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Abstract. Large sparse matrices play important role in many modern
information retrieval methods. These methods, such as clustering, latent
semantic indexing, performs huge number of computations with such
matrices, thus their implementation should be very carefully designed.
In this paper we discuss three implementations of sparse matrices. The
first one is classical, based on lists. The second is previously published
approach based on quadrant trees. The multi-dimensional approach is
extended and usage of general multi-dimensional structure for sparse
matrix storage is introduced in this paper.
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1 Introduction

Numerical computations represent serious problem for generations of mathemati-
cians. There were not suitable device to make the computations, only human
being. Development of computers gives to people power to perform computa-
tions, which were impossible in past. Many of these computations have matrix
character. Thus one of the first task for computers was matrix and vector com-
putations i.e. liner algebra. Although amount of memory in computers grows
very rapidly, there are still matrices that are bigger than available memory. But
many of these matrices are sparse, so that storage only non-zero values can solve
the problem. Large sparse matrices play important role in industrial computa-
tions (e.g. FEM - Finite Elements Method), in computer science (indexing of
class hierarchy [5]), and in many modern information retrieval methods. These
methods, such as clustering, latent semantic indexing, performs huge number
of computations with such matrices, thus their implementation should be very
carefully designed.

This paper is organized as follows. Section 2 describe state-of-art in sparse
matrix implementation. A previously published approach for sparse matrix stor-
age [10] based on finite automata is given in Section 3. The multi-dimensional
approach is extended and usage of general multi-dimensional structure for sparse
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c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 152–161, ISBN 80-248-0457-3.
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matrix storage is introduced in this paper. This storage method is described in
Section 4. In Section 6 preliminary experimental results are shown. Finally, we
conclude with a summary of contributions and discussion on future work.

2 Short survey of sparse matrix storage

Let A be a sparse matrix of order n × m. The matrix A can be be efficiently
processed, if the zero elements of A are not stored. There are many methods for
storing the data (see for instance [1]). Here we will discuss Compressed Row and
Column Storage.

2.1 Compressed Row Storage (CRS)

The Compressed Row Storage (CRS) format puts the subsequent nonzeros of the
matrix rows in contiguous memory locations. Assuming we have a nonsymmetric
sparse matrix A, we create 3 vectors: one for floatingpoint numbers (val), and
the other two for integers (colind, rowptr). The val vector stores the values
of the nonzero elements of the matrix A, as they are traversed in a rowwise
fashion. The colind vector stores the column indexes of the elements in the val
vector. That is, if val(k) = ai,j then colind(k) = j. The rowptr vector stores
the locations in the val vector that start a row, that is, if val(k) = ai,j then
rowptr(i) ≤ k < rowptr(i+1). By convention, we define rowptr(n+1) = nnz + 1,
where nnz is the number of nonzeros in the matrix A. The storage savings for this
approach is significant. Instead of storing n2 elements, we need only 2nnz +n+1
storage locations.

The CRS format for this matrix is then specified by the arrays val, colind,
rowptr given in Table 1. If the matrix A is symmetric, we need only store the
upper (or lower) triangular portion of the matrix. The tradeoff is a more com-
plicated algorithm with a somewhat different pattern of data access.

2.2 Compressed Column Storage (CCS)

Analogous to Compressed Row Storage there is Compressed Column Storage
(CCS), which is also called the Harwell-Boeing sparse matrix format [6]. The
CCS format is identical to the CRS format except that the columns of A are
stored (traversed) instead of the rows. In other words, the CCS format is the
CRS format for AT .

The CCS format is specified by the 3 arrays val, rowind, colptr, where rowind

stores the row indices of each nonzero, and colptr stores the index of the elements
in val which start a column of A. The CCS format for the matrix A in equa-
tion (1) is given in Table 2.
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Example 1. As an example, consider the nonsymmetric matrix A defined by

A=


10000−2 0
3900 0 3
0787 0 0
3087 5 0
0809 9 13
0400 2−1

 (1)

Table 1. The CRS format for the matrix A in equation (1)

val 10 -2 3 9 3 7 8 7 3 . . . 9 13 4 2 -1

colind 1 5 1 2 6 2 3 4 1 . . . 5 6 2 5 6

rowptr 1 3 6 9 13 17 20

Table 2. The CCS format for the matrix A in equation (1)

val 10 3 3 9 7 8 4 8 8 . . . 9 2 3 13 -1

rowind 1 2 4 2 3 5 6 3 4 . . . 5 6 2 5 6

colptr 1 4 8 10 13 17 20

2.3 Properties of CRS and CCS formats

The Compressed Row and Compressed Column Storage formats are general
formats: they make absolutely no assumptions about the sparsity structure of
the matrix, and they does not store any unnecessary elements.

On the other hand, these methods effectively support only part of matrix
operations. While CRS can access any row vector in time O(1), column vector
can be selected in O(m×log2 ∆), where ∆ = rowptr(i)−rowptr(i+1) ie. number of
nonzero elements in row i. Time complexity of these operations in CCS format is
reverse. For example CRS format can effectively perform matrix - colum vector
and CCS row vector - matrix multiplication. Any other matrix operation (eg.
selection of submatrix) can be done with these formats, but time complexity
is very high. Moreover the formats can be used only in the main memory of
computer.

Aim of our work is to develop storage format for large sparse matrices. The
format should support:
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– random access to the matrix,
– effective selection of any submatrix
– persistence of the matrix (usage of secondary memory).

3 Sparse matrices and finite automata

Culik and Valenta [4] introduced finite automata for compression of bi-level and
simple color images. A digitized image of the finite resolution m× n consists of
m × n pixels each of which takes a Boolean value (1 for black, 0 for white) for
bilevel image, or a real value (practically digitized to an integer between 0 and
256) for a grayscale image.

Sparse matrix can be viewed, in some manner, as simple color image too.
Zero element of matrix corresponds to white pixel in bi-level image and nonzero
element to black or gray-scale pixel.

Here we will consider square matrix A of order 2n × 2n (typically 13 ≤ n ≤
24). In order to facilitate the application of finite automata to matrix description
we will assign each element at 2n × 2n resolution a word of length n over the
alphabet Σ = {0, 1, 2, 3} as its address. A element of the matrix corresponds to
a subsquare of size 2−n of the unit square. We choose ε as the address of the
whole square matrix.

Its submatrices (quadrants) are addressed by single digits as shown in Fig-
ure 1(a). The four submatries of the matrix with address ω are addressed ω0,
ω1, ω2 and ω3, recursively. Addresses of all the submatrices of dimension 4× 4
are shown in Figure 1(b). The submatrix (element) with address 3203 is shown
on the right of Figure 1(c).

In order to specify a values of matrix of dimension 2n×2n, we need to specify
a function Σn → R, or alternately we can specify just the set of non-zero values,
i.e. a language L ⊆ Σn and function fA : L → R.
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This kind of storage system allows direct access to stored matrix. Each of
elements can be accessed independently to previous accesses and access to each
element has same, constant time complexity. Let A be a matrix of order 2n×2n.
Then time complexity of access is bounded by O(log2 n). For detail information
see [10].

Example 2. Let A be a matrix of order 8× 8.

A =



20000000
04001000
00300609
00010000
00001000
00000500
00000090
00000007


The language L ⊆ Σ3 is now

L = {111, 112, 121, 122, 211, 212, 221, 222, 303, 310, 323}.

Then function fA will have following values (see Table 3).

Table 3. Positions in matrix A and corresponding values – function fA

x ∈ L fA(x) x ∈ L fA(x)

111 2 221 9
112 4 222 7
121 3 303 6
122 1 310 1
211 1 323 9
212 5

Now automaton that computes function fA can be constructed (see Fig-
ure 2). The automaton is 4-ary tree, where values are stored only at leaves. This
knowledge leads to multi-dimensional sparse matrix storage and usage of the
quadrant tree.

4 Multi-dimensional sparse matrix storage

In order to a general multi-dimensional data structure can be used for the sparse
matrix storage, the following definitions must be introduced.
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Figure 3: Automaton for matrix M

The language L ⊆ Σ3 is now

L = {111, 112, 121, 122, 211, 212, 221, 222, 303, 310, 323}.
Then function fM will have following values (see table 1).

Now automaton that computes function fM cn be constructed (see Fig. 3).

The automaton is four order tree, where values are stored only at leaves.

If matrix M is considered as read-only the automaton can be reduced into

compact form (see Fig. 4).

The global stiffness matrix is assembled from large number of local stiffnes

matrices that have the same structure as it was mentioned in section 2. From the

point of view of finite automaton dividing of whole matrix can be terminated at

the level of local matrices. We need to specify function L → RnDOF,nDOF

This kind of storage system allows direct access to stored matrix. Each of

elements can be accessed independetly to previous accesses and access to each

element has same, constant time complexity. Let A be a matrix of order 2n× 2n.

Then time complexity of access is boudned by O(log2 n).

5

Fig. 2. Automaton for matrix A

Definition 1 (A matrix as tuples of 2-dimensional space).

Let A be a matrix of order n×m and ΩMT = DN ×DM be an 2-dimensional
discrete space (called matrix space), where DN = {0, 1, . . . , 2lN − 1}, DM =
{0, 1, . . . , 2lM − 1}. It holds n ≤ 2lN − 1, m ≤ 2lM − 1. For all ai,j ∈ A there is
mapping α : A → ΩMT such that α(ai,j) = (i, j).

Fig. 3. A matrix as tuples of 2-dimensional space.

The mapping α transforms elements of matrix A to 2-dimensional space
ΩMT . The matrix space can be seen in Figure 3. The matrix space seems to
be 3-dimensional. However, indices of matrix elements have to be indexed. The
value of element is stored as non-index data. Consequently, only two coordinates
must be indexed, so that the matrix space is only 2-dimensional.

4.1 Retrieving of a sub-matrix

A sub-matrix is retrieved using the range query.

Definition 2 (Range query).
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Let Ω be an n-dimensional discrete space, Ω = Dn, D = {0, 1, . . . , 2lD − 1}, and
points (tuples) T 1, T 2, . . . , Tm ∈ Ω. T i = (t1, t2, . . . , tn), lD is the chosen length
of a binary representation of a number ti from domain D. The range query RQ
is defined by a query hyper box ( query window) QB which is determined by two
points QL = (ql1, . . . , qln) and QH = (qh1, . . . , qhn), QL and QH ∈ Ω, qli and
qhi ∈ D, where ∀i ∈ {1, . . . , n} : qli ≤ qhi. This range query retrieves all points
T j = (t1, t2, . . . , tn) in the set T 1, T 2, . . . , Tm such as ∀i : qli ≤ ti ≤ qhi.

Let be Ai1j1i2j2 a sub-matrix of matrix A. Sub-matrix is retrieved from the
matrix space using the range query (i1, j1) : (i2, j2). A column vector and row
vector are special kind of the sub-matrix. Consequently, the column vector cAi ,
1 ≤ i ≤ m, is retrieved using the range query (1, i) : (n, i), the row vector rAj , 1 ≤
j ≤ n, is retrieved using the range query (j, 1) : (j, m). Such range query is called
the narrow range query. Next Section describes some multi-dimensional data
structures, especially a multi-dimensional data structure for efficient processing
of the narrow-range query.

5 Multi-dimensional data structures

Due to the fact that a matrix is represented as a set of points in 2-dimensional
space in the multi-dimensional approach, we use multi-dimensional data struc-
tures for their indexing, e.g., paged and balanced multi-dimensional data struc-
tures like UB-tree [2], BUB-tree [7], R-tree [8], and R∗-tree [3].

(B)UB-tree data structure applies Z-addresses (Z-ordering) [2] for mapping
a multi-dimensional space into single-dimensional. Intervals on Z-curve (which
is defined by this ordering) are called Z-regions. (B)UB-tree stores points of each
Z-regions on one disk page (tree leaf) and a hierarchy of Z-regions forms an index
(inner nodes of tree). In Figure 4(a) we see two-dimensional space with 8 points
(tuples) and Z-regions dividing the space. Figure 4(b) denotes schematically a
BUB-tree indexing this space.

In the case of indexing point data, an R-tree and its variants cluster points
into minimal bounding boxes (MBBs). Leafs contain indexed points, super-leaf
nodes include definition of MBBs and the other inner nodes contain hierarchy
of MBBs. (B)UB-tree and R-tree support point and range queries [11], which
are used in the multi-dimensional approach to sparse matrix storage. The range
query is processed by iterating through the tree and filtering of irrelevant tree
nodes, i.e. (super)Z-regions in the case of (B)UB-tree and MBBs in the case of
R-tree, which do not intersect a query box.

The range query often used in the multi-dimensional approach is called nar-
row range query. Points defining a query box have got some coordinates the
same, whereas the size of interval defined by other coordinates near to the size
of space’s domain. Notice, regions intersecting a query box during processing of
a range query are called intersect regions and regions containing at least one
point of the query box are called relevant regions. We denote their number by
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(a) (b)

Fig. 4. (a) 2-dimensional space 8 × 8 with points t1 – t8. These points define
partitioning of the space to Z-regions [0:2],[7:11],[25:30],[57:62] by capacity of
BUB-tree’s nodes 2. (b) BUB-tree indexing this space.
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Fig. 5. A structure of the Signature R-Tree.

NI and NR, respectively. Many irrelevant regions are searched during processing
of the narrow range query in multi-dimensional data structures. Consequently,
a ratio of relevant and intersect regions, so called relevance ratio cR � 1 with
an increasing dimension of indexed space. In [9] Signature R-tree data structure
was introduced. This data structure enables efficient processing of the narow
range query. Items of inner nodes contain a definition of (super)region and n-
dimensional signature of tuples included in the (super)region (see Figure 5).
A superposition of tuples of coordinates by operation OR creates the signature.
Operation AND is used for better filtration of irrelevant regions during process-
ing of the narrow range query. Other multi-dimensional data structures (e.g.
(B)UB-tree) are possible to extend in the same way.
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6 Experimental results

In our experiments1, we used a randomly generated sparse matrix 107×106. The
matrix contains 5× 106 of non-zero values. The BUB-tree was used for our test.
The index size is 80MB (compare to 38MB of CRS matrix storage). In Table 4
a characterization of the BUB-tree for storage of the matrix is shown.

Table 4. A characterization of BUB-tree used for sparse matrix storage

Dimension 2 Utilisation 68.1%
lN , lM 24 DN , DM 224 − 1
Number of tuples 5,244,771
Number of inner nodes 20,351 Number of leaf nodes 249,297
Inner node capacity 19 Leaf node capacity 30
Item size 12B Node size 308 B

In the test, randomly generated column and row vectors were retrieved from
the BUB-tree. The average number of result tuples (items of a sub-matrix),
searched leaf nodes (Z-regions), disk access cost (DAC), and time were measured.
A ratio of the searched leaf nodes and all leaf nodes is shown in square brackets.
Table 4 shows the result of our tests.

Table 5. Experimental results of the multi-dimensional sparse matrix storage

Number of Number of searched DAC Time
result tuples leaf nodes [s]

199 101 [0.041%] 285 0.04

We see that very small part of the index was searched and time of searching
was low as well. Experiments prove the approach can serve as efficient sparse
matrix storage. The index size is lager than in the case of classical CRS or
CCR sparse-matrix storage, but a arbitrary sub-matrix may be retrieved in our
approach.

7 Conclusion

In this contribution the multi-dimensional approach to indexing sparse matrix
was described. Previously published approach [10] using the quad tree was de-

1 The experiments were executed on an Intel Pentium r4 2.4Ghz, 512MB DDR333,
under Windows XP.
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scribed and a general multi-dimensional approach was introduced. Our exper-
iments prove the approach can serve as efficient sparse matrix storage. In our
future work, we would like further to test our approach over a real matrix and
to compare the approach with other sparse matrix storage approaches.
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