
C, every c su
h that ab → c ∈ Σ1 or ab → c ∈ Σ2 is in C. From this, we derivethat for any a, b in C, every c su
h that ab → c ∈ Σ is in C, so that C is 
onvexfor Σ.Re
ipro
ally, let C be a 
onvex set for Σ. We will show that it is 
onvex for Σ1and Σ2. Let a, b, c be elements of X su
h that a and b are in C and ab → c ∈ Σ1.Then ab → c ∈ Σ and sin
e C is 
onvex for Σ, b is in C. Therefore, C is in F1.Similarly it is in F2 so that it is in F .Sin
e Σ = Σ1 ∪ Σ2, we 
on
lude that Σ is a betweenness relation and there-fore the set FX is 
losed under interse
tion.The family 2X is in FX . It arises when Σ is the empty betweenness relation.Proposition 2. Given two families F1 and F2 in FX and their 
anoni
al be-tweenness relations Σ1 and Σ2. Then
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� F1 ∧ F2 = FΣ1∪Σ2.� F1 ∨ F2 = FΣ1∩Σ2.Proof. See the proof of Theorem 1 for the �rst point. Noww, note that Σ1 and
Σ2 are 
anoni
al betweenness relations. Suppose that F1 ∨F2 is not FΣ1∩Σ2. ByProposition 1, we have F1 ∨ F2 ⊆ FΣ1∩Σ2 .Now 
all Σ∨ the 
anoni
al betweenness relation related to F1 ∨ F2. If ab →
c ∈ Σ∨ for some a, b and c in X , then we know that ab → c ∈ Σi be
ause
Fi ⊆ F1 ∨ F2 for i = 1, 2 (in the 
anoni
al form, we have every ab → c su
hthat the 
orresponding interval has no interse
tion with F ). Therefore, every
ab → c ∈ Σ∨ is true for Σ, and FΣ1∩Σ2 = F1 ∨ F2.Corollary 1. FX is a meet-sublatti
e of the latti
e of all 
losure systems on X.Proof. Let F1 and F2 be two families in FX . Sin
e F1 ∩ F2 is the 
losure systemof a betweenness relation then the meet is preserved and thus FX is a a meet-sublatti
e of the latti
e of all 
losure systems on X .Remark 1. Noti
e that FX is not a sublatti
e of the latti
e of all 
losure systemson X . It su�
es to 
onsider the example where X = {1, 2, 3, 4}. Take the 
o-atoms F1 = 2X \ [{1, 2}, {1, 2, 3}] de�ned by the betweenness relation restri
tedto 12 → 4 and F2 = 2X \ [{2, 3}, {1, 2, 3}] de�ned by the betweenness relationrestri
ted to 23 → 4. Then F1 ∪ F2 = 2X \ {{1, 2, 3}} and is a 
losure system,while F1 ∨ F2 is the top element, 2X .In the following, we give a 
hara
terization of the poset of irredu
ible elementsof FX .Proposition 3. The poset of irredu
ible elements of FX is the bipartite poset
Bip(FX) = (JFX , MFX , ⊆) where

JFX := {F⊥ ∪ {S} | S ∈ 2X \ F⊥} where F⊥ = {∅, X} ∪ {{x} | x ∈ X}
MFX := {2X \ [ab, X \ {c}] | a, b, c ∈ X}.Proof. We prove this proposition point by point.Consider the maximal betweenness relation Σ = {ab → c | a, b, c ∈ X}.Then F⊥ = FΣ = 2X \ ⋃

ab→c∈Σ [{a, b}, X \ {c}] (see Proposition 1). Thus
F⊥ = {∅, X} ∪ {{x} | x ∈ X}.For meet-irredu
ible elements, we will �rst 
onsider 
o-atoms. Let Σ be abetweenness relation su
h that FΣ is a 
o-atom. Sin
e Σ is non-empty, thenthere exists a set whi
h is not 
onvex. Thus Σ must 
ontain an impli
ation
ab → c, with a, b, c ∈ X , whi
h 
orresponds to the maximal 
losure system inFX and di�erent from 2X . Namely, we remove from 2X the 
onvex sets of theinterval [{a, b}, X \ {c}].Now suppose there exists another meet-irredu
ible element F whi
h is not a
o-atom. Call Σ1 a betweenness relation su
h that F is FΣ1 . Also, 
all F ′ the
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only su

essor of FΣ1 and Σ2 a betweenness su
h that F ′ is FΣ2 . By Proposi-tion 1, we know that from F ′ to F , we remove at least an interval of the form
[{a, b}, X \ {c}]. Thus, the 
o-atom asso
iated to the impli
ation ab → c is notabove F ′ but it is above F , so that F has at least two su

essors. We 
on
ludethat all meet-irredu
ible elements are 
o-atoms of FX .For join-irredu
ible elements, we will �rst 
hara
terize atoms of FX . Pi
kany subset S of X whi
h is not empty, a singleton or the whole of X . De�nethe betweenness relation ΣS su
h that ab → c ∈ ΣS for every a, b, c in X ex
eptthose where a and b are in S and c is not in S. Then FΣS is F⊥ ∪ {S}. Nowsuppose there exists a join-irredu
ible F ∈ FX that is not an atom. F 
ontainsat least one set S whi
h is not in the unique 
losure system F ′ ∈ FX thatit 
overs. But there is an atom whi
h 
ontains exa
tly F” = F⊥ ∪ {S}, with
F” ⊆ F and F” 6⊆ F ′. Thus F 
overs at least two elements, and thus F is not ajoin-irredu
ible element.Corollary 2. FX 
ontains (

n
2

)
(n − 2)2n−3 meet-irredu
ible and 2n − (n + 2)join-irredu
ible elements.Proof. Every 
o-atom is of the form 2X \ [{a, b}, X\{c}] and is above every atomformed by F⊥ and any set not in the forbidden interval. This makes 2n − (n +

2) − 2n−3 atoms below it.An atom of the form F⊥ ∪S where S is a set on X of size 2 to n− 1, is belowevery 
o-atom that does not forbid S. This number equals (
n
2

)
(n − 2)2n−3 −

[
(|S|

2

)
(n − |S|)].Figure 2 shows the irredu
ible poset for X = {1, 2, 3, 4} where every atom isrepresented by the set S added to F⊥ and every 
o-atom is represented by theremoved impli
ation xy → z.

12 → 3 12 → 4 13 → 2 13 → 4 14 → 2 14 → 3 23 → 1 23 → 4 24 → 1 24 → 3 34 → 1 34 → 2

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}Fig. 2. Irredu
ible poset for n = 4
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4 Clique Betweenness RelationsIn this se
tion we deal with a spe
ial betweenness relation de�ned through agraph in a spe
i�
 way. Many other betweenness relations on graphs 
an bede�ned in the same way, e.g. independent sets, set 
overs.Given a graph G, we de�ne the betweenness relation
ΣG := {ab → c | c ∈ X, ab /∈ E(G)}.The 
onvex sets of ΣG are exa
tly the 
liques of G. Noti
e that for any graph

G, there is a 
orresponding betweenness relation ΣG. In the following, we 
har-a
terize the latti
e of all ΣG where G is a graph with vertex-set X . We denoteby FK
X = {FΣG | G is a graph on X}.Proposition 4. (FK

X , ⊆) is a latti
e.Proof. The bottom (resp. top) element of FX 
orresponds to FΣG where G is astable (resp. 
lique) on X .Moreover, FK
X is 
losed under interse
tion (the 
liques of the interse
tion oftwo graphs are exa
tly the ones in the interse
tion of both families of 
liques).Therefore, (FK

X , ⊆) is a latti
e.Sin
e ΣG is a betweenness relation, then FK
X ⊂ FX for any graph G de�nedon X .Proposition 5. The latti
e (FK

X , ⊆) is a sublatti
e of (FX , ⊆).Proof. It is easy to see that it is a meet-sublatti
e, the meet of two families isthe interse
tion of both families in both stru
tures.In order to prove that it is a join-sublatti
e of (FX , ⊆), 
onsider two graphs
G1 and G2 and their 
lique families F1 and F2. Call G the graph union of G1 and
G2 and F the family of its 
liques. The related betweenness relation is obtainedby taking the interse
tion of betweenness relations related to G1 and G2 (non-edges in G are exa
tly non-edges in G1 and in G2). Therefore it is the join of F1and F2 in (FX , ⊆).Corollary 3. The latti
e (FK

X , ⊂) is a boolean latti
e with (
n
2

) atoms.Proof. For ea
h graph G, its 
orresponding 
anoni
al betweenness relation is theset Σc
G := {ab → X | ab /∈ E(G)}. Note that any super-set of Σc

G 
orresponds toa betweenness relation of a partial graph of G, by deleting edges ab from G whi
h
orresponds to adding ab → X in Σc
G. Sin
e any atom of (FK

X , ⊂) 
orresponds toa betweenness relation whi
h 
ontains exa
tly an impli
ation ab → X , we haveexa
tly (
n
2

) atoms.
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5 Algorithmi
 Aspe
ts of Betweenness RelationsIn this se
tion, we re
all some optimization problems related to betweennessrelations.Minimum Key (MK)Input: Σ a betweenness relation on X and k an integer.Question: Is there a set K ⊆ X su
h that |K| ≤ k and KΣ = X?These problems have been studied in the several domains and spe
ially indatabase theory, and they have been proved NP-
omplete [5,14,15℄ for generalimpli
ation bases. The problem MK has been proved NP-
omplete for parti
ular
ases of betweenness relations (see for instan
e [7℄ for the shortest path between-ness relation on graphs). It is known as the hull number of a betweenness relation.Therefore, we have the following.Proposition 6. MK is NP-
omplete.Re
ently, Kanté and Nourine [12℄ have shown that MK is polynomial forshortest path betweenness relations of 
hordal and distan
e hereditary graphsby using database te
hniques. Can we use the latti
e stru
ture of FX to get newpolynomial time algorithms for the MK problem in new graph 
lasses?Now we 
onsider the problem whi
h 
omputes an optimal 
over of a between-ness relation. This problem is to �nd an optimal betweenness relation whi
h isequivalent to a given betweenness relation. Several works have been done in thegeneral 
ase known as Horn minimization [11℄.Optimal Cover (OC)Input: Σ a betweenness relation on X and k an integer.Question: Is there a betweenness relationΣ′ equivalent to Σ su
h that |Σ′| ≤ k?The size of an optimal 
over is known as the hydra number [19℄. The 
ompu-tational 
omplexity of the hydra number is open for betweenness relations, butis NP-
omplete for the general 
ase [11,15℄. We hope that the latti
e stru
tureof FX 
ould help to address this question.6 Con
lusionIn this paper, we 
hara
terize the 
ontext of the latti
e of all betweenness re-lations on a �nite set, whi
h is a meet-sublatti
e of the latti
e of all 
losuresystems on the same set. We are 
onvin
ed that the stru
ture of latti
e 
an helpto understand some problems of graph theory su
h as hull number and hydranumber. In the future we will investigate the link of these parameters and thestru
ture of the latti
e.
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Abstract. In this paper, we show how the existence of taxonomies on
objects and/or attributes can be used in formal concept analysis to help
discover generalized patterns in the form of concepts. To that end, we an-
alyze three generalization cases and different scenarios of a simultaneous
generalization on both objects and attributes.
We also contrast the number of generalized patterns against the number
of simple patterns.

1 Introduction

In many real-life applications and research trends in Computer Science, the se-
mantics of data can be advantageously exploited to better retrieve and efficiently
manage information and discover unexpected and relevant patterns which are a
concise and semantically rich representation of data. Patterns can be clusters,
concepts, association rules, outliers, and so on. In this work we analyze some
possible ways to abstract or group objects and/or attributes together to get
generalized concepts by using taxonomies on attributes and/or objects.

Formal Concept Analysis (FCA) is a formalism for knowledge representation
which is based on the formalization of “concepts” and “concept hierarchies” [6].
One recurrent problem in FCA is the number of concepts that can be exponential
in the size of the context. To handle this problem many techniques have been
proposed [2] to use or produce a taxonomy on attributes or objects to control
the size of the context and the corresponding concept lattice.

The rest of this contribution is organized as follows. In Section 2 we intro-
duce the basic notions of FCA. Section 3 presents three different generalization
schemes, and discusses different scenarios of generalizing both objects and at-
tributes. In Section 4 we discuss the visualization issue of generalized patterns
and provide the real meaning of the three generalization cases. In Section 5 the
size of the generalized concept set is compared to the size of the initial (i.e.,
before generalization) concept set. Finally, existing work about combining FCA
with ontology is briefly described in Section 6.
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2 Formal Concept Analysis and Data Mining

2.1 Elementary information systems, contexts and concepts

K a b c d e f g h

1 × × ×
2 × × × ×
3 × × × × ×
4 × × × × ×
5 × × ×
6 × × × ×
7 × × ×
8 × × × ×

Fig. 1: A formal context

In formal concept analysis, a context is a triple
K := (G,M, I) where G, M and I stand for a set
of objects, a set of attributes, and a binary relation
between G and M respectively. A formal concept
is a pair (A,B) such that B is exactly the set of all
properties shared by the objects in A and A is the
set of all objects that have all the properties in B.
We set A′ := {m ∈ M | aIm for all a ∈ A} and
B′ := {g ∈ G | gIb for all b ∈ B}. Then (A,B)
is a concept of K iff A′ = B and B′ = A. The
extent of the concept (A,B) is A while its intent
is B. We denote by B(K), Int(K) and Ext(K) the
set of concepts, intents and extents of the formal
context K, respectively. A subset X is closed if X ′′ = X. Closed subsets of G are
exactly extents while closed subsets of M are intents of K. Figure 1 describes
items a, . . . , h that appear in eight transactions (customers) of a market basket
analysis application. Such a setting defines a binary relation I between the set
G of objects/transactions and the set M of properties/items.

The concept hierarchy is formalized with a relation ≤ defined on B(K) by
A ⊆ C ⇐⇒ : (A,B) ≤ (C,D) :⇐⇒ B ⊇ D. This is an order relation, and is
also called a specialization/generalization relation on concepts. In fact, a concept
(A,B) is called a specialization of a concept (C,D), or (C,D) is a generalization
of (A,B) iff (A,B) ≤ (C,D) holds. For any list C of concepts of K, there is a
concept u of K which is more general than every concept in C and is a special-
ization of every generalization of all concepts in C (u is the supremum of C and
is denoted by

∨ C), and there is a concept v of K which is a specialization of
every concept in C and a generalization of every specialization of all concepts in
C (v is the infimum of C and is denoted by

∧ C)3. Hence, B(K) is a complete
lattice called the concept lattice of the context K.

For g ∈ G and m ∈M we set g′ := {g}′ and m′ := {m}′. The object concepts
(γg := (g′′, g′))g∈G and the attribute concepts (µm := (m′,m′′))m∈M form the
“building blocks” of B(K). In fact, every concept of K is a supremum of some
γg’s and infimum of some µm’s4. Thus, the set {γg | g ∈ G} is

∨
-dense and the

set {µm | m ∈M} is
∧

-dense in B(G,M, I).

The size of a concept lattice can be extremely large, even exponential in the
size of the context. To handle such large sets of concepts many techniques have
been proposed [6], based on context decomposition or lattice pruning/reduction
(atlas decomposition, direct or subdirect decomposition, iceberg concept lattices,

3 For two concepts x1 and x2 we set x1 ∨ x2 :=
∨{x1, x2} and x1 ∧ x2 :=

∧{x1, x2}.
4 For (A,B) ∈ B(G,M, I) we have

∨

g∈A
γg = (A,B) =

∧

m∈B
µm.
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nested line diagrams, . . . ). We believe that using taxonomies on objects and at-
tributes can contribute to the extraction of unexpected and relevant generalized
patterns and in most cases to the reduction of the size of discovered patterns.

2.2 Labeled line diagrams of concept lattices

Fig. 2: Concept lattice of the context in Fig 1

One of the strengths of
FCA is the ability to
pictorially display knowl-
edge, at least for contexts
of reasonable size. Finite
concept lattices can be
represented by reduced
labeled Hasse diagrams
(see Figure 2). Each node
represents a concept. The
label g is written below
γg and m above µm. The
extent of a concept rep-
resented by a node a is
given by all labels in G
from the node a down-
wards, and the intent by
all labels in M from a up-
wards. For example, the
label 5 in the left side of Figure 2 represents the object concept γ5 =
({5, 6}, {a, c, d}). Diagrams are valuable tools for visualizing data. However draw-
ing a good diagram for complex structures is a big challenge. Therefore, we need
tools to abstract the output by reducing the size of the input, making the struc-
ture nicer, or by exploring the diagram layer by layer. For the last case, FCA
offers nested line diagrams as a means to visualize the concepts level-wise [6].

Before we move to generalized patterns, let us see how data are transformed
into binary contexts, the suitable format for our data.

2.3 Information Systems

Frequently, data are not directly encoded in a “binary” form, but rather as a
many-valued context, i.e., a tuple (G,M,W, I) such that G is the set of objects,
M the set of attribute names, W the set of attribute values, I ⊆ G ×M ×W
and every m ∈M is a partial map from G to W with (g,m,w) ∈ I iff m(g) = w.
Many-valued contexts can be transformed into binary contexts, via conceptual
scaling. A conceptual scale for an attribute m of (G,M,W, I) is a binary context
Sm := (Gm,Mm, Im) such that m(G) ⊆ Gm. Intuitively, Mm discretizes or
groups the attribute values into m(G), and Im describes how each attribute
value m(g) is related to the elements in Mm. For an attribute m of (G,M,W, I)
and a conceptual scale Sm we derive a binary context Km := (G,Mm, I

m) with
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gImsm :⇐⇒ m(g)Imsm, where sm ∈Mm. This means that an object g ∈ G is
in relation with a scaled attribute sm iff the value of m on g is in relation with
sm in Sm. With a conceptual scale for each attribute we get the derived context
KS := (G,N, IS) where N :=

⋃{Mm | m ∈M} and gISsm ⇐⇒ m(g)Imsm. In
practice, the set of objects remains unchanged; each attribute name m is replaced
by the scaled attributes sm ∈Mm. The choice of a suitable set of scales depends
on the interpretation, and is usually done with the help of a domain expert. A
Conceptual Information System is a many-valued context together with a set of
conceptual scales [9, 12]. The methods presented in Section 3 are actually a form
of scaling.

3 Generalized Patterns

In the field of data mining, generalized patterns are pieces of knowledge ex-
tracted from data when an ontology is used. In the following we formalize the
way generalized patterns are produced. Let K := (G,M, I) be a context. The at-
tributes of K can be grouped together to form another set of attributes, namely
S, to get a context where the attributes are more general than in K. For the
basket market analysis example, items/products can be generalized into product
lines and then product categories, and customers may be generalized to groups
according to some specific features (e.g., income, education). The context K is
then replaced with a context (G,S, J) as in the scaling process where S can be
seen as an index set such that {ms | s ∈ S} covers M . We will usually identify
the group ms with the index s.

3.1 Types of Generalization

There are mainly three ways to express the relation J :

(∃) g J s :⇐⇒ ∃m ∈ s, g Im. Consider an information table describing compa-
nies and their branches in USA. We first set up a context whose objects are
companies and whose attributes are the cities where these companies have
branches. If there are too many cities, we can decide to group them into
states to reduce the number of attributes. Then, the (new) set of attributes
is now a set S whose elements are states. It is quite natural to assert that
a company g has a branch in a state s if g has a branch in a city m which
belongs to the state s.

(∀) g J s : ⇐⇒ ∀m ∈ s, g Im. Consider an information system about Ph.D.
students and the components of the comprehensive exam (CE). Assume that
components are: the written part, the oral part, and the thesis proposal, and
a student succeeds in his exam if he succeeds in the three components of
that exam. The objects of the context are Ph.D. students and the attributes
are the different exams taken by students. If we group together the different
components, for example

CE.written, CE.oral, CE.proposal 7→ CE.exam,
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then it becomes natural to state that a student g succeeds in his compre-
hensive exam CE.exam if he succeeds in all the exam parts of CE.

(α%) g J s : ⇐⇒ |{m∈s | g Im}|
|s| ≥ αs where αs is a threshold set by the user

for the generalized attribute s. This case generalizes the (∃)-case (α = 1
|M | )

and the (∀)-case (α = 1). To illustrate this case, let us consider a context
describing different specializations in a given Master degree program. For
each program there is a set of mandatory courses and a set of optional ones.
Moreover, there is a predefined number of courses that a student should suc-
ceed to get a degree in a given specialization. Assume that to get a Master in
Computer Science with a specialization in “computational logic”, a student
must succeed seven courses from a set s1 of mandatory courses and three
courses from a set s2 of optional ones. Then, we can introduce two general-
ized attributes s1 and s2 so that a student g succeeds in the group s1 if he
succeeds in at least seven courses from s1, and succeeds in s2 if he succeeds
in at least three courses from s2. So, αs1 := 7

|s1| , αs2 := 3
|s2| , and

g J si ⇐⇒
|{m ∈ si | g Im}|

|si|
≥ αsi , 1 ≤ i ≤ 2.

K∃−∀−α a b c d e f g h A B C D S T U V E F H

1 × × × × × ×
2 × × × × × × × × ×
3 × × × × × × × × × × × ×
4 × × × × × × × × × × × ×
5 × × × × × × ×
6 × × × × × × × × ×
7 × × × × × × ×
8 × × × × × × × × ×

Fig. 3: Three generalizations of the context in Fig. 1 (see Subsection 3.1). The ∃-
generalized attributes are A := {e, g}, B := {b, c}, C := {a, d} and D := {f, h}.
The ∀-generalized attributes are S := {e, g}, T := {b, c}, U := {a, d} and V := {f, h}.
The α-generalized attributes are E := {a, b, c}, F := {d, e, f} and H := {g, h} with
α = 60%.

The α-case discussed here generalizes the alpha Galois lattices investigated
by Ventos et al [14, 10]. In fact, if the set S forms a partition of M and all αs
are equal, then the generalization is an alpha Galois lattice.

Attribute generalization reduces the number of attributes. One may there-
fore expect a reduction in the number of concepts. Unfortunately, this is not
always the case. Therefore, it is interesting to investigate under which condition
generalizing patterns leads to a “generalized” lattice of smaller size than the ini-
tial one. Moreover, finding the connections between the implications and more
generally association rules of the generalized context and the initial one is also
an important problem to be considered.
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Fig. 4: Lattices of contexts in Fig 3. ∃-generalization (left), ∀-generalization (middle)
and α-generalization (right)

If data represent customers (transactions) and items (products), the usage
of a taxonomy on attributes leads to new useful patterns that could not be seen
before generalizing attributes. For example, the ∃-case (see Figure 4, left) helps
the user acquire the following knowledge:

– Customer 3 (at the bottom of the lattice) buys at least one item from each
product line

– Whenever a customer buys at least one item from the product line D, then
he/she buys at least one item from the product line A.

From the ∀-case in Figure 4 (middle), one may learn for example that Customers
4 and 6 have distinct behaviors in the sense that the former buys all the items of
the product lines V and S while the latter purchases all the items of the product
lines U and T .

To illustrate the α-case, we put the attributes of M in three groups E :=
{a, b, c}, F := {d, e, f} and H := {g, h} and set α := 60% for all groups. This
α-generalization on the attributes of M is presented in Figure 4 (right). Note
that if all groups have two elements, then any α-generalization would be either
an ∃-generalization (α ≤ 0.5) or a ∀-generalization (α > 0.5). From the lattice in
Figure 4 (right) one can see that any customer buying at least 60% of items in
H necessarily purchases at least 60% of items in F . Moreover, the product line
E (respectively H) seems to be the most (resp. the less) popular among the four
product lines since five out of eight customers (resp. only one customer) bought
at least 60% of items in E (resp. H).

Generalization can also be conducted on objects to replace some (or all) of
them with generalized objects, or even more, can be done simultaneously on
objects and attributes.

3.2 Generalization on Objects and Attributes

Done simultaneously on attributes and on objects, the generalization will give a
kind of hypercontext (similar to hypergraphs [1]), since the objects are subsets
of G and attributes are subsets of M . Let A be a group of objects and B be a
group of attributes related to a context K. Then, the relation J can be defined
using one or a combination of the following cases:

1. A JB iff ∃a ∈ A, ∃b ∈ B such that a I b, i.e. some objects from the group A
are in relation with some attributes in the group B;
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2. A JB iff ∀a ∈ A, ∀b ∈ B a I b, i.e. every object in the group A is in relation
with every attribute in the group B;

3. A JB iff ∀a ∈ A, ∃b ∈ B such that a I b, i.e. every object in the group A has
at least one attribute from the group B;

4. A JB iff ∃b ∈ B such that ∀a ∈ A a I b, i.e. there is an attribute in the group
B that belongs to all objects of the group A;

5. A JB iff ∀b ∈ B, ∃a ∈ A such that a I b, i.e. every property in the group B is
satisfied by at least one object of the group A;

6. A JB iff ∃a ∈ A such that ∀b ∈ B a I b, there is an object in the group A
that has all the attributes in the group B;

7. A JB iff

∣∣∣∣{a∈A|
|{b∈B|a I b}|

|B| ≥βB}
∣∣∣∣

|A| ≥ αA, i.e. at least αA fraction of objects in

the group A have each at least βB fraction of the attributes in the group B;

8. A JB iff

∣∣∣∣
{
b∈B| |{a∈A|a I b}|

|A| ≥αA

}∣∣∣∣
|B| ≥ βB, i.e. at least βB% of attributes in the

group B belong altogether to at least αA% of objects in the group A;

9. A JB iff |A×B∩I||A×B| ≥ α, i.e. the density of the rectangle A×B is at least equal
to α.

Remark 1. The cases 7 and 8 generalize Case 1 (αA := 1
|G| , βB := 1

|M | for all A
and B) and Case 2 (αA := 1, βB := 1 for all A and B). Moreover, Case 7 also
generalizes Case 3 (αA := 1, βB := 1

|M | for all A and B) and Case 5 (αA := 1
|G| ,

βB := 1 for all A and B). However, Cases 4 and 6 cannot be captured by Case 7,
but are captured by Case 8 (αA := 1, βB := 1

|M | for all A and B to get Case 4,

and αA := 1
|G| , βB := 1 for all A and B to get Case 6).

An example of generalization on both objects and attributes would be one of
customers grouped according to some common features and items grouped into
product lines. We can also assign to each group all items bought by their members
(an ∃-generalization) or only their common items (a ∀-generalization), or just
some of the frequent items among their members (similar to an α-generalization).

4 Visualizing Generalized Patterns on Line diagrams

4.1 Visualization

Let K be a formal context and (G,S, J) a context obtained from K via a gener-
alization on attributes. The usual action is to directly construct a line diagram
of (G,S, J) which contains concepts with generalized attributes (See Fig 4).
However, one may be interested, after getting (G,S, J) and constructing a line
diagram for B(G,S, J), to refine further on the attributes in M or recover the
lattice constructed from K.

When storage space is not a constraint, then the attributes in M and the
generalized attributes can be kept altogether. This is done using the apposition
of K := (G,M, I) and (G,S, J) to get (G,M ∪ S, I ∪ J).
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Fig. 5: Projection of the lattice in Figure 2 onto
the ∀-generalized attributes.

A nested line diagram [6]
can be used to display the re-
sulting lattice, with (G,S, J)
at the first level and K at the
second one, i.e., we construct
a line diagram for B(G,S, J)
with nodes large enough to
contain copies of the line di-
agram of B(K). The general-
ized patterns can then be vi-
sualized by conducting a pro-
jection (i.e., a restricted view)
on generalized attributes, and
keeping track of the effects of
the projection, i.e, we display the projection of the concept lattice B(G,M ∪
S, I ∪ J) on S by marking the equivalence classes on B(G,M ∪ S, I ∪ J). Note
that two concepts (A,B) and (C,D) are equivalent with respect to the projec-
tion on S iff B ∩ S = D ∩ S (i.e., their intents have the same restriction on S
[8]). This is illustrated by Figure 5.

4.2 Are generalized attributes really generalizations?

Fig. 6: α-generalization with µE‖µb. E = {a, b, c},
F = {d, e, f}, H = {g, h}, α = 0.6.

For attributes a, b ∈M ∪S,
we should normally assert
that a is a generalization of
b or b is a specialization of
a whenever µa ≥ µb. For
the ∃-case we have, m′s =⋃{m′ | m ∈ ms}. Thus,
µms ≥ µm for all m ∈ ms;
i.e. ms is really a gener-
alization of the attributes
m ∈ ms.

For the ∀-case we have,
m′s =

⋂{m′ | m ∈ ms}. Thus,
µms ≤ µm, ∀m ∈ ms; i.e.
ms is rather a specialization
of the attributes m ∈ ms.
For the α-case, 1

|M | < α < 1,

an object g ∈ G is in rela-
tion with an attribute ms

iff α ≤ |{m∈ms|g Im}|
|ms| . The following situations can happen:

– There is an α-generalized attribute ms ∈ S with at least one attribute m ∈
ms such that g 6 Im and g Jms; hence µm � µms in B(G,M ∪ S, I ∪ J); i.e
µms is not a generalization of µm.
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– There is an α-generalized attribute ms ∈ S with at least one attribute m ∈
ms such that g Im and g 6 Jms; hence µms � µm in B(G,M ∪ S, I ∪ J); i.e
µms is not a specialization of µm.

Therefore, there are α-generalized attributes ms that are neither a gener-
alization of the m’s nor a specialization of the m’s. In Figure 6, the element b
belongs to the group E, but µE is neither a specialization nor a generalization
of µb, since µb � µE and µE � µb. Thus, we should better call the α-case
an attribute approximation, the ∀-case a specialization and only the ∃-case a
generalization.

5 Controlling the size of generalized concepts

A generalized concept is a concept whose intent (or extent) contains generalized
attributes (or objects). Figure 7 displays an ∃-generalization that leads to a
larger number of concepts. The two concepts µm1 and µm2 will be put together.
Although attributesm1 andm2 are replaced withm12, the nodes γg2 and γg3 will
remain since they will be obtained as µm12 ∧µm4 and µm12 ∧µm3 respectively.
Then we get the configuration on Figure 7 (right) which has one concept more
than the initial concept lattice shown in the left of the same figure.

In the following, we analyze the impact of ∃ and ∀ attribute generalizations
on the size of the resulting set of generalized concepts.

5.1 An ∃-generalization on attributes

Fig. 7: An ∃-generalization (right) in-
creasing the size of the initial lattice
(left). m12 = {m1,m2}.

Let (G,M, I) be a context and
(G,S, J) a context obtained from an
∃-generalization on attributes, i.e the
elements of S are groups of attributes
from M . We set S = {ms | s ∈ S},
with ms ⊆M . Then, an object g ∈ G
is in relation with a generalized at-
tribute ms if there is an attribute m
in ms such that g Im. To compare the
size of the corresponding concept lat-
tices, we can define some mappings.
We assume that (ms)s∈S forms a par-
tition of M . Then for each m ∈ M
there is a unique generalized attribute ms such that m ∈ ms, and g Im implies
g Jms, for every g ∈ G. To distinguish between derivations in (G,M, I) and in
(G,S, J), we will replace ′ by the name of the corresponding relation. For exam-
ple gI = {m ∈ M | g Im} and gJ = {s ∈ S | g J s}. Two canonical maps α and
β are defined as follows:

α : G→ B(G,S, J)

g 7→ γ̄g := (gJJ, gJ)
and

β : M → B(G,S, J)

m 7→ µ̄ms := (sJ, sJJ), where m ∈ ms
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The maps α and β induce two order preserving maps ϕ and ψ defined by

ϕ : B(G,M, I)→ B(G,S, J)
(A,B) 7→ ∨{αg | g ∈ A} and

ψ : B(G,M, I)→ B(G,S, J)
(A,B) 7→ ∧{βm | m ∈ B}

If ϕ or ψ is surjective, then the generalized context is of smaller cardinality.
As we have seen on Figure 7 these maps can be both not surjective. Obviously
ϕ(A,B) ≤ ψ(A,B) since g Im implies g Jms and γ̄g ≤ ¯µms. When do we have
the equality? Does the equality imply surjectivity?

Here are some special cases where the number of concepts does not increase
after a generalization.

Case 1 Every ms has a greatest element >s. Then the context (G,S, J) is a
projection of (G,M, I) on the set MS := {>s | s ∈ S} of greatest elements
of ms. Thus B(G,S, J) ∼= B(G,MS , I ∩ (G ×MS)) and is a sub-order of
B(G,M, I). Hence |B(G,S, J)| = |B(G,MS , I ∩G×MS)| ≤ |B(G,M, I)|.

Case 2
⋃{mI | m ∈ ms} is an extent, for any ms ∈ S. Then any grouping does

not produce a new concept. Hence the number of concepts cannot increase.

The following result (Theorem 1) gives an important class of lattices for which
the ∃-generalization does not increase the size of the lattice. A context is object
reduced if no row can be obtained as the intersection of some other rows.

Theorem 1. The ∃-generalizations on distributive concept lattices whose con-
texts are object reduced decrease the size of the concept lattice.

Proof. Let (G,M, I) be an object reduced context such that B(G,M, I) is a
distributive lattice. Let (G,S, J) be a context obtained by an ∃-generalization on
the attributes in M . Let ms be a generalized attribute, i.e. a group of attributes
of M . It is enough to prove that mJ

s is an extent of (G,M, I). By definition,

mJ
s =

⋃
{mI | m ∈ ms} ⊆

(⋃
{mI | m ∈ ms}

)II
= ext

(∨
{µm | m ∈ ms}

)

For any g ∈ ext(
∨{µm | m ∈ ms}) we have γg ≤ ∨{µm | m ∈ ms} and

γg = γm∧
∨
{µm | m ∈ ms} =

∨
{γg∧µm | m ∈ ms} = γg∧µm for some m ∈ ms.

Therefore γg ≤ µm, and g ∈ mI . This proves that ext(
∨{µm | m ∈ ms}) ⊆ mJ

s ,
and mJ

s = ext (
∨{µm | m ∈ ms}).

Remark 2. The above discussed cases are not the only ones where the size does
not increase. Therefore, it would be interesting to describe the classes of lattices
on which ∃-generalizations do not increase the size.

5.2 A ∀-generalization on attributes

Let (G,S, J) be a context obtained from (G,M, I) by a ∀-generalization. In the
context (G,M ∪ S, I ∪ J), each attribute concept µms is reducible. This means

that mJ
s =

⋂{mJ | m ∈ ms} =
⋂{mI | m ∈ ms}, and is an extent of (G,M, I).

Therefore, |B(G,S, J)| ≤ |B(G,M ∪ S, I ∪ J)| = |B(G,M, I)|.
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Theorem 2. The ∀-generalizations on attributes reduce the size of the concept
lattice.

6 Related work

There are a set of studies [2–5, 7, 13, 15] about the possible collaborations be-
tween formal concept analysis and ontology engineering (e.g., ontology merging
and mapping) to let the two formalisms benefit from each other strengths. For ex-
ample, starting from the observation that both domain ontologies and FCA aim
at modeling concepts, [2] show how FCA can be exploited to support ontology
engineering (e.g., ontology construction and exploration), and conversely how
ontologies can be fruitfully used in FCA applications (e.g., extracting new knowl-
edge). In [13], the authors propose a bottom-up approach called FCA−MERGE
for merging ontologies using a set of documents as input. The method relies
on techniques from natural language processing and FCA to produce a lattice
of concepts. Starting from a set of domain specific texts, [7] proposes a semi-
automatic method for ontology extraction and design based on FCA and Horn
clause model. [5] studies the role of FCA in reusing independently developed
domain ontologies. To that end, an ontology-based method for evaluating simi-
larity between FCA concepts is defined to perform some Semantic Web activities
such as ontology merging and ontology mapping. In [15] an approach towards
the construction of a domain ontology using FCA is proposed. The resulting
ontology is represented as a concept lattice and expressed via the Semantic Web
Rule Language to facilitate ontology sharing and reasoning.

In [4], a method for ontology mapping, called FCA-Mapping, is defined based
on FCA and allows the identification of equal and subclass mapping relations.
In [3], FCA is also used to propose an ontology mediation method for ontology
merging. The resulting ontology includes new concepts not originally found in
the input ontologies but excludes some redundant or irrelevant concepts.

In association rule mining, there are many efforts to integrate knowledge in
the process of rule extraction to produce generalized patterns [11].

7 Conclusion

In this paper we have studied the problem of using a taxonomy on objects
and/or attributes in the framework of formal concept analysis under three main
cases of generalization (∃, ∀, and α) and have shown that (i) the set of general-
ized concepts is in some cases smaller than the set of patterns extracted from the
original set of attributes (before generalization), and (ii) the generalized concept
lattice not only embeds new patterns on generalized attributes but also reveals
particular features of objects and may unveil a new taxonomy on objects. A
careful analysis of the three cases of attribute generalization led to the following
conclusion: the α-case is an attribute approximation, the ∀-case is an attribute
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specialization while only the ∃-case is actually an attribute generalization. Dif-
ferent scenarios of a simultaneous generalization on objects and attributes are
also discussed based on the three cases of generalization.

Since we focused our analysis on the integration of taxonomies in FCA to
produce generalized concepts, our further research concerns the theoretical study
of the mapping between a rule set on original attributes and a rule set of gener-
alized attributes as well as the exploitation of other components of an ontology
such as general links (other than is-a hierarchies) between concepts/entities.
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Abstract. Identifying functions shared by genes responsible for can-
cer is a challenging task. This paper describes the preparation work for
applying Formal Concept Analysis (FCA) to complex biological data.
We present here a preliminary experiment using these data on a core
context with the addition of domain knowledge. The resulting concept
lattices are explored and some interesting concepts are discussed. Our
study shows how FCA can help the domain experts in the exploration
of complex data.

Keywords: Formal Concept Analysis, Knowledge Discovery, Transcrip-
tomic Data.

1 Introduction

Over past few years, large volumes of transcriptomic data were produced but
their analysis remains a challenging task because of the complexity of the biolog-
ical background. Some earlier studies aimed at retrieving sets of genes sharing
the same transcriptional behavior with the help of Formal Concept Analysis [1,
2]. Further studies analyze gene expression data by using gene annotations to
determine whether a set of differentially expressed genes is enriched with biologi-
cal attributes [3, 4]. Several efforts have been made for integrating heterogeneous
data [5]. For example, at the Broad Institute, biological data were recently gath-
ered from multiple resources to get thousands of predefined genesets stored in
the Molecular Signature DataBase (MSigDB) [6]. A predefined geneset is a set
of genes known to have a specific property such as their position on the genome,
their involvement in a molecular pathway etc.

This paper focuses on the preparation of biological data to data mining
guided by domain knowledge. The objective is to apply knowledge discovery
techniques for analyzing a list of differentially expressed genes and identify-
ing functions or pathways shared by these genes assumed to be responsible for
cancer. Section 2 explains the proposed approach for FCA-based analysis of bio-
logical data. Section 3 focuses on the conducted experiment. Section 4 discusses
the results. Section 5 concludes the paper.

c© 2012 by the paper authors. CLA 2012, pp. 339–344. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



2 The Proposed Framework

We rely on the standard definition of FCA fully described in [7] and adapt it
according to the current problem. LetG be the set of genes {g1, g2, g3, ..., gn}, and
M be a set of attributes of MSigDB for describing genes. M will be considered
as a partition of three points of view, M = M1 ∪M2 ∪M3, with Mi ∩Mj = ∅
whenever i 6= j.

The first set of attributes M1 refers to four types of attributes, “Location”,
“Pathway”, “Transcription Factors” and “GO Terms” (see Table 1). For our
convenience we have named MSigDB categories as types of attributes and used
only C1, C2, C3 and C5. The category C4 was not used as it keeps information
on sets of genes related to a certain kind of cancer, which is not useful for the
current problem. Thus we have a first context K1 = (G,M1, I1) where I1 denotes
the relation stating that gene gi has an attribute mj in M1.

Types of Attributes Description Data Provenance

C1: Positional Gene Sets Location of the gene on the chro-
mosome.

Broad Institute

C2: Curated Gene Sets Pathway KEGG, REAC-
TOME, BIOCARTA

C3: Motif Gene Sets Transcription Factors Broad Institute

C4: Computational Gene
Sets

Cancer Modules Broad Institute

C5: Gene Ontology (GO)
Gene Sets

Biological Process, Cellular Com-
ponents, Molecular Functions

AmiGO

Table 1. Types of attributes from MSigDB

The second set of attributes M2 is related to the so-called “categories” where
a category makes reference to a set of attributes with the “Pathway” type. For
example, “Cell Growth and Death” is an example of category (see Figure 1).
The categories in M2 determine a second context, K2 = (G,M2, I2) where M2 is
the set of categories and I2 denotes the relation between a gene and a category.
It can be noticed that the categories are only related to the “Pathway” type and
that they can be considered as domain knowledge.

Moreover, the third set of attributes, namely M3, refers to the so-called
“upper categories”, which are defined as groupings of categories. Actually, we
have for the type “Pathway” a hierarchy of categories with two levels, categories
and upper categories (see Figure 1). The upper categories in M3 define a third
context K3 = (G,M3, I3) where M3 is the set of upper categories and I3 denotes
the relation between gene gi and an upper level category mj . Upper categories
are also related to the “Pathway” type and as categories, they can be considered
as domain knowledge too.
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Fig. 1. Categories and upper categories in KEGG.

Now we consider the apposition of the three contexts K1, K2 and K3, which
yields the final context K = (G,K1 ∪ K2 ∪ K3, I1 ∪ I2 ∪ I3). For example the
context in Table 2 shows five genes described by attributes of M1, M2 and M3.

3 Using FCA for Analyzing Genes

The framework described above was applied on three published sets of genes
corresponding to Cancer Modules defined in [8]. Our test data are composed of
three lists of genes corresponding to the so-called “Cancer Module 1” (Ovary
Genes), “Cancer Module 2” (Dorsal Root Ganglia Genes), and “Cancer Module
5” (Lung Genes). For example, “PSPHL” is one gene with “Pathway” attribute
as “PPAR Signaling” which belongs to category “kc:Endocrine System” and
upper category “kuc:Organismal System”. Considering the three lists of genes
given by “Cancer Module 1”, “Cancer Module 2” and “Cancer Module 5”, we
built three different contexts having the same form as the context in Table 2).
Then we obtained three associated concept lattices with the help of the Coron
Plate-form (http://coron.loria.fr). The concept lattice for Table 2 is given
in Figure 2. The global characteristics of the three concept lattices are given in
Table 3.

The exploration of a given concept lattice is carried out following the “Iceberg
metaphor”, i.e., the lattice is explored level by level according to the support of
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BTB03 × × ×
PSPHL × × × ×
CCT6A × ×
QNGPT1 × × × ×
MYC × ×

Table 2. A toy example of formal context including domain knowledge.

each concept, where the the support of a concept is the cardinality of the extent.
In addition, we also used stability for extracting interesting frequent and stable
concepts [9].

Fig. 2. The concept lattice corresponding to table 2.
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Data Sets No. of Genes No. of Attributes No. of Concepts Levels

Module 1 361 3496 9,588 12

Module 2 378 3496 6,508 11

Module 5 419 3496 5,004 12

Table 3. Concept lattice statistics for the cancer modules with domain knowledge.

4 Results

In this study, biologists are interested in links between the input genes in terms
of pathways in which they participate, relationships between genes and their
positions etc. We obtained concepts with shared transcription factors, pathways,
locations of genes and GO terms. After the selection of concepts with a high
support (≥ 10), we observed that there were some concepts with pathways either
related to cell proliferation or apoptosis (expert interpretation). The addition
of domain knowledge gives an opportunity to obtain the pathway categories
shared by larger sets of genes (as categories and upper categories are there for
maximizing the grouping of objects, see below).

Table 4 shows the top-ranked concepts found in each module. For exam-
ple, in Table 4, we have the concept C4938:(KEGG Cytokine Cytokine Receptor
Interaction, kc:Signaling Molecules and Interaction, kuc:Environmental Infor-
mation Processing) and the concept C4995:(kc:Signaling Molecules and Interac-
tion, kuc:Environmental Information Processing). These two concepts are such
as C4938 ≤ C4995, meaning that C4995 has greater support than C4938. More-
over, we observed that the introduction of categories and upper categories in
the global context allows us to consider concepts that otherwise would not be
frequent. Actually, the role of categories and upper level categories is to facilitate
the observation of sets of related genes.

This is a general way of obtaining larger sets of objects to interpret. When
available, one can introduce a hierarchy of attributes –this is domain knowledge–
and then insert the levels of each attribute in this hierarchy as a new attribute
in the context. As a result, some classes of objects, that could not emerge before,
will appear based on these hierarchical indications. Given the test data sets, the
preliminary results obtained here constitute an interesting and positive control,
and confirm that FCA-based analysis offers an efficient and practical procedure
to explore complex and large sets of genes.

5 Conclusion

The preliminary study presented here shows how FCA can be applied to complex
biological data and can give flexibility in using various types of attributes for
analyzing a list of genes. In addition, domain knowledge can be introduced and
guide the analysis.
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Dataset Concept
ID

Intents Absolute
Support

Stability

Module 1 9585 GGGAGGRR V$MAZ Q6 51 0.99

9571 GO Membrane Part 27 0.99

9566 kc:Immune System, kuc:Organismal Systems 25 0.99

9402 chr19q13 10 0.99

9078 KEGG MAPK Signaling Pathway, kc:Signal Transduction,
kuc:Environmental Information Processing

12 0.87

Module 2 6502 GGGAGGRR V$MAZ Q6 44 0.99

6501 AACTTT UNKNOWN 38 0.99

6496 kc:Immune System, kuc:Organismal Systems 15 0.99

6388 chr6p21 10 0.97

6335 KEGG MAPK Signaling Pathway, kc:Signal Transduction,
kuc:Environmental Information Processing

11 0.89

Module 5 5002 kuc:Cellular Processes 48 0.99

5000 GGGAGGRR V$MAZ Q6 44 0.99

4995 kc:Signaling Molecules and Interaction, kuc:Environmental In-
formation Processing

26 0.99

4933 chr19q13 11 0.99

4985 kc:Immune System, kuc:Organismal Systems 11 0.99

4938 KEGG Cytokine Cytokine Receptor Interaction, kc:Signaling
Molecules and Interaction, kuc:Environmental Information Pro-
cessing

11 0.87

Table 4. Top ranked concepts for each cancer module

As for future work, we plan to take into account relationships between genes
and between terms (Gene Ontology relationships) and use the framework of
relational concept analysis.
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Abstract. In this paper we introduce a Web-based tool for the analysis
of Genomic Expression (GE) data based in K-Formal Concept Analy-
sis (KFCA). First we present the task of analysing GE data and then
we describe the tool implementing KFCA. As a second contribution, we
present a mechanism to visualise a sequence of concept lattices by fixing
the intents against the concept lattice of the contranominal scale of at-
tributes B(M,M, 6=) . Derived from this we also propose a mechanism
to explore the scope of objects in such sequences.

1 Introduction

The transcriptome of a species is the set of gene expression products, be they
proteins or messenger RNA (mRNA) chains. DNA micro-arrays are a mechanism
to take measures of such data in the form of an expression profile, a record of the
concentration of different mRNA associated to a subset of the species genome
with respect to a condition, a particular state or sequence of states undergone
by the cells under study.

In this context, the concentration of the transcribed product (usually mRNA)
is the (gene) expression value, and the expression values of a set of genes un-
der the same condition, an expression profile. Therefore, given a genome —a
set of genes—G = {gi}ni=1 the Gene Expression (GE) data taken to analyse
their functional influence consists of the expression value of every gene Rij—
an expression profile—under one condition mj in a non-explicitly given set of
conditions M = {mj}pj=1 . Under these premises, co-regulation refers to the in-
crement (up-regulation) or decrement (down-regulation) of the expression value
in a set of genes brought about by the change in expression value of other genes.

GE data exploration using Formal Concept Analysis includes the seminal
work for of [1]. Later contributions essentially adhere to this paradigm, including
our own [2] where we employ K-Formal Concept Analysis (KFCA) [3].

In this paper we introduce WebGeneKFCA, an application supporting Ex-
ploratory Analysis of GE data using KFCA that attempts to embody the iter-
ative process of exploration based on inductive databases suggested by Pensa et

? Corresponding Author.
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al. [1]. Beyond the proof-of-concept nature of the work described in [2] Web-
GeneKFCA insists on providing tools for the practitioner to contextualise with
domain knowledge as embodied in Gene Ontologies (GOs): a point-and-click
interface seamlessly integrated with lattice visualisation enables the exploration
of many different contextualised hypotheses.

Data procurement and normalisation is described in Sec. 2.1. Our exten-
sion of the state of the art in concept lattice (CL) visualisation that provides a
representation for sequences of these is described in Sec. 2.2.

Relying on this property, we present yet another new visualisation feature
whereby the related concepts in different CL of the sequence can be aggregated
and their scope in terms of the value of a single continuous parameter explored
(Sec. 2.3). The paper closes with a summary of contributions and further work.

2 Exploratory Analysis with WebGeneKFCA

In this Section we describe the Exploratory Analysis of Gene Expression Data
using the inductive databases paradigm as embodied in WebGeneKFCA 1.

2.1 Data procurement and normalization

Before any new data can be analysed it must be uploaded to the platform in
form of Affymetrix v4 CEL files [4]. Each experiment to analyse will consist of
several tests each corresponding to a CEL file. Then, the apt-summary-tool

is executed which is an open source tool provided by Affymetrix that creates
matrix Rij where each column represents a condition profile obtained from a
CEL file and each row is a gene profile.

Prior to data analysis, the user must choose how to normalise the data to
make it suitable for K-Formal Concept Analysis. Currently we support four
different types of normalisation schemes that make use of a special kind of profile
called control : no normalisation, by the arithmetic mean, the geometric mean
or the maximum value of the control profile.

2.2 Lattice Exploration and visualisation

As explained in [2], lattice exploration consists in sweeping all possible values of
the data matrix R′ in the Rmax,+ and Rmin,+ domains. The result of these two
different exploring strategies can be shown together as in Fig. 1. The Structural
Context that gives rise to the CL shown can also be obtained by clicking on the
“Download” link just on the top of the graph in a standard CSV format.

1 The server was built using Java 1.6 and the Spring framework (v. 3.1), and runs on
Tomcat 6. The web view makes extensive use of javascript and html5 and has been
optimised for Chrome web browsers. To store the data the application currently
uses mysql but it can be easily ported to any other SQL database. At least 1.5GB
of free RAM is required. The tool is currently only available for in-house usage.
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Fig. 1: (Colour online) First data exploration screen. The top pane shows the
number of concepts vs. ϕ (light blue, to the left of 0.0) and φ (drab green, right
of 0.0) for the context being explored. The bottom pane shows the ϕ slider and
(part of) the CL thus selected. In-between, the toggle for Rmax,+ or Rmin,+ .

Several algorithms exist for the visualisation of CL, each with its advantages
and disadvantages (see [5] for a review). However, since the use of K-Formal
Concept Analysis requires the visualisation of a sequence of CL, we propose a
scheme having the distinctive feature that the Formal Concepts with the same
intent belonging to different CL are always plotted in the same position. This
means that the user can change the value of φ (ϕ) and will easily see how the
extent of each concept evolves, increasing or decreasing until disappearing.

To ensure this property, the CL corresponding to a particular φ (ϕ) is drawn
over the silhouette of the CL of a (virtual) contranominal scale involving all
possible attributes, Nc

M = B(M,M, 6=) .

The rationale for this overlay is as follows: in the boolean lattice B(M,M, 6=),
the top is a concept with no attributes. The next level of concepts from the top
are those which only have one attribute, and so on. Call |M | = p, the number of
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conditions. Clearly, the total number of levels is the number of conditions plus
one, and the number of concepts in each level l is

(
p
l

)
, whence B(M,M, 6=) has

the maximum possible number of Formal Concepts for a given set of attributes
M , a well-known result (see [6], p.48).

The important fact is that any possible intent in any lattice with p attributes
appears in this virtual order diagram. Thus the locations of these Formal Con-
cepts of the most complex CL related to M can serve as locations for those
Formal Concepts of any other CL with the same attribute set M . Figure 2.(a)
shows an example of such an overlay of a CL with relatively few concepts, while
another example is shown in Fig. 2.(b) of a CL whose set of intents approaches
that of the boolean lattice (despite conspicuous absences, e.g. in the atom set).

In this visualisation scheme, the size of each concept node is directly propor-
tional to its extent size (but see 2.3). Making the mouse hover over each node,
a dialog box showing the attributes of that concept and its number of objects
appears. On clicking on the node, a floating window appears showing the full ex-
tent. Besides, since these objects are genes, each of them can be selected causing
its associated information, obtained from the corresponding NetAffx Annotation
file [7], to be displayed in a pane on the right side. This information pane also
links with other external web pages that offer more information.

2.3 The Exploration of an Object Scope

An additional property of each object (gene) can be observed when clicking the
button with the legend “More info...”. The new view that comes out (Fig. 3)
displays the set of concepts the gene appears in through the CL full sequence.
We call this the scope of the object (gene).

Against the backdrop of the boolean lattice, every concept appearing in any
of the CL is rendered and a blue path connects all the concepts that the selected
gene has ever belonged to. Hovering with the mouse over one of the blue dots
from this path makes a tooltip appear showing the scope in ϕ (or φ) for the gene
and that concept. The size of the dot is proportional to the width of the scope,
the size of the ϕ interval. This information is also complemented with the data
from the NetAffx Annotation file.

3 Contributions and Further Work

We have presented a Web-based tool to analyse GE data obtained from micro-
arrays and to cluster the genes and test conditions by their similarity in either
up- or down-regulation. The system sifts through many CL and saves its re-
sults in a database for later reading. The user can inspect through a visual,
point-and-click interface the gene expression and related information in Gene
Ontology-contextualised CL. Thanks to direct links, it is very easy to gather
gene information from other Genomics sites.

Since the basic exploration mechanism is K-Formal Concept Analysis, the
user has a wealth of CL that make it difficult to propose and validate data-
suggested hypotheses. To curb this exploration complexity we have proposed a
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(a) ϕ = −0.5197668

(b) ϕ = −0.01101343

Fig. 2: (Colour online) CL and gene description view for two different values of
ϕ. Note the similarity of shapes.

novel visualisation scheme which amounts to the visual embedding of CL in the
representation of the most complex lattice pertaining to a set of attributes, viz.
the contranominal scale of attributes. It is conceivable that this representation
could cater to some other interval-valued parameters like intervals of temporal
continua.
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Fig. 3: (Colour online) Gene evolution in a sequence of CLs

We have also proposed a mechanism to aggregate the visualisation mech-
anisms above that enables the study of the robustness of gene appearance in
concepts vs. the variation of thresholds, the scope. We believe that gene scope
is an important tool to ascertain the quality of the CL with respect to the “noise”
in gene expression values and will explore it in further work.
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Concept Lattices and Median Networks
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Abstract. In phylogenetic analysis, median networks have been proposed as an
improvement over tree representations. This paper argues that concept lattices
represent a further improvement over median networks because FCA provides a
detailed formal description and there are a number of existing software solutions
for creating lattices. The purpose of this paper is to raise awareness in the FCA
community for this interesting application area in bioinformatics.

1 Introduction

The field of phylogenetics tries to establish evolutionary relations among groups of or-
ganisms through molecular sequencing, for example, by sampling DNA from organisms
and looking at differences. Reconstruction of phylogenetic trees is somewhat hypothet-
ical because evolutionary relationships are established using DNA from currently living
organisms. There are established means for inferring such trees using statistical means
but in cases where parallel mutations or reversals occur, it is difficult to decide the exact
sequence of the mutations. Therefore, instead of deciding which of the possible trees
is more likely, one can use a graph which embeds all possible trees. This simplifies the
analytic process and leads to more readable diagrams. Bandelt et al. (1995) develop the
construction of such graphs into a method using median networks as explained in the
next section. Sykes (2001) and Bandelt et al. (1995 and 2000) argue that using median
networks is a significant improvement over construction of hypothetical trees using sta-
tistical methods.

Since trees can be embedded into lattices, the question arises as to whether Formal
Concept Analysis1 (FCA) can be used instead of or in addition to median networks.
One advantage of using FCA is that FCA has a larger research community than median
networks/graphs. Furthermore, there exist a variety of well-tested software tools for
FCA2 whereas Bandelt et al. (2000) discuss “manual construction” of median networks
alongside some algorithms. For FCA researchers this establishes a further application
domain in bioinformatics. The following section provides further details about median
networks in phylogenetic analyses. Section 3 discusses how the phylogenetic data can
be modelled with FCA and what is different or similar to how the data is modelled with
median networks. The paper finishes with a concluding section.

1 Because this conference is dedicated to FCA, this paper does not provide an introduction to
FCA. Information about FCA can be found, for example, on-line (http://www.fcahome.org.uk)
and in the main FCA textbook by Ganter & Wille (1999).

2 See http://www.upriss.org.uk/fca/fcasoftware.html
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2 Median networks and phylogenetics

This section provides a very brief introduction to the application area of this paper3.
Unfortunately, many of the papers in this application area are written for biologists and
do not contain mathematically precise definitions of the terms and algorithms. Median
graphs are undirected graphs where any three vertices have a unique median which is a
vertex that belongs to shortest paths between any two of the three vertices. Examples of
median graphs are trees or the Hasse diagrams of distributive lattices if considered as
undirected graphs. Median networks are special kinds of median graphs where vertices
represent species and parallel edges represent possible genetic changes.

In the field of phylogenetics, evolutionary trees are inferred from observed charac-
teristics of species. Although DNA sequences can be of four values (A, G, C or T), it
is unusual for more than one change to occur at the same site in a set of closely related
species. Thus, characteristics can be considered binary by only recording whether or
not a change occurred. In the case of parallel mutations (or the more rare reversals), it is
difficult to know the sequence of the mutations. A median network summarises possible
evolutionary trees. In particular, one is interested in “most parsimonious trees” which
means that the number of times the endpoints of a tree edge have different values is
minimal. Without parallelisms or reversals a median network is a tree. Considering the
examples by Bandelt et al. (1995 and 2000), ordinary data sets tend to contain at least
some parallelisms. Thus the generated median networks are not usually trees.

A median network is guaranteed to contain all most parsimonious trees (Bandelt et
al., 1995). But if the sample size is large, an unmodified median network may be too
complex to be graphically represented. Bandelt et al. (1995) suggest a method for reduc-
ing median networks based on weight and frequency (where “weight” and “frequency”
are defined as follows). In order to construct a median network, one summarises all
changes that occur simultaneously with respect to a set of sample species as “weight”.
Graphically this can be represented by the length of edges. In the same manner, if sev-
eral species have the exact same characteristics, one creates only one vertex for this
group of species but records a higher frequency for this vertex. This can be graphi-
cally represented by a larger node for the vertex. Using frequencies and weights one
can reduce the network by eliminating some of the edges which are less likely to have
occurred. Bandelt et al. (1995) state that in all examples they considered so far even
reduced networks still contained all most parsimonious trees, but there is no guarantee
that that is always the case.

3 Modelling with FCA

One advantage of using FCA is the availability of established mathematical vocabu-
lary for describing the phylogenetic phenomena. Important phylogenetic notions can be
directly translated into FCA terminology. Series of evolutionary changes that are un-
ambiguous correspond to attribute implications in the lattice. Latent species (which are
implied by the data but for which no specimen have been found and which are “latent

3 Based on Bandelt et al. (1995 and 2000), Sykes (2001) and the Wikipedia page on “Median
graphs”.
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vertices” in a median network) correspond to concepts that do not contain objects in
their contingent but are the join of object concepts. Each meet-reducible concept in the
lattice corresponds to a choice point between different possible trees.

An example is the mitochondrial data from Ward et al. (1991) which was also used
by Bandelt et al. (1995). As mentioned above the data can be reduced to a single-valued
context by using mitochondrial lineages as objects and sites of changes as attributes.
Figure 1 shows a concept lattice for a data table discussed by Bandelt et al. 2000 (using
HVS I data by Vigilant et al.). Two attributes are called “compatible” in Bandelt’s ter-
minology if they are lattice-theoretically comparable or their meet is the bottom node.
Bandelt calls a set of attributes a “clique” if the attributes are pairwise compatible and
the set is maximal with respect to inclusion. In other words, cliques are maximal trees.
In Figure 1 one clique/tree contains all attributes except 16243 and another clique/tree
contains all attributes except 16294 and 16239. These are the only two trees in Figure
1. Bandelt et al. describe a fairly complicated algorithm for deriving a median network
using cliques, peripheral elements and torsos where the “torso” data matrix consists of
the non-compatible attributes.
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16212
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7

16153

6,13,15

16214

5
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1,2,3,4
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9,10

Fig. 1. Concept lattice for HVS I data of Vigilant used by Bandelt et al. (2000)

Figure 2 shows a median network for the data in Figure 1. In contrast to Bandelt et
al. (2000), the attributes, frequencies and weights are omitted in the figure. This means
that all nodes are of the same size and the length of the edges does not carry meaning.
The lattice in Figure 1 and the median network contain essentially the same information
apart from the fact that the lattice contains a bottom node and the median network
contains a latent vertex in the torso (to the right of the vertex “8”) which is due to the
shortest path condition of median networks but not needed for lattices. Although we are
not providing a formal proof at this point, based on similar construction algorithms it
is to be expected that in general the concept lattice and the median network of a data
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table contain the same information apart from some latent vertices and the bottom node
in the lattice.

15

8

14

6,13

12

11

7

5

9−10 1−4

Fig. 2. The median network for Figure 1

4 Conclusion

The aim of this position paper is to stimulate further research into the application of
FCA in the bioinformatics domain. It appears that FCA can improve on methods that
are currently used in that area and can be used to derive a more consistent and precise
terminology. Furthermore, from an FCA view, this application domain raises questions
about using frequencies, weights, the construction of latent objects, tree embeddings
and attribute splitting which could lead to future FCA research.
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Kwuida, Léonard, 327

Libourel, Thérèse, 139
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Pisková, Lenka, 33, 93
Priss, Uta, 351

Revenko, Artem, 151
Ruiz-Calvino, Jorge, 69

Saada, Hajer, 45
Sahraoui, Houari, 45
Schlemmer, Tobias, 57
Seki, Hirohisa, 115
Sigayret, Alain, 21
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