
Building Petri nets tools around Neco compiler

 Lukasz Fronc and Franck Pommereau
{fronc,pommereau}@ibisc.univ-evry.fr

IBISC, Université d’Évry/Paris-Saclay
IBGBI, 23 boulevard de France

91037 Évry Cedex, France

Abstract. This paper presents Neco that is a Petri net compiler: it
takes a Petri net as its input and produces as its output an optimised
library to efficiently explore the state space of this Petri net. Neco is also
able to work with LTL formulae and to perform model-checking by using
SPOT library. We describe the components of Neco, and in particular
the exploration libraries it produces, with the aim that one can use Neco
in one’s own projects in order to speedup Petri nets executions.

Keywords: Petri nets compilation, optimised transition firing, tools de-
velopment, explicit state space exploration

1 Introduction

Neco is a Petri net compiler: it takes a Petri net as its input and produces as
its output a library allowing to explore the Petri net state space. Neco operates
on a very general variant of high-level Petri nets based on the Python language
(i.e., the values, expressions, etc., decorating a net are expressed in Python) and
including various extensions such as inhibitor-, read- and reset-arcs. It can be
seen as coloured Petri nets [1] but annotated with the Python language instead
of the dialect of ML as it is traditional for coloured Petri nets.

Firing transitions of such a high-level Petri net can be accelerated by resorting
to a compilation step: this allows to remove most of the data structures that
represent the Petri net by inlining the results of querying such structures directly
into the generated code. Moreover, instead of relying on generic data structures
and algorithms, specialisations can be performed on a per-transition and per-
place basis. In particular, Neco can exploit various properties of Petri nets in
order to further optimise the representation of a marking (both for execution
time and memory consumption), as well as transitions firing algorithms. Finally,
Neco is able to type most of the Python code embedded in a Petri net thanks
to the typing information on places. This allows to generate efficient C++ code
instead of relying on the interpreted Python code.

All this yields a substantial speedup in transition firing (and consequently in
state-space exploration and explicit model-checking) that was evaluated in [2].
This was also confirmed by the participation of Neco to the model-checking

contest (satellite event of the Petri nets 2012 conference) that showed that
Neco was able to compete with state-of-the-art tools [3].

The goal of this paper is to introduce the main concepts of Neco and its
usage in order to enable tool developers for efficiently using the detailed on-
line documentation and exploit Neco in their own projects. This may concern
most tools that perform explicit exploration of Petri nets states spaces and take
advantage of the speedup that Neco can offer.

Neco is free software released under the Gnu lgpl and it can be downloaded
from http://code.google.com/p/neco-net-compiler where its documenta-
tion is also available, including a tutorial as well as the precise api of libraries
generated by Neco and concrete examples.

2 General architecture and usage guidelines

Neco is a collection of two compilers, one exploration tool and one model-checker:

– neco-compile is the main compiler that produces an exploration engine of
a Petri net (a library);

– neco-explore is a simple exploration tool that computes state spaces using
the engine produced by neco-compile;

– neco-check is compiler for LTL formulae that produces a library to handle
these formulae;

– neco-spot is a LTL model-checker that uses outputs of tools neco-compile
and neco-check, as well as SPOT library for model-checking algorithms [4].

As a compiler, Neco has two backends: the Python backend allows to generate
Python code while the Cython backend generates annotated Python [5] that
can be compiled to C++. Each tool composing Neco is dedicated to a specific
task. Here we focus on compilation but we will also say a few words about the
rest. The detailed compilation workflow is shown in Figure 1. In this section we
assume that we use the Cython backend which is the most efficient one. First
we present how the exploration engine is built and how to use it to build state-
spaces, this part remains globally valid for the Python backend. Next we present
how to perform LTL model-checking within Neco, and this part is currently
not supported by the Python backend. However, there are also features that are
currently only available in the Python backend, like reductions by symmetries [6],
thus not yet available for LTL model-checking.

2.1 Exploration engine builder and state-space construction

The first step using Neco is to create a module that provides exploration prim-
itives: a marking structure, successor functions specific to transitions, and a
global successor function that calls the transition specific ones [2]. As shown
in Figure 2, this exploration engine can be used by a client program (e.g., a
model-checker or a simulator) to perform its task. The generated library directly

240 PNSE’13 – Petri Nets and Software Engineering

ex
tr

ac
t

co
m

-
p

il
at

io
n

tr
ac

e

m
o
d

el

n
e
c
o
-
c
o
m
p
i
l
e

n
e
c
o
-
c
h
e
c
k

n
et

.s
o

ch
ec

ke
r.

so

L
T

L
fo

rm
u

la

in
fo

st
ru

ct
u

re
s

p
ro

d
u

ce
fu

n
ct

io
n

s

p
ro

d
u

ce
m

ar
k
in

g

ex
p

lo
ra

ti
on

fu
n

ct
io

n
s

ex
p

lo
ra

ti
o
n

fu
n

ct
io

n
s

ex
p

lo
ra

ti
on

fu
n

ct
io

n
s

m
ar

k
in

g
st

ru
ct

u
re

co
m

p
il

e
(
c
y
t
h
o
n

+
g
+
+
)

p
ro

d
u

ce
co

m
-

p
il

at
io

n
tr

ac
e

p
ro

d
u

ce
in

fo

co
m

p
il

at
io

n
tr

a
ce

d
ec

om
p

os
e

id
-a

to
m

m
ap

p
ro

d
u

ce
ch

ec
k

fu
n

ct
io

n
s

at
om

ic
p

ro
p

os
it

io
n

s

at
om

ic
p

ro
p

os
it

io
n

s

at
o
m

ic
p

ro
p

os
it

io
n

s

m
ai

n
ch

ec
k

fu
n

ct
io

n

co
m

p
il

e
(
c
y
t
h
o
n

+
g
+
+
)

co
m

p
il

at
io

n
tr

ac
e

sp
ot

fo
rm

u
la

-
P

y
th

on
-

A
B

C
D

-
P

N
M

L
n
e
c
o
-
e
x
p
l
o
r
e

n
e
c
o
-
s
p
o
t

st
a
te

sp
a
ce

co
u

n
te

r-
ex

am
p

le
if

ex
is

ts

to
o
ls

in
p

u
ts

/
ou

tp
u

ts
d

a
ta

st
ru

ct
u

re
s

ex
te

rn
al

in
te

ra
ct

io
n

in
te

rn
al

in
te

ra
ct

io
n

l
e
g
e
n
d

co
m

p
u

ta
ti

on
s

Fig. 1. Compilation pipeline and exploration tools within Neco (Cython back-
end).

Ł. Fronc et al.: Building Petri Nets Tools around Neco Compiler 241

embeds code from the model (i.e., Petri net annotations) but also relies on ex-
isting data structures (in particular, sets and multisets) forming core libraries,
and accesses them through normalized interfaces. Model code itself has very few
constraints and may use existing libraries. This is detailed in [2].

client program (e.g., model-checker)

model code interfaces

predefined code (core lib, model libs)

exploration engine

data structures:

– Marking

– · · ·

functions:

– succ

– succt1

– init

– · · ·

hand written
by tool programmer

generated
by compiler

assumed
by compiler

provided
by existing libraries

hand written
by modeller

Fig. 2. The exploration engine (plain-line box) and its context (dotted boxes). [2]

This module is built using command neco-compile. To do so, Neco takes a
Petri net model as input which can be described programmatically in Python
using the SNAKES toolkit [7], or using the ABCD formalism [8], or specified
in PNML [9]. Once the model is loaded, some types are inferred allowing to
statically type Python code later, which is an important feature because Cython
language can produce optimized C++ code from annotated Python code [5].
However, because we allow a high degree of expressivity, all source code cannot
be typed and Neco falls back to calling the Python interpreter in such cases.
Basically, if a net contains only black tokens, integers or Boolean values, and
static strings, as well as collections (tuples, lists, sets, dictionaries) of such values,
it will be fully translated into C++.

The next step is to produce a marking structure to represent Petri net states.
It is optimized based on previously discovered types. This allows to use native
types or to generate per-place specialised implementations. Then, we can produce
exploration functions specific to the model (mainly an initial marking function
and successor functions), this allows to efficiently produce state spaces [2].

An additional step is to produce a compilation trace which contains informa-
tion about the marking structure and the model. This metadata is essential for
consistency preservation among tools, and it prevents the user from having to
call each tool with exactly the same options which is error-prone.

242 PNSE’13 – Petri Nets and Software Engineering

The last step is to compile generated code producing a native Python module
that is a shared library which can be used from C++ as a regular library as well
as from Python as a regular module. This is actually done with Cython compiler
and a C++ compiler.

State spaces can be built using neco-explore tool. This tool builds sets of
reachable states, and reachability graphs using a simple exploration algorithm
that aggregates discovered states by repeatedly calling successor functions.

2.2 LTL model checking

LTL model checking is performed using SPOT library [4], however, SPOT cannot
directly handle atomic propositions appearing in LTL formulae which are specific
to the used formalism. Moreover, because our marking structures are model
specific, we also need to generate an atomic proposition checker module for each
compiled net. This is made by neco-check compiler.

This tool takes two inputs, a LTL formula in Neco compatible LTL syn-
tax [10], and compilation metadata extracted from an exploration module (pre-
viously created with neco-compile).

The first step is to decompose the formula, extract atomic propositions and
map them to unique identifiers (“id-atom map”on Figure 1). A simplified formula
where all atomic propositions have been replaced by these identifiers is stored as
a file. This way, atomic propositions can be abstracted away leading to a simple
interface with the checking module. Basically, the interface is a function check

that takes a state and an atomic proposition identifier, and returns the truth
value of the atomic proposition at the provided state.

The next step is the creation of one check function for each atomic propo-
sition, plus the generic check function exposed to users. During this step, using
the compilation trace is essential because we need to create functions that are
compatible with the optimized marking structure, and thus be aware of used
types and memory layout. Finally the generated code is compiled using Cython
compiler and a C++ compiler.

The checker module finalized, it can be used together with the formula file
by neco-spot tool and it will output a counter-example if one exists, i.e., if the
formula is not satisfied.

3 Perspectives

Several new features are already planned for Neco. First, a method to reduce
symmetries based on [6] has been already prototyped in the Python backend.
We would like to implement it in the Cython backend also to achieve better
performance. Next, Neco will be adapted to compute unfoldings à la McMillan
using the approach described in [11, chap.6]. This should be feasible by reusing
most of the code that Neco already generates to discover bindings. Finally, we
would like to implement fast simulation in Neco, which could be a variant of
the current exploration algorithm that would compute only one successor for a

Ł. Fronc et al.: Building Petri Nets Tools around Neco Compiler 243

state instead of all its successors. However, for better performance, we would like
to experiment with a co-routine based implementation of Python [12] in order
to define a highly concurrent architecture while avoiding the overhead of using
threads.

Neco will also participate to the 2013 edition of the model-checking contest.
As a side effect, this will lead us to develop new case studies for Neco (i.e., those
models that are included in the contest), which will be extended later with more
case studies.

Based on case studies, we would like to perform extensive benchmarks of
the Cython backend by comparing it to a combination of the Python backend
with various Python compilers (in particular [13] and [14]) as well as with PyPy
implementation of Python that features efficient just-in-time compilation [15].
This should allow either to drop Cython backend if it happens that it is outper-
formed by other approaches, or, more probably, to define typical situations where
Cython should not be used. In particular, we expect PyPy to be more efficient
on Petri nets that embed a lot of Python objects that cannot be converted to
efficient C++ code.

Finally, we are working on an additional Java backend, allowing to compile
Petri nets and LTL formulae to Java code. This will require some internal re-
organisation of Neco so its core will become language-agnostic while only the
backends will have to deal with language-specific aspects. Thanks to this work,
we expect that more backends will be implemented in the future to handle Petri
nets annotated with a wider variety of languages.

References

1. Jensen, K., Kristensen, L.: Coloured Petri Nets: Modelling and Validation of Con-
current Systems. Springer (2009)

2. Fronc, L., Pommereau, F.: Optimizing the compilation of Petri nets models. In:
Proc. of SUMo’11. Volume 726., CEUR (2011)

3. Kordon, F., Fronc, L., Pommereau, F., et al.: Raw Report on the Model Checking
Contest at Petri Nets 2012. Technical report (2012)

4. Duret-Lutz, A.: LTL translation improvements in Spot. In: Proceedings of the 5th
International Workshop on Verification and Evaluation of Computer and Commu-
nication Systems (VECoS’11). Electronic Workshops in Computing, Tunis, Tunisia,
British Computer Society (2011)

5. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., Smith, K.: Cython:
The best of both worlds. Computing in Science Engineering 13 (2011) 31 –39

6. Fronc, L.: Effective Marking Equivalence Checking in Systems with Dynamic Pro-
cess Creation. In: Infinity’12. Electronic Proceedings in Theoretical Computer
Science, Paris (2012)

7. Pommereau, F.: Quickly prototyping Petri nets tools with SNAKES. Petri net
newsletter (2008)

8. Pommereau, F.: Algebras of coloured Petri nets. LAP LAMBERT Academic
Publishing (2010)

9. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri
Net Markup Language and ISO/IEC 15909-2. In: 10th International workshop on
Practical Use of Colored Petri Nets and the CPN Tools (CPN’09). (2009)

244 PNSE’13 – Petri Nets and Software Engineering

10. Fronc, L.: Neco net compiler wiki. goo.gl/CXrry (2012)
11. Khomenko, V.: Model checking based on Petri net unfolding prefixes. PhD thesis,

PhD thesis, School of Computer Science, University of Newcastle upon Tyne (2002)
12. Tismer, C.: Continuations and stackless Python. In: Proceedings of the 8th Inter-

national Python Conference. (2000)
13. Dufour, M.: Shed skin. http://code.google.com/p/shedskin (2012)
14. Hayen, K.: Nuitka. http://nuitka.net (2012)
15. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: PyPy’s

tracing JIT compiler. In: Proc. ICOOOLPS ’09, ACM (2009)

Ł. Fronc et al.: Building Petri Nets Tools around Neco Compiler 245

246 PNSE’13 – Petri Nets and Software Engineering

