
A Link-Based Method for Propositionalization

Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

LIFO, Bat. 3IA, Université d’Orléans
Rue Léonard de Vinci, B.P. 6759, F-45067 ORLEANS Cedex 2, France
{Thang.Dinh,Matthieu.Exbrayat,Christel.Vrain}@univ-orleans.fr

http://www.univ-orleans.fr/lifo/

Abstract. Propositionalization, a popular technique in Inductive Logic
Programming, aims at converting a relational problem into an attribute-
value one. An important facet of propositionalization consists in building
a set of relevant features. To this end we propose a new method, based on
a synthetic representation of the database, modeling the links between
connected ground atoms. Comparing it to two state-of-the-art logic-
based propositionalization techniques on three benchmarks, we show that
our method leads to good results in supervised classification.

1 Introduction

Propositionalization is a popular technique in ILP, that aims at converting a re-
lational problem into an attribute-value one [1–5]. Propositionalization usually is
decomposed into two main steps: generating a set of useful attributes (features)
starting from relational representations and then building an attribute-value
table, which can be mono-instance (a single tuple for each example) or multi-
instance (several tuples for an example). Traditional attribute-value algorithms
can then be applied to solve the problem. Approaches for constructing automat-
ically the new set of attributes (features) can be divided into two trends [6, 7]:
methods based on logic or inspired from databases.

The first trend follows the ILP tradition which is logic-based. This trend,
as far as we know, includes the first representative LINUS system [8] and its
descendants, the latest being RSD [9], HiFi [4] and RelF [5]. For these systems,
examples are mostly represented as first-order Herbrand interpretations and fea-
tures are conjunctions of first-order function-free atoms. The search for features
is based on a template (a set of ground atoms of which all arguments fall in ex-
actly one of two categories: “input” or “output”) or mode declarations (defining
the predicates and assigning a type and mode to each of their arguments).

The second trend is inspired from databases and appeared later beginning
with systems like Polka [2], RELAGGS [10] and RollUp [7]. Those systems build
attributes, which summarize information stored in non-target tables by applying
usual database aggregate functions such as count, min, max, etc.

In this paper, we propose a new method, called Link-Based Propositional-
ization or LBP, to build features for propositionalization from a set of ground
atoms, without information on templates or mode declarations. The method was

initially designed to learn the structure of Markov logic networks [11], where it
was used as a strategy to build a boolean table and to find dependent literals.
The originality of the method is to build an abstract representation of sets of
connected ground atoms, allowing thus to represent properties between objects.

LBP differs from the classical logic-based approaches both in the semantic of
the boolean table and in the search for features. For example, the RelF system
uses a block-wise technique to construct a set of tree-like conjunctive relational
features while the others, like HiFi or RSD use the traditional level-wise ap-
proaches. The search in LBP does not rely on template or mode declarations,
but on a synthetic representation of the dataset, namely the links of the chains,
which allows to build features as well as to construct the boolean table based
on the regularities of these chains. The notion of chain is related to relational
path-finding [12] and relational cliché [13].

Our propositional method is presented in Section 2. We present related works
in Section 3. Section 4 is devoted to experiments and finally, Section 5 concludes
this paper.

2 Link-Based Propositionalization

Given as input a database DB and a query predicate Q, we present here a
heuristic Link Based Propositionalization method (LBP) in order to transform
relational information in data into an approximative representation in form of a
boolean table. Once this boolean table has been learnt, it can be used for several
tasks: looking for the most frequent patterns satisfied by instances of predicate
Q, looking for the most discriminative patterns satisfied by positive examples of
Q, or as input of a propositional learner for learning a model classifying positive
from negative examples.

2.1 Preliminary notions

Let us recall here some basic notions of first order logic. We consider a function-
free first order language composed of a set P of predicate symbols, a set C of
constants and a set of variables. An atom is an expression p(t1, . . . , tk), where p
is a predicate and ti are either variables or constants. A literal is either a positive
or a negative atom; it is called a ground literal when it contains no variable and
a variable literal when it contains only variables. A clause is a disjunction of
literals. Two ground atoms are connected if they share at least a constant (or
argument).

A variabilization of a ground clause e, denoted by var(e), is obtained by
assigning a new variable to each constant and replacing all its occurrences ac-
cordingly.

The method that we propose is based on an abstract representation of sets
of connected atoms, either ground atoms or variable atoms. This abstract repre-
sentation is learned from sets of connected ground atoms and it is used to build
sets of connected variable literals. Let us first introduce this representation.

2.2 An abstract representation

The idea underlying this method is to detect regularities in ground atoms: we
expect that many chains of connected atoms are similar, and could thus be
variabilized by a single chain. The similarity between chains of ground atoms is
captured by the notion of links that we introduce in this paper and that models
the relations between connected atoms.

Definition 1. Let g and s be two ground literals (resp. two variable literals). A
link between g and s is a list composed of the name of the predicates of g and s
followed by the positions of the shared constants (resp. variables). It is written
link(g, s) = {G S g0 s0 / g1 s1 / . . . } where G and S are the predicate symbols
of g and s, gi ∈ [1, arity(g)], si ∈ [1, arity(s)] and the combinations / gi si /
mean that the constants respectively at position gi in g and si in s are the same.
If g and s do not share any constant then link(g,s) is empty.

We are interested in representing the properties of sets of connected literals.
In order to have a sequential representation of these properties, we consider only
chains of literals defined as follows:

Definition 2. A chain of ground literals (resp. variable literals) starting from
a ground (resp. variable) literal g1 is a list of ground (resp. variable) literals
〈g1, ..., gk, ...〉 such that ∀i > 1, link(gi−1, gi) is not empty and every constant
(resp. variable) shared by gi−1 and gi is not shared by gj−1 and gj, 1 < j < i. It
is denoted by chain(g1) = 〈g1, ..., gk, ...〉. The length of the chain is the number
of atoms in it.
The link of the chain gc = 〈g1, ..., gk, ...〉 is the ordered list of links link(gi, gi+1),
i ≥ 1, denoted by link(gc) = 〈link(g1, g2)/.../link(gi, gi+1)/...〉. The link of a
chain composed of a single atom is the empty list. When a chain is composed of
only two atoms, its link is the link between its two atoms. A chain of ground lit-
erals (resp. variable literals) is called, for short, a ground chain (resp. a variable
chain).

Let us notice that in this definition, it is only require that the variable shared
by gi−1 and gi is not used in previous links. But there may exist in gi−1 or in gi
some constants occurring in gj , j < i− 1. Sometimes, it may be useful to know
if a link has been obtained from a chain of ground atoms or from a chain of
variable literals. In such situations, the term link is prefixed by g-, for expressing
that the link has been obtained by a ground chain or by v-.

Definition 3. A link 〈g1, ..., gk〉 is said to be a prefix of another link 〈s1, ..., sn〉,
if link(gi, gi+1) = link(si, si+1), ∀i, 1 ≤ i < k.

Example 1. Let DB1 = {P(a, b), Q(b, a), R(b, c), S(b), S(c)} be a set of ground
atoms. P(a, b) and Q(b, a) are connected by the two shared constants a and
b. The constant a occurs respectively at position 1 of the ground atom P(a, b)
and at position 2 of the ground atom Q(b, a). Similarly, the constant b occurs

respectively at position 2 of the ground atom P(a, b) and at position 1 of the
ground atom Q(b, a). We have: link(P(a, b), Q(b, a)) = {P Q 1 2 / 2 1}.

A possible chain starting from the ground atom P(a, b) is 〈P(a, b), R(b, c),
S(c)〉. Its link is 〈{P R 2 1 } / {R S 2 1}〉. The link of the chain 〈P(a, b), R(b,
c)〉 is 〈{P R 2 1 }〉; it is a prefix of the previous link.

On the other hand, 〈P(a, b), R(b, c), S(b)〉 is not a chain as the constant b
shared by R(b, c) and S(b) is already used to link P(a, b) and R(b, c).

Definition 4. A variabilization of a link l is a chain c of variable literals, so
that link(c) = l.

Let us for instance consider the link 〈{P Q 1 1}〉 whereQ is a unary predicate.
Then there is a single way, up to a renaming of variables, of variabilizing it,
preserving the link, that is P (A,B), Q(A). Nevertheless, given a link there may
exist several ways of variabilizing it into a variable chain.

Let us now consider the link 〈{P R 1 2} / {R R 1 1} 〉. This gives the scheme
P (slot1, slot2), R(slot3, slot4), R(slot5, slot6) with the constraints slot1 = slot4,
slot1 6= slot3, slot2 6= slot3, slot2 6= slot4 (thus satisfying the link {P R 1 2})
slot3 = slot5, slot3 6= slot6, slot4 6= slot5, slot4 6= slot6 (for respecting the link
{R R 1 1}) and the constraints slot3 6= slot4 (for having a chain). Up to a
renaming of variables, it can be variabilized into

P (X,Y), R(Z,X), R(Z,W) or into P (X,Y), R(Z,X), R(Z, Y).
These two variabilizations correspond to two different strategies for filling

the slots from left to right by variables, starting from the first atom composed
of the first predicate and different variables as arguments. The first one con-
sists in introducing a new variable each time there is no constraints on a slot
of a predicate. The second one consists in trying to fill it with a variable that
already exists, respecting the inequality constraints, thus leading to a more spe-
cific conjunction than the first one. This second strategy can still lead to several
variabilizations, when several constants already introduced fulfill the constraints.
The number of variabilizations can be reduced by using information on types of
arguments when predicates are typed.

We define two strategies for variabilizing a link, and a third strategy for
variabilizing a link, given the ground chain it comes from.

Definition 5. Let P be the first predicate occurring in the link and let n be its
arity. In both strategies, the first atom is P (X1, . . . , Xn). Then slots are filled
from left to right. For each slot with no equality constraints to fulfill:

– general variabilization: introduce a new variable
– specific variabilization: if possible, use a variable already introduced that fulfill

all the inequalities constraints on this slot and the type of the argument.
– simple strategy: given a ground chain and its link, variabilize the ground

chain, simply turning constants into variables.

2.3 Creation of a set of features

Let us consider a target predicate Q and a training dataset DB. We aim at
building a set of variable chains F linked to Q given DB such that for each

true ground atom A built with predicate Q in DB, and for each chain chain(A)
starting from A, there exists a chain c in F such that link(chain(A)) = link(c).
It is reasonable to expect that many chains (starting from several ground atoms)
are similar in the sense that their links are identical and could thus be variabilized
by a single chain, with the same link.

The algorithm can be sketched as follows (in practice the length of the chains
is limited by an integer k)
• for each ground atom A of the target predicate P,

• find every chain starting from A
• build the corresponding link and check whether it is a prefix of a link

already built
• if not, variabilize it.
In the current implementation, we have chosen the simple variabilization

strategy, thus variabilizing the ground chain that has lead to the link under
process. Moreover, we design two versions: in the first one (called LBP+), only
positive ground atoms are considered, in the second one (called LBP-), positive
and negative ground examples are considered.

Example 2. Let DB be a database composed of 14 ground atoms as follows: ad-
visedBy(bart, ada), student(bart), professor(ada), publication(t1,bart), publica-
tion(t2, bart), publication(t1, ada), publication(t2, ada), advisedBy(betty, alan),
student(betty), professor(alan), publication(t3, betty), publication(t3, alan), pub-
lication(t3, andrew), professor(andrew).

Figure 1 illustrates the production of chains of ground literals with the cor-
responding links and the resulting variable chains, using advisedBy as the target
predicate, and bounding the length of chains to 4.

Starting from advisedBy(bart, ada), several chains of ground literals can
be built. For each chain, its link is built. For instance, the first chain built
is {advisedBy(bart, ada) student(bart)}, leading to the link {advisedBy student
1 1}. This link is stored in the Set of Links and a first variable chain is created
from this link.

The second chain {advisedBy(bart, ada), publication(t1, bart), publication(t1,
ada), publication(t2,ada)} leads to the link 〈{advisedBy publication 1 2} / {publi-
cation publication 1 1}/ {publication publication 2 2}〉. This link is not a prefix of
the previous link, it is stored and a new variable chain is built from this link. Let
us insist here on the fact that this chain depends on the variabilization strategy.
The general strategy would lead to the chain {advisedBy(A, B), publication(C,
A), publication(C, D), publication(E,D)}. The specific strategy first introduces
the new variable C as first argument of the first occurrence of publication (it
cannot be equal to A or to B, otherwise it would have been written in the first
link), leading to {advisedBy(A, B), publication(C, A)}. When considering the
second occurrence of publication, its first argument is given by the link. For its
second argument, since no equality constraint is given on it, instead of introduc-
ing a new variable, it tries to use a previous variable: it cannot be A (it would
have been given in the link), therefore it chooses B, leading to {advisedBy(A, B),
publication(C, A), publication(C,B)}. Finally the third occurrence of publication

advisedBy(Betty,Alan)

publication(T3,Andrew)

publication(T3,Betty) student(Betty)

professor(Andrew)

professor(Alan)

professor(Alan)

publication(T3,Andrew) professor(Andrew)

student(Betty)

publication(T3,Alan)

publication(T3,Alan)publication(T3,Betty)

publication(T2,Bart) publication(T2,Ada) publication(T1,Ada)
professor(Ada)advisedBy(Bart,Ada)

publication(T1,Ada) publication(T1,Bart)
publication(T2,Bart)
student(Bart)

professor(Ada)

publication(T2,Bart)publication(T2,Ada) publication(T1,Bart)
student(Bart)

publication(T1,Bart) publication(T1,Ada) publication(T2,Ada)
professor(Ada)

student(Bart)

Training dataset DB

advisedBy(Bart,Ada)
student(Bart)
professor(Ada)
publication(T1,Bart)
publication(T2,Bart)
publication(T1,Ada)
publication(T2,Ada)
advisedBy(Betty,Alan)

publication(T3,Betty)

student(Betty)
professor(Alan)

publication(T3,Alan)

professor(Andrew)
publication(T3,Andrew)

{advisedBy(A,B) student(A)
{advisedBy(A,B) publication(C,A) publication(C,B) publication(D,B)
{advisedBy(A,B) publication(C,A) publication(C,B) professor(B)

{advisedBy(A,B) professor(B)
{advisedBy(A,B) publication(C,B) publication(C,A) student(A)
{advisedBy(A,B) publication(C,B) publication(C,A) publication(D,A)

{advisedBy(A,B) publication(C,B) publication(C,D) professor(D)

{adv stu 1 1}
{adv pub 1 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 1 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 2 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}
{adv stu 1 1}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}

Variable litteralsLinks of chains

Chains of ground literals

Fig. 1. The variabilization process using chains and links (length ≤ 4)

is introduced: its second argument is given by the link, no constraint is given on
the first argument, no previous constant can be used (A and B do not have the
same type and C cannot be used, because of the link. Thus we get {advisedBy(A,
B), publication(C, A), publication(C,B), publication(D,B)}. Since we know the
ground chain that has lead to this link, the third strategy, called simple strategy
variabilizes the ground chain, simply turning constants into variables. In this
specific case, it leads to the same variable chain as the specific strategy. The
simple strategy is the one we choose in the current implementation.

The third chain {advisedBy(bart, ada), publication(t1, bart), publication(t1,
ada), professor(ada)} leads to the link 〈{advisedBy publication 1 2} / {publica-
tion publication 1 1}/ {publication professor 2 1}〉. This link is not a prefix of the
previous link, it is stored and a new variable chain is built from this link leading
to {advisedBy(A, B), publication(C, A), publication(C, B), professor(B)}.

The process goes on. For instance, the chain {advisedBy(bart, ada), publica-
tion(t2, bart), publication (t2, ada), publication(t1,ada)} leads to the same link
as the second chain, and it is not kept.

The three stars sign (***) displayed in Figure 1 means that there is no new
variabilization for the corresponding chain. As can be seen, at the end, there are
16 ground chains starting from ground atoms built with advisedBy but only 7
different links and therefore 7 variable chains. Let us notice that the notion of
chains allows to capture interesting relations, as for instance the relation between
advisedBy(A,B) and the fact that A and B have a common publication.

Let us notice that for improving the efficiency of the implementation, types
information on predicates are used, as for instance professor(person), student (per-
son), advisedBy(person, person), publication(title, person).

2.4 Creating a Set of Variable Literals and a Boolean Table

In classical approaches for propositionalization, the chains that have been built
become features. Here, we intend to benefit from the structure of the chains.
For instance, if we consider the variable chain {advisedBy(A, B), publication(C,
B), publication(C, D), professor(D)}, it can be split into 4 literals, with the
requirement that given an instantiation of A and B (or a ground atom built
on advisedBy), professor(D) will be set to true if there exists an instantiation
of C and of D such that publication(C, B), publication(C, D), professor(D) are
true. Therefore professor(D) equal to True means that the entire chain is true.
On the other hand, publication(C,D) may be true with only publication(C,B)
true.

Starting from the set of variable chains that has been built, we build a set
of variable literals, renaming variables when necessary. In order to achieve this,
we use a tree-structure representation of the chains. The idea is that for each
variable literal, there exists a single chain linking this literal to the target literal.
The process is divided into three steps: switch, sort and featurize.

The switch operation looks for sequences of two variable literals in two differ-
ent chains that would be similar up to a permutation of these two literals, as for
instance publication(C,A), publication(C,B) in one chain and publication(C,B),
publication(C,A) in the other one.

Then chains are sorted as follows: a chain c1 precedes a chain c2 if c1 is shorter
than c2 or c1 has the same length as c2 and l1 precedes l2 where l1 and l2 are
respectively the first literals in c1 and c2 that differ. The order relation between
literals corresponds to the alphabetical order of the name of their predicates, or
to the (alphabetical or numerical) order of the first pair of variables that differs
if the two literasl are based on the same predicate. We must underline that such
an order relation is only introduced in order to sort chains and that is should be
given no further meaning.

A tree structure is then built, processing variable chains in turn. During this
operation, variables can be renamed, thus allowing to distinguish features. A
mapping table is used, linking the old name to the new one. More precisely,
given a variable chain l1, . . . , lp, we first look for a prefix already existing in the

tree, possibly using a variable renaming as given in the mapping table. Let us call
i the last index of this prefix. Then we search whether any literal lj, with j > i
already occurs in the tree, which means that if this literal was introduced “as
is” in the tree, this later would contain two similar nodes at different places, and
thus with different meanings. If so, then two cases are considered to overcome
this potential problem:

– lj contains only variables of the target predicate: the chain lj, . . . , lp is
forgotten, since there exists another shorter chain linking lj with the target
predicate.

– at least one of its variables is not a variable of the target predicate. This
variable is renamed, introducing a new variable. The link between this new
variable and the original one is kept in the mapping table.

Finally, the chain is introduced in the tree, renaming variables according to
the mapping table. Let us notice that once renaming is done, it is possible that
the common prefix detected in the original chain is no longer a common prefix
(due to the renaming of the variable) and then a new branch is created as needed.

We can now see how switching and sorting lead to a valuable organization
of chains. Due to the sequential introduction of chains in the tree, chains that
share a common prefix become neighbors, sorted so that there introduction in
the tree is likely to generate as less branches as possible.

Example 3. Let us consider again the database given in Example 2. The following
links are built:

1. {[advisedBy student/1 1]}
2. {[advisedBy professor/2 1]}
3. {[advisedBy publication/1 2], [publication publication/1 1], [publication pro-

fessor/2 1]}
4. {[advisedBy publication/1 2], [publication publication/1 1], [publication pub-

lication/2 2]}
5. {[advisedBy publication/2 2], [publication publication/1 1], [publication stu-

dent/2 1]}
6. {[advisedBy publication/2 2], [publication publication/1 1], [publication pub-

lication/2 2]}
7. {[advisedBy publication/2 2], [publication publication/1 1], [publication pro-

fessor/2 1] }

Then variable chains are built. (In the current implementation, variables are
represented by an integer; here, we write them Xi to improve lisibility.)

1. {advisedBy(X1,X2), student(X1)}
2. {advisedBy(X1,X2), professor(X2)}
3. {advisedBy(X1,X2), publication(X3, X1), publication(X3,X2), professor(X2)}
4. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2), publication(X4,

X2)}

5. {advisedBy(X1,X2) , publication(X3,X2), publication(X3,X1), student(X1)}
6. {advisedBy(X1,X2), publication(X3,X2), publication(X3,X1), publication(X4,

X1)}
7. {advisedBy(X1,X2), publication(X3,X2), publication(X3,X4), professor(X4)}

The first step switches some consecutive literals, in order to favor common
prefixes. It is applied on the 5th and 6th clauses, thus leading to:

5’. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2) , student(X1)}
6’. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2) , publication(X4,

X1)}

In the second step, they are sorted:

1. {advisedBy(X1,X2), professor(X2)}
2. {advisedBy(X1,X2), student(X1)}
3. {advisedBy(X1,X2), publication(X3, X1), publication(X3,X2), professor(X2)}
4. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2), publication(X4,

X2)}
5. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2), publication(X4,

X1)}
6. {advisedBy(X1,X2) , publication(X3,X1) , publication(X3,X2) , student(X1)}
7. {advisedBy(X1,X2), publication(X3,X2), publication(X3,X4), professor(X4)}

In the context of this example, sorting as a limited impact, but in larger
datasets it usually has a much more important influence on the organization of
links. Then the tree is built. Chains 1, 2 and 3 have only advisedBy(X1, X2)
as a common prefix. Chain 3 has a literal, namely professor(X2), that contains
only variables occurring in the head, this literal is then removed. Chains 4 and
5 have a prefix of length 3 common to chain 3 and then differs. In chain 6, the
last literal is removed. Finally, in Chain 7, variable X3 is renamed in X5 in order
to distinguish the two occurrences in different situations of publication(X3, X2).
This leads to the tree:

advisedBy(X1,X2)
— professor(X2)
— student(X1)
— publication(X3,X1)
——– publication(X3,X2)
———— publication(X4,X1)
———— publication(X4,X2)
— publication(X5,X2)
——– publication(X5,X4)
———— professor(X4)

Once the set of features is built, we transform information in the database
into a boolean table BT, where each column corresponds to a variable literal and
each row corresponds to a true/false ground atom of the target predicate. Let

us assume that data concerning a given ground atom qr is stored in row r. Let
us also assume that column c corresponds to a given variable literal vlc. There
exists a chain vc of variable literals starting from the head literal and containing
vlc. BT [r][c] = true means that there exists a ground chain gcr starting from
the ground atom qr that makes vc true (or such that vc ⊆ var(gcr) up to a
renaming of variables). Given a ground instance qr, filling its row by considering
all the ground chains starting from qr is too expensive because it has to involve
an exhaustive search in the database. We overcome this obstacle by inversely
considering the variable chains. Each of them is then used to guide the search
in the database. This search can be performed much faster using information
about the order of predicates and positions of shared constants between two
consecutive predicates in that chain. The notion of links allows us to filter the
variable chains thus reducing the search.

3 Related Works

As previously mentioned, propositionalization approaches can be classified into
approaches based on logic and approaches inspired from databases. The ap-
proaches inspired from databases, like Polka [2], RELAGGS [10] and RollUp
[7] build attributes which summarize information stored in non-target tables by
applying usual database aggregate functions such as count, min, max, . . .

These works are quite different from the ones based on logic, which consider
examples as first-order Herbrand interpretations and features (attributes) as
conjunctions of first-order function-free atoms. The search then is based on a
template (a set of ground atoms of which all arguments fall in exactly one of
three categories: input, output, or constant) or mode declarations (define the
predicates and assign a type and mode to each argument of these predicates).
Our method belongs to the second trend based on logic, and is compared to
these approaches.

Logic-based approaches can be divided into two families : the first one as
for instance [9, 5] starts from information on the predicates (usually the modes),
build features and then uses the database to filter relevant ones, the second one as
for instance [14] or our work starts from the database, build ground conjunctions
of atoms and variabilize them to get features. Let us illustrate these two kinds
of approaches.

In [5], the authors introduce the notion of templates and features. A template
is a conjunction of ground atoms, the arguments of which are either defined as
inputs (+) or as outputs(-). To be a template, an atom must have at most one
input argument and there exists a partial irreflexive order on the terms occurring
in it (c < c′ if c and c′ occur in the same atom, c as input and c′ as output.
From a template, conjunctions of connected variable literals can be built, under
the conditions that variables can be instantiated in such a way that the ground
atoms belong to the template. A variable can be positive, when it has exactly
one input occurrence and no output occurrence, negative when it has no input
occurrence and exactly one output occurrence, or neutral when it has at least one

input occurrence and exactly one output occurrence. A feature is then a conjunc-
tion of connected variable literals where all variables are neutral. Intuitively it
means, that each variable must be introduced as output of a single atom and can
then be described by several atoms where it occurs as input. Features are built
by aggregating blocks, where blocks are conjunctions of variable atoms, either
containing exactly one positive variable (positive block) or containing exactly
one negative variable (negative block).

In [14], conjunctions of literals are also built from the database. They use
mode declarations and they distinguish two types of predicates: path predicates
with at least one output argument and check predicates with only input argu-
ments. The features (called properties in their approach) that they build must
contain at least a check predicate. It means that ”pure” relational features, as
for instance expressing that two persons are linked if they share a common pub-
lication ({advisedBy(A,B), publication(C,A), publication(C,B)} cannot be built.
The check predicates play an important role in the search strategy, since given
a saturated ground clause, they start from the atoms built with a check literal
and look for the path allowing to connect them to the head.

Our method differs from the classical logic-based approaches both in the se-
mantic of the boolean table and in the search for features.

Meaning of the table: To form an attribute-value table, most methods
define each propositional feature (column) corresponding to a variable literal
(SINUS and DINUS [8] for example) or to a conjunction of several variable lit-
erals (the genetic method [15], RSD [9], HiFi [4] and RelF [5]). In LBP, each
propositional feature (column) corresponds to a variable literal and each row
corresponds to a true/false ground atom of the query predicate.

Searching: To construct features, most methods use syntactical constraints
in the form of template or mode declarations for limiting the search space, then
apply some techniques to calculate the truth values for each feature. For exam-
ple, the RelF system uses a block-wise technique to construct a set of tree-like
conjunctive relational features while the others, like HiFi or RSD use the tra-
ditional level-wise approaches. The search in LBP does not rely on template or
mode declarations, but on a synthetic representation of the dataset, namely the
links of the chains, which allows building features as well as constructing the
boolean table based on the regularities of these chains. The notion of chain is
related to relational path-finding [12] and relational cliché [13].

4 Experiments

4.1 Systems, Databases and Methodology

We propose to evaluate LBP according to classification accuracy, as traditionally
used in propositionalization[4, 5, 7, 9]. Accuracy is relevant as it expresses the
ability of LBP to produce discriminative features. More information is given in
the form of the F1 score of both positive and negative groups.

We compared LBP to two state-of-the-art logic-based systems: RelF [5] and
RSD [9]. For the comparison of logic-based and database-inspired methods, we
refer to [6, 7, 16] for further reading. We performed experiments on three popular
datasets:

– IMDB consists of a database on films (6 predicates, 302 constants, 1224
true/false ground atoms). We learned the predicate workedUnder (i.e. who
worked under the direction of who).

– UW-CSE describes an academic department (15 predicates, 1323 constants,
2673 ground atoms). We learned the predicate advisedBy (i.e., who is the
advisor of who).

– CORA consists of citations of computer science papers (10 predicates, 3079
constants, 70367 true/false ground atoms). We learned the predicate same-
Bib (i.e. do two citations refer to the same paper).

LBP has first been built over the Alchemy platform 1, since as written in the
introduction, the idea of a linked-based representation of the database had first
been introduced for learning Markov Logic networks [11]. The datasets have thus
been used in their Alchemy form. Each set consists of 5 folds, which have been
used for cross-validation. A new version of LBP, independent from Alchemy,
has been built in Java and this is this new version that is used in the following
experiments.

To evaluate the outputs of LBP, RELF and RSD, the set of features that
have been produced and their corresponding boolean tables have then been given
as inputs of a discriminative tool. The three systems produce output data in
the Weka format, and we have chosen to test the discriminative power of the
features on decision tree classifiers, using the WEKA [17] implementation of J48
and REPTree. We have chosen these two decision tree learners as they differ on
the way trees are built: J48 implements the C4.5 algorithm while REPTree is a
faster tree decision learner.

In most of cases, datasets are highly unbalanced. Given the closed world
assumption, many negative examples could be generated. Therefore beside the
pre-existing negative ground atoms of the target predicate, additional negative
examples are generated randomly, to reach a rate of 4 negatives per positive.
We mean, that based on a closed world assumption, we consider that all posi-
tive examples are explicitely given and that negative examples can be deduced
from these latter. In the considered datasets, no or few negative examples are
explicitely given. We thus keep these explicit negative examples and generate a
subset of the implicit ones. This is empiric but it seems to be a fair way to get
enough negative examples while not leading to too much overhead.

4.2 Dataset formats

The data input formats of the three systems we compared do differ and choices
have to be made to encode the requirements of the systems. We briefly detail

1 http://alchemy.cs.washington.edu/

how we proceeded to adapt them, starting from the Alchemy-like format. LBP
requires only a database expressed by a set of ground atoms, positive and neg-
ative examples; type information can be given to improve the efficiency of the
system. On the other hand, Relf and RSD need more information.

Alchemy-like data used in LBP consists of a “.db” file that contains the
ground atoms. It usually comes with a “.mln” file that contains both the de-
scription of the predicates and some elements to help building a Markov logic
network (which is out of the scope of this paper). The target predicate is de-
fined at runtime. The description of the predicates can be very simple. In our
case we only consider their name and arity, together with the type of arguments
(e.g. advisedBy(person, person)). No mode or other additional declaration bias
is used.

Relf learns by interpretation, which means that its input data consists of
a set of independent world interpretations (i.e. a set of ground facts), which
are annotated as valid or not. To comply to this data organization, we proceed
as follows. Starting from each ground atom of the target predicate, we build
an interpretation based on the saturation of this ground atom. We tag this
interpretation as true of false based on the sign of the target atom. This latter
is of course removed from the interpretation. In the case where the arity of the
target predicate is higher that 1, as for instance advisedBy, we have to specify in
the interpretation the constants occurring in the target atom. We thus introduce
an additional predicate that is similar to the target one, but which is always true.
Beside this data file, Relf needs an additional file that contains a template to
guide its data exploration. Let us insist on the fact that this template has a high
influence on the results.

RSD data input can take several forms. In the approach we use, input data
consists of three files. First a “.b” knowledge base contains the mode declaration
of the predicates that distinguishes between the target predicate (modeh) and
the body predicates (modeb). The knowledge base also contains the positive
ground atoms of the body predicates. Two other files are needed, a “.f” one and
a “.n” one, that respectively contain the true and false ground atoms of the target
predicate. The arity of the target predicate must be equal to 1. Thus, we have
had to modify our datasets by introducing additional predicates: a new target
predicate of arity 1, the variable of which is a new one, and linking predicates
of arity 2 that link the new variable to the ones of the original target predicate.
The new variable is set as an input one in the modes declaration.

We have used similar feature declaration biases for RSD and RelF. For LBP,
we arbitrarily set the maximal length of considered g-chains (v-chains) to k = 4,
in order to explore a rich while tractable search space. For RSD, due to the
additional predicates we introduced, we set this maximum length to 6.

Beside dataset formats, we must also notice that LBP and Relf are able to
take both learning and test datasets as input and produce the respective output
files, while RSD is not. We thus adapted the tests as follows: with LBP and Relf

we conducted a 5-fold cross validation based on our original folds, while with

RSD we merged all of the folds as a single input, thus getting a single output
and letting Weka process with its built-in, 10-fold, cross validation.

4.3 Results

We present one table per dataset, containing for each system the global accuracy
and the F1scores for positive examples (F+) and negative examples (F-). We
used two versions of LBP, one that learns features based on the positive target
atoms only (LBP+), and one that learns features based on both positive and
negative target atoms(LBP-). Tables 1, 2 and 3 respectively correspond to the
experiments with IMDB, UW-CSE and CORA. The presented results correspond
to the average results of the 5- or 10-fold cross validation process. On each line
the best average value if set in bold face.

LBP+ LBP- Relf RSD

Accuracy 97.6 92.4 92.8 84.6
J48 F+ 0.95 0.85 0.86 0.90

F- 0.98 0.946 0.95 0.69

Accuracy 97.6 92.6 92.8 84.9
REPTree F+ 0.95 0.82 0.86 0.90

F- 0.98 0.9 0.95 0.70

Table 1. Imdb experiments

LBP+ LBP- Relf RSD

Accuracy 90.4 93.9 91.1 85.8
J48 F+ 0.79 0.86 0.81 0.91

F- 0.94 0.96 0.94 0.71

Accuracy 91.6 94.5 91.3 85.8
REPTree F+ 0.82 0.87 0.82 0.91

F- 0.95 0.96 0.94 0.72

Table 2. Uw-cse experiments

We have got no results with RSD and REFL on Cora. More precisely, the
systems terminate but provide no results. We can observe that in general the
best accuracy is achieved with one of the two versions of LBP. Nevertheless,
due to the fact that, depending on the dataset, either one or the other performs
better, we cannot conclude that one of them is globally more performant from
a statistical significance point of view.

LBP+ LBP- Relf RSD

Accuracy 87.9 86.8 - -
J48 F+ 0.76 0.74 - -

F- 0.92 0.91 - -

Accuracy 87.2 86.9 - -
REPTree F+ 0.75 0.74 - -

F- 0.91 0.91 - -

Table 3. Cora experiments

We also achieve the best F1Scores, except on UWCSE, where RSD performs
better on the positive F1Score. Depending on the dataset, the decision tree
learning algorithm might have some influence (UWCSE) or nearly no influence
(IMDB) on the results at the average level. Nevertheless, even in this second
case, differences might be noticed when considering some folds.

The important point is that these satisfying performances are obtained with
a method that introduces no learning bias, except the types of variables, which
is much lighter than the biases of REFL and RSD.

Considering time, LBP is the slowest system (about twice than the two other
systems for UWCSE and IMDB). Implementation considerations might explain
it partially, but on the large datasets, the fact that no declaration biases, such
as modes, are available, makes the dataset exploration much longer.

Considering features, on UW-CSE, LBP+ produces c.a. 300 features, LBP-
c.a. 550 features, RELF c.a. 130 features and RSD c.a. 300 features. On IMDB,
LBP+ produces c.a. 30 features, LBP- c.a. 40 features, RELF c.a. 10 features
and RSD c.a. 100 features. The fact that we produce much more features than
RELF can be explained by at least two reasons. First, we produce features that
consist of a single variable literal. We thus have several features when other
systems produce a single conjunction. Second, due to the tree structure of our
graph of features, we have a lot of features that are set and kept “just to”
materialize a path to a leaf feature. Nevertheless, we surprisingly produce less
features than RSD.

Based on these results, we can conclude that our system is competitive to
the state-of-the-art propositional systems on these three benchmark datasets.

5 Conclusion and Future Work

In this paper, we introduce a linked-based representation of the database allow-
ing to capture relational structures in the database, and we give a first way of
integrating it in a propositional learner. Our main contribution is mainly on this
linked-based representation allowing to learn features with nearly no informa-
tion (except types of predicates). Another original contribution is the idea of
splitting features into literals, relying on the fact that they form a chain.

Further works can be done on this representation. In the system that we have
developed, learned features are split into ground atoms. Such features could also
be used as such as in traditional propositional learners.

Although the system was designed for avoiding the user to give biases, modes
could easily be added, thus allowing to reduce the number of links. On the
other hand, most logical-based propositional learners need information: at least
type and mode declarations for predicates, more sophisticated information, as
for instance templates, which allows to reduce the search space. Giving such
templates is not so easy. Our linked-based representation could perhaps be used
as a preliminary step to learn templates.

References

1. Alphonse, É., Rouveirol, C.: Selective propositionalization for relational learning.
In: PKDD’99. Volume 1704 of LNCS, Springer (1999) 271–276

2. Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and aggregates. In:
PKDD’01. Volume 2168 of LNCS, Springer (2001) 277–288

3. De Raedt, L.: Logical and Relational Learning. Springer (2008)
4. Kuželka, O., Železný, F.: Hifi: Tractable propositionalization through hierarchical

feature construction. In: Late Breaking Papers, ILP’08. (2008)
5. Kuželka, O., Železný, F.: Block-wise construction of tree-like relational features

with monotone reducibility and redundancy. Mach. Learn. 83(2) (2011) 163–192
6. Krogel, M.A., Rawles, S., Železný, F., Flach, P.A., Lavrac, N., Wrobel, S.: Com-

parative evaluation of approaches to propositionalization. In: ILP’03. Volume 2835
of LNCS, Springer (2003) 197–214

7. Lesbegueries, J., Lachiche, N., Braud, A.: A propositionalisation that preserves
more continuous attribute domains. In: ILP’09. (2009)

8. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood (1994)

9. Lavrac, N., Zelezný, F., Flach, P.A.: Rsd: Relational subgroup discovery through
first-order feature construction. In: ILP’02. Volume 2583 of LNCS, Springer (2002)
149–165

10. Krogel, M.A., Wrobel, S.: Transformation-based learning using multirelational
aggregation. In: ILP’01. Volume 2157 of ILP, Springer (2001) 142–155

11. Dinh, Q.T., Exbrayat, M., Vrain, C.: Discriminative markov logic network struc-

ture learning based on propositionalization and chi
2-test. In: ADMA’10. Volume

6440 of LNCS, Springer (2010) 24–35
12. Richards, B.L., Mooney, R.J.: Learning relations by pathfinding. In: AAAI’92,

AAAI Press / The MIT Press (1992) 50–55
13. Silverstein, G., Pazzani, M.J.: Relational clichés: Constraining induction during

relational learning. In: ML’91, Morgan Kaufmann (1991) 203–207
14. Motoyama, J., Urazawa, S., Nakano, T., Inuzuka, N.: A mining algorithm using

property items extracted from sampled examples. In: ILP. (2006) 335–350
15. Braud, A., Vrain, C.: A genetic algorithm for propositionalization. In: ILP. (2001)

27–40
16. Kuzelka, O., Zelezný, F.: Block-wise construction of acyclic relational features with

monotone irreducibility and relevancy properties. In: ICML’09, ACM (2009) 72
17. Machine Learning Group at University of Waikato: Data mining software in java.

http://www.cs.waikato.ac.nz/ml/weka/

