
On Clusters in Open Source Ecosystems

Shaheen Syed and Slinger Jansen

Department of Information and Computer Sciences, Utrecht University
Princetonplein 5, 3508 TB Utrecht, the Netherlands

{s.a.s.syed, slingerjansen}@uu.nl}

Abstract. This paper seeks to find characteristics of relationships be-
tween developers within various clusters of FLOSS ecosystems. We have
mined the repository of the open source programming language Ruby,
and linked developers and projects on the basis of collaboration. We used
Social Network Analysis, and more specifically, the concept of modu-
larity to expose underlying clusters or sub-communities. A survey was
constructed to aid in the qualitative part of this research. The data
shows that Ruby’s ecosystem consist mostly of single developers who
work independently. Developers within clusters of a few developers of-
ten have personal relationships formed through friendship, work and the
open source community. Personal relationships formed through the open
source community grow as clusters consist of more developers. Devel-
opers in clusters with large number of developers are often unaware of
friend-of-friend relationships. Project administrators, however, fail to list
developers that contribute through pull/request issues as authors, mak-
ing data on Ruby’s repository incomplete.

Keywords: Software Ecosystems, Clusters, Ruby, FLOSS

1 Introduction

Free/Libre Open Source Software (FLOSS) developers have to work collabora-
tively in order to maintain, improve or extend their software. Especially when
their collaboration is underpinned by a common technology or market, and op-
erate through the exchange of information, resources and artifacts, Software
Ecosystems (SECOs) start to emerge [1]. Jansen et al. state that getting insights
into a SECO requires the quantification and measurement of specific SECO
characteristics. Possible characteristics are the number of sub-communities, the
reciprocity of the ecosystem or the out degree of keystone actors. Moreover, un-
derstanding SECO characteristics can aid in maximizing its profitability, and
more concretely, SECO orchestrators can develop strategies to keep a SECO
vibrant and profitable for other organizations in the SECO.

This paper addresses the characteristics of sub-communities or clusters within
the Ruby SECO. Clusters are defined as sets of nodes which are connected
together by some path, that is, there exists a sequence of links that can be
traversed to go from one node to any other node. There exist, however, no paths
between two nodes in different clusters [3]. As SECOs can be seen as large



2 Shaheen Syed and Slinger Jansen

social networks, where actors (developers) are connected through relationships
(collaborations) that hold them together [4], numerous clusters are present.

The study of SECOs, or social networks, can be conducted by applying So-
cial Network Analysis (SNA). Several studies have applied SNA in the context
of open source. For example, Gao, Freeh and Madey used SNA to study core
developer networks on SourceForge.net hosted projects [5]. Lopez-Fernandez et
al. used SNA to analyze source code repositories of open source projects [6].
Madey et al. applied SNA to model the open source network as collaborative
networks and studied the growth of these networks [7]. Previous studies are, how-
ever, focused on the developer or project level, and not specifically on the cluster
or sub-community level. Concretely put, this paper uses SNA to reveal under-
lying clusters within the Ruby SECO and strives to define the characteristics
of relationships between developers. The ability to find and analyze such clus-
ters can provide invaluable help in understanding and visualizing the structure
of networks and thus understanding the SECO. Several algorithms exist to find
sub-communities or clusters within networks [8–10]. Popular algorithms for large
networks are based on the concept of modularity, which take the structure of a
network and decompose it into modular communities, i.e. sub-communities or
clusters. It looks for dense connections (relations) within groups, and sparse con-
nections between them. Furthermore, it requires less computational complexity
in contrast to other methods, e.g. graph partitioning. Our study uses the Lou-
vain method [11], a modularity algorithm that has successfully been applied to
find sub-communities in large networks, such as Twitter, LinkedIn, and Flickr.
To extend our analysis, a survey is constructed to aid in the qualitative part
of relationships between developers. Hence, Ruby developers were asked numer-
ous questions related to other developers that were clustered together. Doing so
enabled us to classify qualitative data by cluster sizes.

The remainder of the paper is structured as follows: Section 2 elaborates
on the research method and provides insights into the various steps undertaken
from data extraction to cluster identification. Furthermore, it elaborates on the
survey and how it was constructed. Section 3 discusses the first findings of the
data that were extracted from the Ruby repository and provides an overview of
distributions that define the Ruby ecosystem. Section 4 makes a first classifica-
tion of survey results based on various cluster sizes. Finally, Section 5 concludes
our classification of results and provides improvements for future work.

2 Research Design

Our study has taken as object of study the Ruby open source SECO. Ruby is
an object oriented programming language designed and developed in 1995 by
Yukihiro Matsumoto in Japan. The syntax is influenced by Perl and Smalltalk
features and is similar in many respects. It was created to balance functional
programming with imperative programming. Ruby’s most popular framework,
named Ruby on Rails, is an open source web framework that enables develop-
ers to create web applications more easily. These applications, best described



On Clusters in Open Source Ecosystems 3

as utilities or libraries, are called gems and are hosted on Ruby’s repository
Rubygems.org. Several gems can be combined to create specific features or ex-
tend existing work.

2.1 Research Question

This paper is an extension of our previous explorative study, in which we pre-
sented elements, characteristics, descriptives, roles, cliques and relationships of
the Ruby ecosystem [12]. Our previous work was quantitative in nature and
lacked essential qualitative information. We replicated the study and focused
on relationships between developers within clusters. Thus, the main research
question answered in this paper is: What are the defining characteristics of re-
lationships between developers within clusters of FLOSS ecosystems? To answer
this question, we looked at relationships between developers within the Ruby
SECO of various cluster sizes with respect to the number of developers residing
within them.

Developers are connected by strong or weak ties. For example, developers
have strong ties if they are friends, classmates or working at the same company
(i.e. they know each other personally to some extent), and have coded together
to produce a working gem. Weak ties, by contrast, involve infrequent and limited
interaction. For example, developers are connected together through a friend-of-
friend relationship, that is, developer a has worked with developer b, who in
turn has worked with developer c, developer a and c are now connected through
developer b. Our study further looks at these friend-of-friend relationships and
to what extent they constitute strong or weak ties.

Strong ties are important because it improves the exchange of information
with other strong ties and reinforce companionship and support. The study of
strong ties can help us understand the structure and local information of a social
group [3]. Weak ties bring us more new opportunities and resources which cannot
be obtained from close relations [13]. The study of weak ties provides a global
view of the community as a whole.

2.2 Data Gathering

We collected our data from Rubygems.org as it provided us with an API to
mine the data. Because integral collection was not possible, we developed several
scripts to extract the data one by one from the API’s XML output. The data
was then stored in a relational database. The API of Rubygems.org provided us
with the following data on each gem:

1. Gem name
2. Total downloads
3. Current version
4. Downloads current version
5. Authors
6. Info

7. Project uri
8. Gem uri
9. Homepage uri

10. Wiki uri
11. Documentation uri
12. Mailing list uri



4 Shaheen Syed and Slinger Jansen

13. Source code uri
14. Bug tracker uri

15. Dependencies

As our research was targeted at developers (authors), we distilled this in-
formation from the complete dataset. Unfortunately, Rubygems.org stored au-
thor information as a string, causing problems when multiple authors have col-
laborated on a gem. Several formats for entering multiple authors were used
by project administrators, such as “Peter and John”, “Peter & John”, “Peter,
John”. This information was decoupled using several SQL statements which ul-
timately resulted in database records with single entities. Each gem was given a
unique id and was linked to one or multiple authors. Data extraction was per-
formed on May 7th 2012, providing us with a snapshot of the Ruby ecosystem
as it was then.

2.3 Cluster Identification

After data collection we visualized the data using Gephi [14], which is a free to
use application for social network analysis. Furthermore, Gephi is an interactive
visualization and exploration platform for all kinds of networks and complex
systems, dynamic and hierarchical graphs.

A common property within networks is community structure. It is the divi-
sion of network nodes into groups within which the connections are dense, but
between which they are sparse [9]. Newman and Girvan defined the measure of
modularity to quantify the strengths of communities by using the denseness and
sparsity of the group’s inner and outer connections. Their modularity measure is
a scalar value between -1 and 1, where 1 indicates networks with clusters that are
disconnected from each other, i.e. no nodes overlap two clusters. Their algorithm
is especially useful for undirected and unweighted graphs to reveal underlying
clusters.

To identify clusters within the Ruby ecosystem we used the algorithm pro-
posed by Blondel, Guillaume, Lambiotte and Lefebvre [11], known as the Louvain
algorithm. Their algorithm is based on the work of Newman and Girvan but im-
proved in terms of computer time and modularity. We used the complete dataset
to create the graph where each node consists of a developer or gem. Developers
were connected to other developers if they both contributed to the same gem.
The above mentioned algorithm was then performed on the graph.

2.4 Survey

To get insights in the qualitative aspects of clusters, we constructed an online
survey that was personalized for Ruby developers registered on Rubygems.org.
The online survey1 was able to retrieve information on the respondent’s cluster
from the database that contained information on developers and gems. For ex-
ample, if developer a was clustered in cluster k, all other gems and developers
in cluster k were shown to developer a when answering the survey.

1 http://www.ruby-research.com



On Clusters in Open Source Ecosystems 5

Data was collected between November 23rd 2012 and February 16th 2013.
Invitations to the survey were posted on forums, message boards, and developers
were invited to participate by contacting them via email. Email addresses were
obtained from public profiles on Rubygems.org.

The variables measured in the survey fall into two categories. The first cat-
egory measured relationships (ties) towards other developers and other gems
residing in the respondent’s cluster, and if they had collaborated in producing
gems. Furthermore, it measured to what extent they had personal relationships
to other developers and, if any, how they were established. The second category
measured motivations for creating new gems and the various contributions/roles
developers have when creating gems with other developers.

To measure characteristics of relationships (e.g. tie strength), answers could
be given on an ordinal scale (e.g. I know no - few - half - almost all - all devel-
opers in my cluster). Because our research was explorative of nature, we were
not concerned about interval or ratio data to perform statistical analysis. The
ordinal scale was sufficient in the sense that it enabled us to make some sort of
classification based on the a priori grouping of cluster sizes based on the number
of developers. Other questions were measured on a nominal scale, such as the
various types of relationships or motivations. Moreover, several checkboxes could
be selected that were processed with multiple answer analysis.

3 Data

At the time of analysis, the Ruby ecosystem consists of 37,551 gems and 15,679
developers. On average, each gem is created by 2.39 developers. The gems vary in
their total downloads from just 48 downloads (“Whitelabel” by Peter Schröder)
to a number as high as 12,623,891 downloads (“Rack” by Christian Neukirchen),
with a mean value of 16,477.58 and a standard deviation of 238,668.06. Only 113
gems have total downloads exceeding one million, which constitute for 0.3% of
the total ecosystem. In contrast, 18,783 gems have equal or less than 1,000 total
downloads, representing 50% of the total ecosystem. Out of all the gems, 3.8%
had an additional uri to a wiki of their gem, 7.9% provided an uri to additional
documentation and only 1.5% provided the option to subscribe to their mailing
list.

3.1 Clusters

We have identified 10,586 valid clusters by performing the modularity algorithm
proposed by Blondel et al. [11]. The modularity achieved by performing mod-
ularity optimization (optimizing the modularity to find distinct clusters) was
0.985, an indication that nearly all clusters are unique, i.e. no developers ex-
ist in more than one cluster. These clusters are derived from all 37,551 gems
and 15,679 developers. During data analysis, a total of 328 clusters contained
a single node, which constituted a gem. These clusters were excluded from our
study as, apparently, project administrators failed to register its corresponding



6 Shaheen Syed and Slinger Jansen

developer(s). A manual search showed that the majority of these clusters are
registered as version 0.1, had just a few downloads and provided no additional
information. This can be caused by the free nature of its repository, where reg-
istering a gem requires no strict rules or formats. An illustration of a random
cluster with 7 developers and 13 gems is shown in Fig. 1

'DUUHOO�)XKULPDQ

-'�+XQWLQJWRQ

-RHO�+RIIPDQ

-RKQ�:LOJHU

/DXULH�.HPPHUHU

5DYL�*DGDG

6DP�/LYLQJVWRQ�*UD\

DSSBGULYHU

ERRPEHUD

FDSLVWUDQR�H[W�SURMHFWG[

FRUGRQ

FXNHBGDWD

JLWKXEBUHSRBGHOHWHU

JLWKXE�Y��DSL

MXVW�D�WHVW

NRRNDEXUUD

PHPRQ\PRXV

ULVNBRIBEXUQV

VFUXPQLQMD�JLW�FOL

VTUEO

Fig. 1. Cluster with 7 developers (white nodes) and 13 gems (grey nodes) and the
relations between them.

Number of Nodes Most clusters encompass just two nodes (5,819 clusters
that constitute 55% of the total ecosystem), that is, one developer that is linked
to its own gem. A smaller, but still relatively large part, consists of three nodes
(2,035 clusters, 19.2%), being a single developer who created two gems, or two
developers that have worked on the same gem. The distribution of nodes across
clusters shows that a small portion of just 0.5% are clusters with over 100 nodes.
In addition, the largest cluster consist of 600 nodes: 136 developers who created
464 gems, which account for less than 0.01% of the total ecosystem. Interest-
ingly, none of Ruby’s top 10 most downloaded gems were part of the top 6 largest
clusters. “Activesupport”, “Activerecord”, “Actionpack”, “Actionmailer”, “Ac-
tiveresource” and “Rails”, created by David Heinemeier Hansson, were part of
the 7th largest cluster (107 developers and 370 gems).

Number of Developers/Gems Figures 2(a), 2(b), 2(c), 2(d) show the highly
skewed developer and gem distribution across clusters. The skewed distributions
further show that the vast majority of clusters consist of just one or two devel-
opers. We identified 9,341 clusters with 1 developer (88.2%), 786 clusters with 2



On Clusters in Open Source Ecosystems 7

developers (7.4%), and 206 clusters with 3 developers (1.9%). This shows that
Ruby’s ecosystem, when looking at the number of developers within a cluster,
consists of 97.6% of clusters that are not larger than 3 developers. Moreover, sim-
ilar numbers are found when focusing on the number of gems. Approximately
90% of all clusters have not produced more than 4 gems.

The ample part of the Ruby ecosystem consists of single developers working
on one or multiple gems. A smaller, but still relatively large part, consists of
two or three developers working together to produce gems. There are few clus-
ters that encompass tens or even +100 developers that are connected through
collaboration.

cluster

120001000080006000400020000

N
u
m
b
e
r
 
o
f
 
d
e
v
e
l
o
p
e
r
s

100

10

1

0

(a) Developer distribution

Number of developers

1
2
6

1
1
2

9
9

9
2

8
5

7
7

7
1

6
9

6
4

6
1

5
5

4
8

4
5

4
2

4
0

3
5

3
3

2
7

2
4

2
2

2
0

1
8

1
5

1
3

1
1

97531

P
e
r
c
e
n
t

100

10

1

0

(b) Number of developers as percentage of
the complete ecosystem

Cluster

120001000080006000400020000

N
u
m
b
e
r
 
o
f
 
g
e
m
s

1000

100

10

1

0

(c) Gem distribution

Number of gems

4
3
4

3
8
4

3
6
2

3
4
0

2
9
7

2
6
0

2
3
3

2
0
5

1
9
2

1
8
3

1
7
4

1
6
4

1
5
1

1
3
2

1
2
2

1
1
2

1
0
1

8
5
7
0
5
8
4
8
4
4
3
7
3
4
3
1
2
8
2
5
2
2
1
9
1
6
1
3
1
0
741

P
e
r
c
e
n
t

100

10

1

0

(d) Number of gems as percentage of the
complete ecosystem

Fig. 2. Distribution of developers and gems across clusters: y-axis logarithmically
transformed



8 Shaheen Syed and Slinger Jansen

4 Survey

A total of 782 respondents filled in the survey, being approximately 5% of all reg-
istered Ruby developers on Rubygems.org. To classify the responses, we grouped
clusters by the number of developers within them. As the distribution of devel-
opers within a cluster is highly skewed, we created groups with minor increments
up to 10 developers. The remainder of clusters, being that with 10+ developers
are grouped together. This enabled us to classify survey data on cluster sizes
with respect to the number of developers. We excluded clusters of a single de-
veloper for questions related to ties, as none were present. The classification of
responses are as follows: Clusters with one developer 403 responses, clusters with
2-3 developers 95 responses, clusters with 4-5 developers 35 responses, clusters
with 6-7 developers 13 responses, clusters with 8-9 developers 4 responses, and
finally, all clusters that have 10 or more developers 232 responses.

4.1 Ties through Collaboration

Tables 1 and 2 show survey data with respect to relationships with other de-
velopers that are clustered together. The data of Table 1 provides an overview
of ties to other developers. These ties are a mixture of strong and weak ties,
for example, developers who have collaborated, have emailed, used each other’s
gems etc. In addition, Table 2 shows the presence of strong ties, i.e. personal
relationships, classified into various cluster sizes.

Two-third of the respondents in clusters with 2-3 developers know all other
developers with more than 50% of them having a personal relationship. When
looking at large clusters with over 10 developers, the vast majority (84.5%)
of developers know just a few other developers, 61.6% of these are personal of
nature. Comparing both tables reveals that the relations of strong ties in contrast
to ties in general do not drop considerable.

Additionally, we asked, if personal relationships were present, how they were
established. The results are shown in Table 3. The large part of these personal
relationships are formed through friendships, work mates and through the open
source community. In all cluster groupings, they constitute the majority of the
responses. Personal relationships that are formed through the open source com-
munity seem to grow from 16.5% in clusters with 2-3 developers, to 33.7% in
clusters with over 10 developers. In contrast, the percentage of personal rela-
tionships that are formed through work associates (work at the same company)
seems to diminish from 41% in clusters with 2-3 developers to 25.4% in clus-
ters with 10+ developers. Furthermore, the Ruby ecosystem consists of very few
personal relationships that are bounded by family or schoolmates. The respon-
dents that answered ”other” were given the option to write out an alternative.
More than half of them answered “conference” as a mean to establish personal
relationships.

The relationships between developers and gems are based on the author field
of the Rubygems.org repository. The algorithm, therefore, seeks for connections



On Clusters in Open Source Ecosystems 9

based solely on this information. We asked developers if they would have ex-
pected other developers or gems to be clustered within their cluster. From all
responses, 36.8% had expected other gems, and 30.8% had expected other devel-
opers to be residing in their cluster. The gems that were expected were mostly
related to the Ruby on Rails framework, for example, Active Support, Rack,
Rails. Additionally, developers seem to have expected other gems on which they
have worked through pull requests. Pull requests are a common way of collab-
orating with others, examples are adding updates or fixing bugs, that are then
sent to the project administrators. This does not imply that they list them as
an author. Several developers seem to have committed changes to various other
projects in which they were not mentioned as an author. Similarly, they would
have expected developers that have contributed via pull requests and that were
accepted in the codebase.

Table 1. To what extent do you know the other developers we have identified within
your cluster?

Number
of devel-
opers

I know a few
other developers

I know half of
the other devel-
opers

I know almost
all other devel-
opers

I know all other
developers

I know only devel-
opers with whom I
created a gem

2-3 11.6% (n=11) 1.1% (n=1) 2.1% (n=2) 66.3% (n=63) 18.9% (n=18)
4-5 22.9% (n=8) 8.6% (n=3) 14.3% (n=5) 45.7% (n=16) 8.6% (n=3)
6-7 46.2% (n=6) - - 30.8% (n=4) 23.1% (n=3)
8-9 25.0% (n=1) 50.0% (n=2) 25.0% (n=1) - -
10+ 84.5% (n=196) 4.7% (n=11) .9% (n=2) - 9.9% (n=23)

Table 2. To what extent do you personally know the other developers we have identified
within your cluster?

Number
of devel-
opers

I do not
know any
of the other
developers
personally

I person-
ally know
a few other
developer

I personally
know half
of the other
developers

I personally
know almost
all other
developers

I person-
ally know
all other
developers

I personally
know only
developers
with whom I
created a gem

2-3 18.9% (n=18) 8.4% (n=8) 4.2% (n=4) 2.1% (n=2) 52.6% (n=50) 13.7% (n=13)
4-5 28.6% (n=10) 11.4% (n=4) 11.4% (n=4) 20.0% (n=7) 25.7% (n=9) 2.9% (n=1)
6-7 38,5% (n=5) 7.7% (n=1) - - 30.8% (n=4) 23.1% (n=3)
8-9 25.0% (n=1) 50.0% (n=2) - 25.0% (n=1) - -
10+ 23.3% (n=54) 6.6% (n=143) 2.2% (n=5) - - 12.9% (n=30)



10 Shaheen Syed and Slinger Jansen

Table 3. How did you establish your personal relationship (if any) with other developers
within your cluster?

Number of developers: 2-3 4-5 6-7 8-9 10+

Friend 20.9% 16.9% 11.1% 16.7% 19.1%
Work at same company 41.0% 39.0% 22.2% 50.0% 25.4%
Family 2.2% - - - 0.2%
Open Source Community 16.5% 25.4% 27.8% 33.3% 33.7%
Business partner 5.8% 5.1% 11.1% - 4.8%
Schoolmates 0.7% 5.1% 5.6% - 2.2%
I work alone / no personal relationship 6.5% 8.5% 5.6% - 9.2%
Other 6.5% - 16.7% - 5.3%

4.2 Motivations to Create New Gems

We asked developers what motivates them when creating new gems (projects).
The results are shown in Table 4 with the percentage of responses (adjusted for
multiple answers). In each grouping of cluster sizes, the majority of developers
are motivated by personal needs, i.e. they need to create a certain gem for their
own goals. This does not seem to increase or decrease when clusters consist of
more developers. Two other motivations that contribute for a some what smaller
part are “helping others” and “improving programming skills”. The percentage
of responses for “helping others” seems to increase as clusters are getting larger.
Furthermore, ’fun’ was a frequently given answer in the open text box.

Table 4. What motivation(s) do you have for creating new gems?

Number of developers: 1 2-3 4-5 6-7 8-9 10+

Personal needs 65.3% 58.6% 66.7% 48.1% 57.1% 57.9%
To help others 13.5% 14.6% 13.7% 22.2% 18.9%
Monetary rewards 1.8% 2.5% 2.0% 3.7% 3.4%
Improve programming skills 10.8% 11.5% 7.8% 18.5% 14.3% 10.6%
Recognition 6.3% 8.9% 9.8% 7.4% 14.3% 7.0%
Other 2.2% 3.8% - - 14.3% 2.3%

4.3 Contribution/role when Collaborating

Lastly, we asked developers about their contribution when creating gems with
other developers. Results are shown in Table 5 together with the percentage of
cases, as roles vary among different projects. Sixty percent of the cases create
gems solely by themselves, an indicator that large parts of the Ruby ecosystem
consist of single developers. This was also noticed from the skewed distribution
as discussed in Section 3. The remainder of roles are diverse and make up an
almost equal part of the cases. Project leaders are, however, in minority. Possibly
an indicator that Ruby projects are small in nature and do not consist of a clear
hierarchy of developers that are led by a project leader.



On Clusters in Open Source Ecosystems 11

Table 5. What is your contribution when creating gems with other developers?

Contribution / role N Percentage of responses Percentage of cases

I create gems solely by myself 469 22.40% 60.00%
Testing 275 13.10% 35.20%
Debugging 252 12.00% 32.20%
Documenting 207 9.90% 26.50%
Lending technical knowledge 213 10.20% 27.20%
Project leader 133 6.40% 17.00%
Core developer 239 11.40% 30.60%
Co-developer 282 13.50% 36.10%
Other 24 1.10% 3.10%

5 Discussion and Conclusion

In this paper, we have mined data on relationships between developers and gems
from Ruby’s repository Rubygems.org. We have used Social Network Analysis to
uncover underlying sub-communities, or clusters as we have labeled them. Based
on this data, we performed qualitative analysis by means of a survey to make a
first attempt to find characteristics of various cluster sizes. These clusters were
grouped together by the number of developers residing within them. The survey
was aimed at finding characteristics of connections or ties between developers
and gems. We analyzed if these connections were personal and how they were
established. Furthermore, we made an attempt to classify motivations amongst
various cluster sizes and the contributions or roles Ruby developers have when
collaborating with other developers.

Clusters with few developers make up a large part of the Ruby Ecosystem.
Within these small clusters, developers often have personal relationships that
are mainly formed through friendship, work and through the open source com-
munity. As clusters are increasing in developer size, the relationships (ties) to
other developers, personal and non-personal, seem to decline. It seems that Ruby
developers collaborate with other developers, but are not aware of collabora-
tions of friend-of-friend relationships. Additionally, conferences are important to
stimulate collaborations between developers, as developers have stated that it
facilitated in new collaborations. Personal relationships that are formed through
the Open Source community seem to grow as clusters are getting larger. Fur-
thermore, the ample part of the Ruby ecosystem consist of single developers who
create gems for personal use and do not engage in interaction.

Our explorative study made a first attempt into the classification of FLOSS
data in cluster sizes, but it is however far from complete. As developers have
stated, relationships can not solely be modeled by looking at information given
by project administrators, as this information lacks detailed information on the
actual number of developer contributions. A substantial amount of developers
are motivated by altruism and like to help others. As a consequence, develop-
ers contribute by making pull requests/issues in which they are necessarily not
listed as an author by project administrators. This data is, however, available
in other common repositories such as Github. Clustering developers and gems



12 Shaheen Syed and Slinger Jansen

by incorporating this information would yield more information and a better
representation of the actual ecosystem structure.

Another important aspect of the Ruby ecosystem is the existence of depen-
dencies between gems. These dependencies can either be runtime dependencies or
development dependencies. The first are other gems that are essential to work in
real time for end-users, the latter are gems that are necessary for development
purposes [12]. Although developers have not directly collaborated with other
developers from gem dependencies, incorporating these dependencies would in-
crease the complexity of the ecosystem and possibly provide a more in-depth
view of the actual structure.

The data we collected by mining rubygems.org will be uploaded to Floss-
mole.org to assist other researchers in the study of FLOSS ecosystems.

6 Acknowledgement

We would like to thank all the Ruby developers who have filled in the survey
and especially Jon-Michael Deldin for his comments to this work.

References

1. Jansen, S., Brinkkemper, S., Finkelstein, A.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering, New and Emerging Research Track. (2009)

2. Messerschmitt, D., Szyperski, C.: Software ecosystem: understanding an indispens-
able technology and industry. The MIT Press (2005)

3. Xu, J., Christly, S., Madey, G.: Application of social network analysis to the study
of open source software. In Bitzer, J., Schroder, P.J.H., eds.: The Economics of
Open Source Development. Elsevier (2006)

4. Haythornthwaite, C.: Tie strenghts and the impact of new media. In: Proceedings
of the 34th Hawaii International Conference on Systems Science, Maui, Hawaii
(2001) 1019

5. Gao, Y., Freeh, V., Madey, G.: Analysis and modeling of the open source software
community. In: Proceedings of North American Association for Computational
Social and Organizational Science Conference (NAACSOS 2003). (2003)

6. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., et al.: Applying social
network analysis to the information in cvs repositories. In: International Workshop
on Mining Software Repositories. (2004) 101–105

7. Madey, G., Freeh, V., Tynan, R.: The open source software development phe-
nomenon: An analysis based on social network theory. In: Americas conference on
Information Systems (AMCIS2002). (2002) 1806–1813

8. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D., eds.: Defining and
identifying communities in networks. Number 101, USA, Proc. Natl. Acad. Sci.
USA (2004)

9. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in
networks. Physical Review E 69(2) (2004) 26113

10. Wu, F., Huberman, B.A.: Finding communities in linear time: A physics approach.
Eur. Phys. J. 38 (2004) 331–338



On Clusters in Open Source Ecosystems 13

11. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 10 (October 2008) P10008

12. Kabbedijk, J., Jansen, S.: Steering insight: An exploration of the ruby software
ecosystem. In: Proceedings of the Second International Conference on Software
Business. (2011)

13. Granovetter, M.: The strength of weak ties. American Journal of Sociology 78(6)
(1973) 1360–1380

14. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-
ing and manipulating networks. In: International AAAI Conference on Weblogs
and Social Media. (2009)


