
Rapid Prototyping of Science Gateways in the
Brazilian National HPC Network

Bruno F. Bastos, Vinicius M. Moreira and Antonio Tadeu A. Gomes
National Laboratory for Scientific Computing (LNCC)

Petrópolis-RJ, 25651–075, Brazil
Phone: +55-24-22336202

Email: bfbastos@lncc.br, vmacedo@lncc.br, atagomes@lncc.br

Abstract—Arguably, an important amount of scientific soft-
ware development time is likely to be employed on user interfaces.
In particular, science gateways have gained increasing interest
from the e-Science community because of their convenience to
hide the complexity of the underlying resources that give support
to the management of scientific data and to the execution of
scientific applications. Based on our previous experience with the
development of science gateways for diverse application domains
in the Brazilian National HPC Network (SINAPAD), we have
devised a rapid prototyping strategy to lower the barrier for
scientific application developers to launch new science gateways.
In this paper we present such strategy, which is based on two
main tools. The first tool implements a gateway engine that can
be configured by a small set of XML files. Such files completely
define the desired functionality of an specific science gateway in
such an engine. The gateway engine also offers other features
not commonly found in related technologies, such as file sharing,
data provenance tracking, and restricted anonymous access to
underlying computational resources. The second tool implements
both an editor and a packager for the aforementioned engine,
allowing the developer to rapidly deploy and launch a new science
gateway in ordinary Web application containers. In this paper
we present our results with the use of both tools in the SINAPAD
network. We also discuss about the current limitations of such
tools, as well as how we have been dealing with such limitations
to provide a more comprehensive toolset to developers.

I. INTRODUCTION

Science gateways allow researchers to interact in a con-
venient way (using mainly Web-based technologies) with
diverse computational and data resources—e.g. HPC clusters,
mass storage servers, computational grids and public/private
clouds—, aiming at the management of scientific data and the
execution of scientific applications on such resources. In some
cases, such gateways also provide collaboration tools that allow
researchers to share scientific data with the remainder of its
scientific community.

The primary purpose of a science gateway is to allow
researchers to increase their productivity by concentrating
mainly on the subject of their research, and not on the details
of the computational tools that are offered him to conduct such
research. Ideally, none of such tools should be dealt with by
the researcher itself, but instead by a scientific application de-
veloper. By such developer we mean the staff responsible for
building, deploying, and (sometimes) optimizing the scientific
software the researcher is interested in using.

Historically, the development of science gateways has been
typically based on two main solutions. In the first solution,

tools specifically devised for helping with the development
of science gateways are used. In the second solution, content
management tools are adapted to properly interface with the
computational and data resources employed by researchers.
Crucially, such solutions, in their current form, require a sub-
stantial effort from the scientific application developer, whether
it be for development, for configuration, or for deployment of
science gateways.

In this paper we propose a toolset specifically built for
the rapid prototyping of application-specific science gateways.
By application-specific we mean the provisioning of narrow
interfaces to researchers, i.e. interfaces that are adapted to the
particularities of specific scientific applications, as opposed to
interfaces that expose typical science gateway services (such
as job submission and monitoring) without regard to such
particularities. In contrast to the aforementioned solutions, the
purpose of the proposed toolset is to provide the simplest en-
vironment as possible for configuring such gateways, without
any development or deployment effort by the scientific appli-
cation developer. Moreover, the toolset offers some specific
features not commonly found in the aforementioned solutions
and which can be easily enabled or disabled individually for
each gateway through configuration, such as: (i) file sharing
between gateway users, (ii) support for provenance tracking of
jobs’ data inputs and outputs, and (iii) support for restricted
anonymous access to gateway services.

The proposed toolset comprises two tools. The first tool,
called PortEngin, implements a gateway engine that is de-
ployed on a Web server like any ordinary Web application.
Such engine is configured by a small set of XML files that
describe the interface to be expected by the user of the intended
scientific application, as well as the enabling of the specific
gateway features mentioned above. The PortEngin tool is built
upon the basic services for job and data management provided
by the CSGrid middleware, an instantiation of the CSBase
framework [1] that has been specifically customized for the
Brazilian National HPC Network (SINAPAD)1 to integrate its
geographically-distributed, highly-heterogenous computational
and data resources. This paper also describes some extensions
to the CSBase framework that we have implemented for it
to cope with the specific science gateway features mentioned
above.

The second tool, called PortEditor, aims at aiding the scien-
tific application developer in the edition of the XML files that

1http://www.lncc.br/sinapad

http://www.lncc.br/sinapad

set up the PortEngin tool. Besides its edition capabilities, the
PortEditor tool is also responsible for packaging the configured
engine, so that it can be easily deployed and launched by the
developer on a typical Web application container.

The remainder of this paper is organized as follows.
Section II describes some of the most popular solutions for
the development of science gateways found in the literature.
Section III presents the overall architecture of the proposed
toolset. It also provides some background on the CSGrid
middleware technology, which is needed for understanding
the modus operandi of the PorEngin tool, and describes
some extensions that we have implemented in our CSGrid
instantiation of the CSBase framework for it to cope with
the specific needs of science gateway technologies such as the
one proposed herein. Section IV illustrates and discusses about
the use of the proposed toolset in some portals currently on
operation in the SINAPAD network. Section V provides some
concluding remarks as well as our perspectives on future work.

II. RELATED WORK

Historically, the development of science gateways has been
typically based on two main solutions. In the first solution,
specific tools for the development of science gateways are
used. Among the many examples of this approach, the most
probably known are Gridsphere,2 used in TeraGrid (now
XSEDE),3 and the GENIUS Grid Portal,4 used in the EGI
infrastructure.5 Science gateways that use this kind of tool
implement environments that abstract away the details of the
computational resources in which scientific applications are
executed, providing a single access point to such resources.
Such gateways, in its simplest form, are built for general
use, offering secure access to computational resources, job
submission and monitoring and file management operations,
but exposing these services without regard to the particular
needs of specific scientific communities. The development of
application-specific gateways is possible and has been done
in this type of tool, but such approach requires a substantial
development and configuration effort from the scientific appli-
cation developer [2].

In the second solution, content management tools are
adapted to interface with the computational resources in which
the scientific applications are run. A commonly found ex-
ample of this approach is by employing Liferay.6 Science
gateways that use this type of tool implement highly effective
environments for collaboration and data sharing. Nevertheless,
adjusting such tools to properly interface with the underlying
computational resources depends on a considerable develop-
ment effort that does not receive direct support from such
tools [3]. In this direction, some projects, such as Vine Toolkit7
and EnginFrame,8 have provided support for the integration
of these tools in the context of grid computing and have
been used to provide application-specific science gateways to
the particular needs of some communities [4]. However, the

2http://www.gridsphere.org/gridsphere/gridsphere
3http://www.xsede.org
4http://egee.cesnet.cz/en/user/genius.html
5http://www.egi.eu/
6http://www.liferay.com/products/liferay-portal/overview
7http://vinetoolkit.org/
8http://www.nice-software.com/products/enginframe

complexity of the architecture resulting from this integration
makes the process of configuring and deploying these gateways
considerably difficult and prone to errors.

III. TOOLSET ARCHITECTURE

The toolset is divided into three layers. The bottom layer
provides access to the basic data and job management services
offered by the CSGrid middleware, as detailed in Subsec-
tion III-A. The middle layer extends the CSBase framework
so that our instantiation of the CSGrid middleware becomes
able to provide the additional features of file sharing, restricted
anonymous access and data provenance tracking, as described
in Subsection III-B. The top layer implements the PortEngin
tool, which is responsible for building dynamic Web pages
based on the settings defined by its XML configuration files,
as shown in Subsection III-C. The PorEditor tool also resides
in the top layer, being responsible for the edition of such
configuration files and the packaging of PortEngin for its de-
ployment and launching on typical Web application containers.
The settings that the developer must do for customizing a
gateway to a specific application domain are presented in more
detail in Subsection III-D.

A. CSGrid basic services

The CSGrid middleware is an instantiation of the CSBase
framework, which is illustrated in Figure 1. The CSBase
framework is based on central server (a server farm implemen-
tation is also possible) in charge of managing all the underlying
computational resources available to its users. Such server
also manages a data repository that comprises a user directory
(for authentication and authorization purposes), a project area
(where user files are stored), and an algorithm repository. In the
CSBase framework, an “algorithm” is an abstraction used for
referring to scientific applications implemented as executable
scripts or binaries that accept input parameters and generate
outputs, but do not have any type of user interaction during
its execution.

A set of execution daemons is responsible for locally
managing the computational resources that are provided to
the execution of algorithms. In HPC clusters, for instance,
such daemons interact with local resource managers such as
SLURM, SGE, and PBS, allowing the submission and mon-
itoring of algorithm executions onto the job queues provided
by such managers.9 Likewise, a set of CSFS (CSBase File
System) daemons is responsible for transferring data (e.g.
input/output files, scripts, binaries) from and to the local
filesystems of such resources.

The CSBase framework allows different technologies to
be used for its user directory and for remotely accessing the
local filesystems of the underlying computational resources. In
our instantiation of the CSBase framework, the user directory
is implemented by an LDAP server, and the filesystems of
the underlying computational resources are accessed via the
SSH/SCP protocol.

The CSBase framework implements a set of services, some
of which are available strictly from desktop applications. One

9In our CSGrid instantiation of the CSBase framework all computational
resources are regarded as job queues, irrespective of them being part of HPC
clusters, computational grids or public/private clouds.

http://www.gridsphere.org/gridsphere/gridsphere
http://www.xsede.org
http://egee.cesnet.cz/en/user/genius.html
http://www.egi.eu/
http://www.liferay.com/products/liferay-portal/overview
http://vinetoolkit.org/
http://www.nice-software.com/products/enginframe

Fig. 1. CSBase Architecture (based on: [1]).

example of such application is the CSGrid desktop client,
which offers a set of administrative tools for the CSGrid
middleware (e.g. for resource management, user management,
and algorithm management). Other CSBase services are also
exported to external applications through a CORBA-based
service bus called OpenBus. Such bus is responsible for the
registration and lookup of both external CSBase services
and applications that consume such services. Any service or
application that intends to interact with the OpenBus service
bus must have an X.509 digital certificate properly configured
in its access control service.

Two main basic services exported by the CSBase frame-
work in the OpenBus service bus are of interest for the
present work: OpenDreams (OpenBus Distributed Resource
and Algorithms Management Service) and ProjectService.

OpenDreams offers a set of operations for the submission,
monitoring and control of jobs (algorithm executions in the
CSBase jargon) on remote computational resources. Its service
interface is based on OGF’s DRMAA 1.0 specifications [5].
The OpenDreams service explores the algorithm abstraction
in the CSBase framework to provide a very flexible approach
to mitigating resource heterogeneity, which is key feature
for the SINAPAD network. The algorithm repository of the
CSBase framework allows the same algorithm to have multiple
versions, each one being described by a specific set of input
and output parameters. For each algorithm version, multiple
executable scripts or programs may be provided to reify the
algorithm abstraction in different computational resources.
This feature allows our CSGrid instantiation of the CSBase

framework, and consequently the PortEngin tool, to make it
completely transparent to the researcher not only in which
computational resource, but also in which type of computa-
tional resource—whether it be an HPC cluster, a computational
grid, or a public/private cloud—his/her job is running.

ProjectService offers a set of operations for uploading,
accessing and manipulating files in the project area of the
user. User files are organized by projects, and users can share
their files in a specific project with other users. Other features
offered by the CSBase framework, which are not crucial to the
presentation of our approach, may be found in [1].

B. Features added to the CSGrid middleware

The CSBase framework combines characteristics of typical
gateway development tools (e.g. by abstracting away the details
of the computational resources) with those of content man-
agement tools (e.g. by allowing file sharing between users).
Nevertheless, some features not offered by such framework
have been incorporated into our CSGrid instantiation. These
features are presented below. They have been implemented
in the Java programming language and its documentation is
available at http://www.lncc.br/sinapad/csgrid-api/.

1) File sharing: The CSBase framework already allows file
sharing between users. Nevertheless, the configuration of ac-
cess permission categories is somewhat complex and restricted
to desktop applications that access the internal CSBase services
(such as the CSGrid desktop client). To allow the researcher
him-/herself to share files in a common area within a science
gateway, as well as publish them for open access from the

http://www.lncc.br/sinapad/csgrid-api/

Internet, we have implemented an additional functionality in
our CSGrid instantiation. Such functionality is based on the
definition of a special CSBase user called shared. This user
cannot execute jobs and just have access to its own project
area.

In our approach when the researcher shares a file within
a science gateway, he/she is actually copying such file into
the project area of the user shared. A shared file cannot
be modified, and only the researcher who shared the file can
remove it from the project area of the user shared. Moreover,
any researcher can directly copy a shared file into his/her own
project area (without needing to download and subsequently
upload the file), which he/she can then modify or use for
performing a job.

2) Data provenance tracking: In its original structure, the
CSBase framework keeps a history of job submissions, but
does not help with preserving the original files a user provides
as input as well as the output files generated as part of
a specific submission. The user is then solely responsible
for keeping track of such files. Nevertheless, automatic data
provenance tracking [6] is very important in e-Science, because
it guarantees that a certain in-silico experiment be reproducible
in the future.

To support automatic provenance tracking in our CSGrid
instantiation, we have implemented an additional functionality
in it that maintains a history of each job submission, including
the arguments and files used as input and the output files
generated by the algorithm execution. The researcher may then
download the data stored in such a history by using the job
monitoring functionality that the PortEngin tool provides to
the science gateways. Importantly, such data is immutable and
kept separated from the project area of the user in the CSBase
framework.

3) Restricted anonymous access: The restricted anonymous
access feature allows an anonymous researcher to use, in a
limited way, a science gateway without needing to provide user
credentials or to be registered in the CSBase’s user directory.
We have implemented such feature in our CSGrid instantiation
of the CSBase framework through the definition of another
special CSBase user called guest. For each invocation (ses-
sion) of a science gateway that has this feature enabled,
the PortEngin tool creates a temporary folder in the project
area of user guest. Such folder is associated with a unique
identifier for that session and can only be accessed during that
session. This folder is removed some time (configurable in the
PortEngin tool) after the execution of the job.

To submit a job the anonymous researcher shall respond to
a visual challenge (a captcha) and enter a valid email address,
which will be used for informing the researcher about the
completion of the job execution and for providing a URL
(associated with the unique identifier of the corresponding
gateway session) from where its results can be accessed.
Importantly, these results may be accessible by anyone that
possesses the unique identifier of the gateway session from
which the job was submitted.

An anonymous researcher has restrictions that are not
configurable in the PortEngin tool, such as not being able
to share files or to keep track of submissions on the science
gateway after closing his/her session. Other restrictions are

configurable in the PortEngin tool, such as limitations on
the input arguments for the algorithms or on the allowed
algorithm versions and types of computational resources that
the anonymous researcher may invoke. Details about such
configurations are presented in the following section.

C. The PortEngin tool

The architecture of the PortEngin tool is illustrated in
Figure 2. From the point of view of a scientific application
developer, the PortEngin tool is a simple Web application that
needs an ordinary Java Servlet container for its deployment.
From the point of view of an administrator of the CSGrid
middleware, the PortEngin tool is an external application
that consumes the OpenDreams and ProjectService services
published in the OpenBus service bus. The PortEngin tool
creates instances of sciences gateways that offer Web interfaces
for: (i) uploading, downloading, viewing and editing files in the
project area of the users, (ii) submitting jobs, including valida-
tion tips on how to fill out the required algorithm arguments,
and (iii) monitoring jobs, indicating their unique identifiers,
in which computational resources such jobs are running and
when they were submitted, among other information.

The XML configuration files allow the gateway engine to
be customized for each instance of science gateway according
to the needs of its researchers. These files are:

• openbus.xml - defines the digital certificates used by
the science gateway for authentication in the OpenBus
service bus;

• config.xml - describes the input and output arguments
of the algorithms associated with the science gateway.
Such file is used both by the gateway engine for dy-
namically assembling Web pages, and by the CSBase
framework for assembling the invocation command for
the specific scripts or binaries that reify the algorithm in
the underlying computational resources;

• portal.xml - links the science gateway to a project
area and defines which algorithms may run through this
gateway. Such file also defines whether the Web interface
will be generated on every re-deploy of the gateway
or not (this is particularly important when the scientific
application developer intends to change the Web layout
that the PortEngin tool generates as default).

• modules.xml - enables/disables additional features
(seen in Section III-B) to be provided by the science
gateway;

• authentication.xml - configures restricted anony-
mous access to the science gateway, when such feature
is enabled (e.g. if an input argument must have a more
stringent set of allowed values).

D. The PortEditor tool

In spite of the fact that the XML files described in
Section III-C have only a few tags to be configured, such
configuration may be tricky at times specially with regard to
the parameters that set up the communication with the CSGrid
middleware. Besides, the packaging of such files together with
the binaries that implement the various functionalities of the
PortEngin tool must follow an strict organization so that it
can be properly deployed in a Web application container.

Fig. 2. The PortEngin tool.

Finally, any science gateway prototyped with the PortEngin
tool must have a valid digital certificate registered in the
OpenBus service bus so that it can consume the OpenDreams
and ProjectService services.

Aiming at aiding the scientific application developer in the
aforementioned issues, we have developed the PortEditor tool,
whose interface is presented in Figure 3. The topmost part of
the figure illustrates the functionality of the PortEditor tool
that allows a registered developer to edit previously created
gateways, whereas the bottommost part shows how a new
gateway may be configured. Such tool uses the same LDAP
service that the CSGrid middleware employs for user authen-
tication and authorization, so that only registered developers
can access the tool to rapidly prototype new science gateways.
Once a new science gateway is configured in the PortEditor
tool, a deployment package is provided to the developer (see
the topmost part of Figure 3), so that he/she can deploy it
on a Web application container. Importantly, however, only
after the digital certificate of the newly configured science
gateway has been registered in the access control service
of the OpenBus service bus, will the developer be able to
effectively launch the science gateway for the researchers to
make use of it. To partially automate such process, when a
new science gateway is prototyped in the PortEditor tool, the
CSGrid administrators receive an email message informing
them about such configuration so as for them to evaluate it
and proceed with the certificate registration accordingly.

IV. EXAMPLES

Figures 4 and 5 show screenshots of two science gateways
currently on production in the SINAPAD network that have
been prototyped with the PortEngin tool.

The first example (DANCE – http://www.lncc.br/sinapad/
DANCE) provides a service for the efficient evaluation of
different kinds of network centralities in complex networks [7].
Figure 4 shows, from top to bottom, the Web pages for job
submission and monitoring and file sharing that have been
automatically generated by the gateway engine. The algorithm

associated with this gateway requires very simple input and
output arguments (one input file, one number, one selection
option, and one directory for output files), and the layout of

Fig. 3. The PortEditor tool.

http://www.lncc.br/sinapad/DANCE
http://www.lncc.br/sinapad/DANCE

this website is the default one generated by the gateway engine.

Fig. 4. The DANCE science gateway.

The second example (ProFraGer – http://www.lncc.br/
sinapad/Profrager) provides a service for generating libraries of
protein fragments. Figure 5 shows the Web page for submitting
ProFraGer jobs that has been generated by the gateway engine.
The algorithm associated with this gateway, unlike DANCE,
requires a much larger and more varied set of input arguments
(files, values and ranges, selections), which are reflected in
the Web page dynamically assembled by the gateway engine.
This gateway implements the restricted anonymous access

functionality, and had its Web layout modified by the developer
of the ProFraGer software. It is important to notice that the
layout of the Web interface provided by the science gateway
is unrelated to the operation of the gateway engine. Therefore,
the Web layout may be modified by editing the HTML, CSS
and JSP files that define such interface, without any change in
the implementation of the gateway engine itself.

Fig. 5. The ProFraGer science gateway.

There are a few other application-specific science gate-
ways that are currently on production in the SINAPAD net-
work. Such gateways are listed in htttp://www.lncc.br/sinapad/
portais.php.

A. Discussion

During our prospecting for new developers and researchers
interested in using our proposed toolset, some of them reported
two main limitations in it: the lack of support for command-
line interfaces, and the poor integratability of PortEngin with
widely used content management tools such as Liferay. Our
approach to tackle such limitations was to split the PortEngin
tool into two sublayers: a lower core sublayer and a higher
user interface layer.

The core sublayer implements an API for the higher layer
to programmatically access, in a convenient way, the various
services offered by the PortEngin tool. The documentation for
such API is available at http://www.lncc.br/sinapad/core-api/.

The higher user interface layer allows different interface
personalities to be implemented over the lower sublayer. One

http://www.lncc.br/sinapad/Profrager
http://www.lncc.br/sinapad/Profrager
htttp://www.lncc.br/sinapad/portais.php
htttp://www.lncc.br/sinapad/portais.php
http://www.lncc.br/sinapad/core-api/

get - downloads a file in the project area of the user onto the local filesystem
Usage: get --project <project name>

--file <remote file path>
--dest <local destination>

list - lists the files in the project area of the user (optionally from a specific path in such area)
Usage: list --project <project name>

[--dir <dir path>]

put - uploads a file or directory in the local filesystem onto the project area of the user.
If uploading a directory, provide a ZIP file of the desired directory and use the switch --directory
Usage: put --project <project name>

--file <local file path (directories must be ZIP files)>
--dest <remote destination>

[--directory]

remove - removes a file in the project area of the user
Usage: remove --project <project name>

--file <remote file path>

queues - lists the computational resources available for an specific algorithm (optionally for a specific version).
Usage: queues --algorithm <algorithm name>

[--version <version>]

run - runs an algorithm (optionally using an specific version, or a specific computational resource).
Other options and flags are algorithm-specific.
Returns the job id of this algorithm execution.
Usage: run --algorithm <project name>

[--email <email>]
[--version <version>]
[--queue <queue name>]
<algorithm parameters in the format -KEY=value>

stats - verifies the status of algorithm executions (optionally in a specific state, or during a specific time slot,
or with a specific job id).
Usage: stats --algorithm <project name>

[--status (DONE | FAILED | RUNNING | WAITING),..]
[--begin <yyyyMMddhhmmss>]
[--end <yyyyMMddhhmmss>]
[--job <job id>]

Fig. 6. CLI commands.

such personality is the Web application that implements our
current science gateways (such as DANCE and ProFraGer,
presented in Section IV) and is targeted by our PortEditor tool.
Another personality is a command-line application that allows
the researcher to have access to the underlying computational
and data resources by means of a terminal shell interface.
Such personality is further described below. Other personalities
may be developed, allowing the lower core sublayer to be
easily integrated, for instance, with Liferay. Such approach
has been adopted in the implementation of a Liferay-based
web portal for climatology applications, which is available at
http://cenapadportal.cptec.inpe.br/.

The command-line interface (CLI) personality offers re-
searchers the most flexible way for them to manage job
submissions and project areas in the underlying resources that
comprise the SINAPAD network. Using such interface the
researcher may, for instance, automate the submission and
monitoring of a (possibly huge) batch of jobs in a single script.
Such approach is particularly useful in scientific experiments
based on parameter sweeping or Monte Carlo methods.

Figure 6 presents the main commands which are offered
by the CLI personality to the researcher. Crucially, all such
commands have correspondence with operations available in
the Web-based science gateways that employ the PortEngin
tool. Moreover, all algorithms and projects that are accessible
from the Web-based science gateways may be also accessible
through the CLI personality, provided that the researcher has

the necessary access rights for them. Since the algorithm
abstraction and the project areas employed in both personalities
are the same, such duality does not incur in an additional
cognitive load on the researchers [8].

A single command-line application is responsible for im-
plementing all available commands in the CLI personality.
Such application is registered in the OpenBus service bus so
as to be able to consume the OpenDreams and ProjectService
services. Such application is accessible through an SSH server
available in the SINAPAD network.

V. CONCLUSION

Our experience with the provisioning of HPC services
to the Brazilian scientific community through the SINAPAD
network clearly demonstrates that much of the effort em-
ployed by scientific application developers (and often re-
searchers alike) is either on learning the idiosyncrasies of
the highly-heterogeneous computational resources that com-
prise the SINAPAD network (e.g. available compilers, local
resource managers, hardware architectures), or on the ad-hoc
development of customized, Web-based science gateways that
provide transparent access to such resources. The effort pre-
sented herein aims at simplifying the development of science
gateways through a “zero programming” strategy. In such a
strategy, the configuration of a small set of XML files is
sufficient to enable any supported functionality in the gateway
engine that underlies the application-specific science gateways

http://cenapadportal.cptec.inpe.br/

offered in the SINAPAD network. Importantly, the inclusion
of a new CLI personality in our gateway engine copes with the
specific needs of some researchers as regards the automation
of submission and monitoring of batches of jobs.

It is worth considering that this paper has not mentioned
an important trend in e-Science: the use of scientific workflow
management systems (SWMSs). Nevertheless, taking as the
sample space the researchers that make use of the computa-
tional resources provided by the SINAPAD network, it seems
that the vast majority of the Brazilian scientific community is
either: (i) still pretty much unaware of the facilities that the
SWMSs may provide or (ii) does not see value in such facilities
due to the deployment effort that such systems might demand
from the scientific application developers, when one considers
the integration of such systems with the highly-heterogeneous
computational resources of the SINAPAD network. In this
sense, we have progressed work on the integration of some
worldwide-known SWMSs such as Galaxy10 and Taverna11 in
our toolset by turning them onto other personalities that make
use of the lower core sublayer described in Section IV-A.

ACKNOWLEDGMENT

This work was partially supported by the Brazilian Ministry
of Science, Technology and Innovation (MCTI), and by the
Brazilian National Research and Education Network (RNP).
The authors thank Klaus Wehmuth and Artur Ziviani for
their involvement in the configuration of the DANCE science
gateway. The authors also thank the Group for Molecular Mod-
eling of Biological Systems at LNCC for their involvement in
the configuration of the ProFraGer science gateway, and also
for their valuable suggestions that considerably improved our
toolset.

REFERENCES

[1] M. Julia de Lima, C. Ururahy, A. Lucia de Moura, T. Melcop,
C. Cassino, M. N. dos Santos, B. Silvestre, V. Reis, and R. Cerqueira,
“CSBase: A framework for building customized grid environments,” in
Proceedings of the 15th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, ser. WETICE
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 187–
194. [Online]. Available: http://dx.doi.org/10.1109/WETICE.2006.26

[2] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and
S. Pamidighantam, “TeraGrid science gateways and their impact
on science,” Computer, vol. 41, pp. 32–41, November 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1477047.1477119

[3] TeraGrid Forum, “Liferay: recommendations from selected users,” 2012,
http://teragridforum.org/mediawiki/index.php?title=Liferay.

[4] R. Barbera, G. La Rocca, R. Rotondo, A. Falzone, P. Maggi,
and N. Venuti, “Conjugating science gateways and grid portals into
e-collaboration environments: the Liferay and GENIUS/EnginFrame
use case,” in Proceedings of the 2010 TeraGrid Conference. New
York, EUA: ACM, 2010. [Online]. Available: http://doi.acm.org/10.
1145/1838574.1838575

[5] Open Grid Forum, “Distributed resource management application API
specification 1.0,” 2008, http://www.ogf.org/documents/GFD.133.pdf.

[6] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” SIGMOD Rec., vol. 34, pp. 31–36, September 2005.
[Online]. Available: http://doi.acm.org/10.1145/1084805.1084812

[7] K. Wehmuth and A. Ziviani, “Distributed assessment of network central-
ity,” CoRR, vol. abs/1108.1067, 2011.

10http://galaxyproject.org
11http://www.taverna.org.uk

[8] F. Paas, A. Renkl, and J. Sweller, “Cognitive load theory: Instructional
implications of the interaction between information structures and
cognitive architecture,” Instructional Science, vol. 32, no. 1-2, pp.
1–8, 2004. [Online]. Available: http://dx.doi.org/10.1023/B%3ATRUC.
0000021806.17516.d0

http://dx.doi.org/10.1109/WETICE.2006.26
http://dl.acm.org/citation.cfm?id=1477047.1477119
http://teragridforum.org/mediawiki/index.php?title=Liferay
http://doi.acm.org/10.1145/1838574.1838575
http://doi.acm.org/10.1145/1838574.1838575
http://www.ogf.org/documents/GFD.133.pdf
http://doi.acm.org/10.1145/1084805.1084812
http://galaxyproject.org
http://www.taverna.org.uk
http://dx.doi.org/10.1023/B%3ATRUC.0000021806.17516.d0
http://dx.doi.org/10.1023/B%3ATRUC.0000021806.17516.d0

	Introduction
	Related work
	Toolset architecture
	CSGrid basic services
	Features added to the CSGrid middleware
	File sharing
	Data provenance tracking
	Restricted anonymous access

	The PortEngin tool
	The PortEditor tool

	Examples
	Discussion

	Conclusion
	References

