
Supporting the Workflow Management System
Development Process with YAWL

R.S. Mans1, W.M.P. van der Aalst1

Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{r.s.mans,w.m.p.v.d.aalst}@tue.nl

Abstract. In order to address particular needs from the healthcare do-
main, the open-source YAWL Workflow Management System (WfMS)
has been extended with features for scheduling support and inter-workflow
support, the YAWL4Healthcare WfMS. As part of this undertaking, a
WfMS development approach has been followed in which the same con-
ceptual model is used for specifying, developing, testing, and validating
the operational performance of a new system. In this paper, we elaborate
on the features of YAWL that were essential for realizing our develop-
ment approach.

1 Introduction

Nowadays, hospitals are investigating the introduction of a Workflow Manage-
ment System (WfMS) in order to support their care processes. However, due to
the complex nature of healthcare processes, these systems need to be enriched
with additional functionality. Furthermore, the introduction of new technology
requires a seamless integration with running operational processes and no unex-
pected break-downs may occur.

For ensuring above mentioned aspects, as shown at the bottom of Figure 1,
we propose a WfMS development approach consisting of five phases. First, in
the requirements phase, the required functionalities are identified. Second, during
the design phase, a conceptual model is developed which is a formal, complete,
and executable specification of the WfMS to be developed. Subsequently, the
WfMS is developed in the implementation phase. Finally, during the testing and
simulation phase, the conceptual model and the operational WfMS are used to
both test and validate the operational performance of the WfMS.

The conceptual model has been defined in terms of a Colored Petri Net
(CPN) [3]. CPNs provide a well-established and well-proven formal language
suitable for describing the behavior of systems exhibiting characteristics such
as concurrency, resource sharing, and synchronization. Moreover, we can use
CPN Tools for specification, verification, and simulation. As concrete WfMS,
the open-source YAWL WfMS [2] has been used. In this paper, we focus on the
role of YAWL in the WfMS development approach. That is, we elaborate on the
specific features of YAWL that were essential for realizing our approach.

33



Requirements
phase

Design
phase

Implementation
phase

Testing
phase

Simulation
phase (operational

performance)

AS-IS TO-BE
Problem Solution

Application
of workflow
technology

WfMS
development

process

Current
functionality

Current + 
additional functionality

Conceptual model: Colored Petri Nets

YAWL
Workflow
Engine

A B X

Resource
Service

A B

Worklet
Service

A B

X

YAWL
Workflow
Engine

A B X

Resource
Service

A B

Worklet
Service

A B

X

B

YAWL 
custom 
service

Java 
application

Inter-Workflow Service

Interaction
Definition

Editor

Interaction
Service

Workflow
Client

Application

B

1A

3

Outlook 
2003 

clients

Microsoft 
Exchange 

Server 2007

4

2

1B

Axis 2 service
Adaptor
(Axis 2 
service)

B

Java interface

4

Scheduling
service

Calendars

WfMS: YAWL

Fig. 1. Workflow Management System development approach using YAWL and the
CPN conceptual model.

When applying the development approach, in the requirements phase it has
been identified that for optimally supporting healthcare processes, WfMSs need
to be extended with facilities for both scheduling support and inter-workflow
support [4]. Based on the conceptual CPN model defined in the design phase,
YAWL has been extended with the aforementioned two facilities resulting in the
YAWL4Healthcare system and which is discussed in Section 2. Next, in Section 3
we elaborate on the testing and simulation phase in which YAWL4Healthcare is
both tested and validated. Finally, we conclude in Section 4.

2 Scheduling Support and Inter-Workflow Support

YAWL4Healthcare offers both scheduling support and inter-workflow support.
In this section, both facilities are discussed in detail and it is indicated which
features of YAWL were essential for realizing them.

With regard to scheduling support, instead of only offering a workitem to
a user via a worklist, it also needs to be possible to make an appointment for
a workitem. This appointment has a specific duration and only appears in the
calendars of these users that are involved in the execution of the workitem. The
main scheduling features will be illustrated using a small scenario. The process
definition specified in the YAWL editor can be seen in Figure 2a. The “physical
examination” and “consultation” tasks are annotated with a calendar icon as for
both an appointment is needed. Moreover, they are called schedule tasks. Via the
“extended attributes” feature of the editor, additional attributes are defined for
them. These attributes are also illustrated in Figure 2a in which for the “physical
examination” it is defined that the presence of the patient is required during

2

34



a) Defining a model in the YAWL editor. For tasks annotated with a calendar icon an appointment is needed whereas for 
tasks annotated with a single person icon this is not needed.

c) State of the calendars after scheduling. The calendars of assistant ‘Jane’, assistant ‘Fred’, doctor ‘Marc’, doctor ‘Nick’, 
and patient ‘John’ are shown respectively. When scheduling the availability of resources is taken into account.

b) The details for the ‘physical examination’ task are defined via the extended attributes feature of the editor.

Fig. 2. Scheduling of appointments within the YAWL4Healthcare system.

the appointment (caseResource), the average duration of the appointment is 30
minutes (duration), an assistant and a nurse are required during the appointment
(roles), and the task is a schedule task (type). The tasks for which workitems
need to be offered via a worktray are called flow tasks and are indicated by a
person icon. Also, for this kind of task, additional information is defined via the
“extended attributes” feature of the editor (e.g. the average duration).

Once an instance of a process is started, appointments are automatically
booked in the calendars of these persons that are involved in the execution of
a schedule task. This is shown in Figure 2b in which an appointment is booked
for the “consultation” task which appears in the calendars of doctor “Nick” and
patient “John”. Also, an appointment is booked for the “physical examination”.
Note that the system ensures that the final scheduling of tasks occurs in the
same order as the sequence of schedule tasks in the accompanying process defi-
nition for the case. Moreover, sufficient time is reserved between two scheduled
tasks. In case it is found out that too little time is left for performing preced-

3

35



ing work-items for a scheduled schedule task, the corresponding appointment is
automatically rescheduled. Also, users are able to express their dissatisfaction
with the nominated scheduling by requesting: (1) the rescheduling of the ap-
pointment, (2) the rescheduling of the appointment to a specified date and time,
or (3) the reassignment of the appointment to another employee.

In order to offer scheduling facilities (see Figure 1), YAWL has been ex-
tended with three components. The Calendars component provides a view on
the calendars of users and allows for manipulating them. Based on the calen-
dars, the Scheduling Service component provides the scheduling facilities to the
WfMS. The workitems and any appointments for them can be seen via the Work-
flow Client Application. The “Calendars”, “Scheduling Service”, and “Workflow
Client Application” components have respectively been realized by developing
a java service, using Microsoft Exchange Server 2007, and using Outlook 2003
clients. Via a specific adaptor, communication takes place between the YAWL
workflow engine and the “Scheduling Service” and the “Workflow Client Ap-
plication”. Moreover, in this way, only Interface B is needed for communication
with the engine, i.e. starting and canceling instances, and the checking in and out
of workitems. Note that the scheduling algorithm used by the Scheduling Ser-
vice can easily be replaced by another algorithm, i.e., it is pluggable. Currently,
a “naive” algorithm is implemented which searches for the first opportunity in
which one of the resources of a role can be booked for the respective work-item.

The need for inter-workflow support emerged from the fact that the pro-
cess of treating a patient typically consists of many smaller interacting workflow
fragments that run in conjunction with each other. These fragments may also op-
erate at different levels of granularity. The main inter-workflow support features
will be illustrated using a small scenario. Note that these features are based on
the Proclets framework [1] which allows for modeling and executing lightweight
workflows that may interact with each other and reside at different levels of
granularity. At the top of Figure 3a, the process definition of a workflow frag-
ment, describing a visit to the hospital, is defined in the YAWL editor. At the
bottom, the associated definition in the Interaction Definition Editor is shown.
Via this editor it is possible to define for a workflow fragment which interac-
tions with other fragments are necessary. That is, for tasks and input conditions
for which interactions with other fragments are necessary, a so-called interaction
point (visualized by a black dot) is defined. Via ports (visualized by a white dot),
interaction points are connected with interaction points of other fragments. For
example, for the “decide” task it is possible to instantiate a workflow fragment
in order to perform a lab test or to instantiate a fragment arranging the next
visit of the patient. Moreover, the patient can be registered for a multidisci-
plinary meeting in which the status of multiple patients is discussed. Note that
at run-time for a certain entity (e.g. a patient or a lab test) an interaction graph
is kept. This graph stores for an entity (e.g. a patient) all the interactions that
need to take place between (future) fragments. As part of this, for a task for
which interactions are needed, in the YAWL editor it is indicated that its exe-

4

36



a) Defining a workflow fragment and the corresponding interactions in the YAWL 
editor (top) and the Interaction Definition Editor (bottom). Via dotted arcs, the 
tasks and the interactions with other fragments that are defined for them are 
indicated.

b) For the ‘decide’ task it is indicated in the ‘Task Decomposition’ details that its 
execution is delegated to the Inter-Workflow Service. Also, the ‘entities’ variable 
allows for indicating at run-time the names of the entities for which the process 
is executed.

Fig. 3. Definition of interactions between workflow fragments.

cution is delegated to the Inter-Workflow service (see Figure 3b). Additionally,
information about the involved entities is exchanged via the “entities” variable.

In order to offer inter-workflow support (see Figure 1), YAWL has been ex-
tended with the Inter-Workflow Service. The “Interaction Service” is responsi-
ble for the interactions between fragments at run-time and has been set-up as
a YAWL custom service. As such, it communicates with the YAWL engine via
Interface B. The “Interaction Definition Editor” offers tools for defining interac-
tions between fragments at both design-time and run-time.

So, it can be concluded that the service oriented architecture of YAWL was of
great help for realizing the desired extensions. That is, via the extended attributes
feature of the editor, additional attributes of a task that need to be filled in,
could easily be defined. Furthermore, due to the fact that the YAWL engine is
agnostic to its external services, it was possible via a single interface (Interface

5

37



B) to focus only on implementing the functionalities that were needed for the
desired scheduling support and inter-workflow support. So, we did not need to
bother about basic workflow management functionalities as they were already
provided by YAWL itself (e.g. a workflow engine and process editor).

3 Replacement of Functionalities

As illustrated in Figure 1, the conceptual model developed using CPN Tools has
been used for both testing and validating the operational performance of the im-
plemented YAWL4Healthcare WfMS in respectively the testing and simulation
phase. In Figure 4 it is schematically depicted how this has been realized.

The CPN conceptual model provides a complete, formal description of the
functionality of the system. As this model is executable, it also serves as a
prototype implementation of the system. So, in the testing phase, one or more
parts of the CPN model can be replaced by the concrete implementation of these
parts. So, in the figure, the light grey-colored rectangle represents the parts of the
actual system that are tested. This is done by establishing connections between
the CPN model and parts of the actual YAWL4Healthcare WfMS which need
to be tested. During the testing, parts of the system, which are not tested, may
be simulated using CPN Tools (the dark grey-colored rectangle). This allows for
the testing of numerous scenarios facilitating the discovery of potential flaws in
both the architecture and the corresponding implementation.

In the simulation phase, our focus is on investigating the operational per-
formance of processes that are supported by both the designed and realized
system. Here we can benefit from the fact that CPN models can also be used for
simulation-based performance analysis in order to evaluate systems and to com-
pare alternative configurations of a system [3]. So, for processes supported by our
system, it can be investigated whether they are negatively impacted or not (e.g.
introduction of bottlenecks into the process). By setting up a reference environ-
ment, the operational performance can be investigated in a structured manner.
Moreover, parts of the realized YAWL4Healthcare WfMS can be included in the
CPN simulation model in order to analyze the implemented system.

At the time the above mentioned approach was applied, the “Inter-Workflow
Service” was not developed yet. So, in the conceptual model, we only had com-

Testing phase Simulation phase

YAWL4Healthcare

CP Net model

YAWL4Healthcare

replaced parts

CP Net model
simulation for the part of the system 

that is not tested

part of the system that is not tested part of the system that is not used for 
simulation-based performance analysis

simulation model + reference environment

Fig. 4. The role of the CPN conceptual model and the YAWL WfMS in the testing
and simulation phase.

6

38



ponents for the “Workflow Engine”, “Workflow Client Application”, “Calen-
dars”, and “Scheduling Service”. In the testing phase, we could easily replace
the scheduling service and both the workflow engine and scheduling service by
their implemented YAWL4Healthcare counterparts. Furthermore, the engine was
provided with a simple process definition. Also, four users where created in the
“Workflow Client Application” together with the associated empty calendars in
the “Calendars”. Amongst others, 6 errors were identified in the “Scheduling
Service” component and 6 errors were identified in the adaptor component. In
the simulation phase, also both the “Workflow Engine” and “Scheduling Service”
were replaced by their implemented counterparts. Furthermore, the engine was
provided with a gynecological healthcare process such that a series of simulation
experiments could be carried out in which 143 patients followed the process. For
the schedule tasks, the corresponding appointments were made by our system.
Therefore, the calendars of the simulated system were filled with appointments,
etc. to mimic the true availability of the medical staff. As a result it was possible
to explore different scenarios. For example, in one of the experiments we simu-
lated the situation that the appointments for a CT, MRI, and pre-assessment are
scheduled on the same day. This resulted in a considerably increased waiting time
for both the pre-assessment and examination under anesthetic appointments.

Similarly, as in Section 2, also here we benefited from the service-oriented
architecture of the YAWL WfMS. Due to Interface B, components in the con-
ceptual model could easily be replaced by their implemented counterparts.

4 Conclusion

In this paper, we focussed on the role of YAWL in a development approach in
which the same conceptual model is used during the design, implementation,
testing, and simulation phase. By applying this approach, YAWL has been ex-
tended with facilities for scheduling support and inter-workflow support.

As part of this undertaking, we greatly benefited from the service oriented
architecture of YAWL. As it turned out, this provided a powerful point of ex-
tensibility, allowing for the extension of the engine with additional desired func-
tionalities. Moreover, it allowed for the applicability of our development ap-
proach in which there is a tight coupling between the conceptual model and
the YAWL4Healthcare WfMS. While testing and validating, parts of the system
may be simulated while connected to the actual system components.

References

1. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Proclets: A
Framework for Lightweight Interacting Workflow Processes. International Journal
of Cooperative Information Systems, 10(4):443–482, 2001.

2. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell, edi-
tors. Modern Business Process Automation: YAWL and its Support Environment.
Springer-Verlag, 2010.

7

39



3. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, 2007.

4. R.S. Mans. Workflow Support for the Healthcare Domain. PhD thesis, Eindhoven
University of Technology, June 2011. See http://www.processmining.org/blogs/
pub2011/workflow support for the healthcare domain.

8

40


