
Reasoning over SPARQL

Sam Coppens, Miel Vander Sande, Ruben Verborgh, Erik Mannens, Rik Van de Walle
{sam.coppens,miel.vandersande,ruben.verborgh,erik.mannens,rik.vandewalle}@ugent.be

Ghent University - iMinds
Department of Electronics and Information Systems, Multimedia Lab

Gaston Crommenlaan 8 bus 201
B-9050 Ledeberg-Ghent, Belgium

ABSTRACT
Until now, the sparql query language was restricted to sim-
ple entailment. Now sparql is being extended with more
expressive entailment regimes. This allows to query over in-
ferred, implicit knowledge. However, in this case the sparql
endpoint provider decides which inference rules are used for
its entailment regimes. In this paper, we propose an ex-
tension to the sparql query language to support remote
reasoning, in which the data consumer can define the in-
ference rules. It will supplement the supported entailment
regimes of the sparql endpoint provider with an additional
reasoning step using the inference rules defined by the data
consumer. At the same time, this solution offers possibil-
ities to solve interoperability issues when querying remote
sparql endpoints, which can support federated querying
frameworks. These frameworks can then be extended to
provide distributed, remote reasoning.

1. INTRODUCTION
Reasoning is one of main strengths of the Semantic Web. It
infers logical consequences from graph structured rdf data
based on inference rules. These inference rules are included
in ontology languages (e.g., owl2 [9]) or rule languages (e.g.,
n rules [2]). In order to produce inferred triples, reason-
ers require, of course, access over the data. In a distributed
environment as the Linked Open Data [3] cloud, this raises
several concerns: First, all the data needs to be collected
from different data sources and stored locally, before one can
reason over the data. Second, when dealing with large dis-
tributed datasets, as is common in modern web applications,
this centralisation of triples becomes problematic, since pro-
cessor and memory consumption increase with the amount
of triples. Third, in this paper, we argue that reasoning
over large distributed datasets can be done more effectively
if performed in a distributed, atomic way.

On the Semantic Web, rdf data can be accessed through a
sparql endpoint [5]. Typically, triples can be retrieved by

Copyright held by the author/owner(s)
LDOW2013 May 14, 2013, Rio de Janeiro, Brazil

executing a sparql query. This process shows some strong
similarities with reasoning, which are the following:

• both require the presence of the whole set of triples.
• both benefit from setting conditions and performing

filters, to make the operation as precise as possible.
• both return a set of triples. In case of querying, this

is the selected subset. In case of reasoning, these are
the inferred triples.

We exploit the fact that the sparql infrastructure is already
well deployed by extending the endpoint’s functionality to
support reasoning operations. With a single query, inference
rules are sent to the endpoint and the inferred triples are
returned.

In this paper, we introduce a novel approach to deal with
the issues of reasoning over centralised triples, by allowing
custom inference rules being executed over data stored on
remote systems. We build on existing Semantic Web tech-
nology, by adding an extra layer to the sparql query lan-
guage and reusing its endpoint infrastructure. We do not
force sparql endpoints to support heavy reasoning tasks,
but we leave open the possibility. They can decide to not
support any reasoning. In this case, the reasoning could be
performed by the sparql client. But by integrating this
reasoning mechanism in the sparql protocol and syntax,
sparql clients can be developed supporting the reasoning.
E.g., a sparql client that relies on query rewriting for the in-
ference rules supported by the owl ql query language, and
relying on client-side, owl reasoning for the other inference
rules. This kind of sparql client wouldn’t even need any
adaptation to the existing sparql endpoints. Another ex-
ample are sparql clients with a MapReduce-infrastructure
to support the reasoning. In this paper, we only focus on the
extension for the sparql syntax and protocol. The sparql
endpoints are free to decide what reasoning support they
give, sparql clients are free to decide how to schedule (client
vs. server) the reasoning.

This paper is structured as follows. We start by discussing
some related work (section 2). Next, we motivate the ben-
efits of remote reasoning (section 3) and discuss how we
reused sparql to support it (section 4). Then, we describe
two future use cases as a proof of concept (section 6). Fi-
nally, we conclude with some future work (section 7) and
add a final conclusion (section 8).



2. RELATED WORK
Currently, the wc sparql working group has proposed a
recommendation for supporting entailment regimes [7] in
sparql. The sparql 1.1 Query specification defines the
evaluation of basic graph pattern by means of subgraph
matching. This form of basic graph pattern matching is also
called simple entailment. The proposed support of the en-
tailment regimes will allow for retrieving solutions that im-
plicitly follow from the queries graph. The proposed recom-
mendation regimes are: rdf entailment, rdfs entailment,
D-entailment, owl2 rdf-based semantics entailment, owl2
direct semantics entailment and owl ql core entailment.
This way, a data provider can adapt its basic graph pattern
matching algorithm to support one of the entailment regimes
to support querying over entailed triples. This recommenda-
tion will allow data providers to publish sparql endpoints
which support one of the proposed entailment regimes. In
this solution, the data providers offer the ontology or rule
set used for reasoning and the reasoning actually happens on
the level of basic graph pattern matching. In our solution,
the end-user defines the ontology or rule set used to reason
over the queries graph. The reasoning in our solution hap-
pens after the basic graph pattern matching. Thus, we have
a post-reasoning step, which supplements the pre-reasoning
step offered by the entailment regime.

Related to our solution is stream reasoning. Event process-
ing is concerned in timely detecting compound events in
streams. Event processing is already capable of doing run-
time analysis of the event streams. Stream reasoning on
the other hand will allow event processors to combine back-
ground knowledge to entail extra knowledge. Event Process-
ing sparql (ep-sparql, [1]) is a new language for complex
event and stream reasoning. Next to the new language for
querying streams of events, they also provide an execution
model which derives information from streamed rdf events
in real-time. The framework is extended based on event-
driven backward chaining rules. These are logic rules that
can thus be mixed with other background knowledge. Fur-
ther investigation is needed here to support more expressive
formalisms for stream reasoning, such as owl and its differ-
ent profiles.

Distributed reasoning is also closely related to our frame-
work. In such frameworks, reasoning is happening with
multiple ontologies interrelated with semantic mappings on
distributed data. larkc (Large Knowledge Collider) and
drago (Distributed Reasoning Architecture for a Galaxy of
Ontology, [11]) are such distributed reasoning frameworks.
larkc performs massive, distributed, and necessarily incom-
plete reasoning over web-scale knowledge sources. Massive
inference is achieved by distributing problems across het-
erogeneous computing resources. larkc is based on a plug-
gable architecture in which it is possible to exploit tech-
niques and heuristics from diverse areas such as databases,
machine learning, cognitive science, Semantic Web, and oth-
ers. In drago, reasoning is the result of a combination of
semantic mappings of local reasoning chunks performed in a
single owl ontology. It provides reasoning services for mul-
tiple owl ontologies, interconnected via C-OWL mappings.
Future work for drago involves extending the drago frame-
work to cope with distributed T-boxes and to support more
expressive ontology mappings.

3. REMOTE REASONING
Remote Reasoning resides in the classic client-server archi-
tecture. It is a service provided by an external server, allow-
ing users to reason over its accessible data with a supplied
rule set or owl ontology. When the reasoning process is
complete, the server returns the inferred triples. This is
demonstrated in fig. 1.

Server

R
ea

so
ne

r

W
eb

 
in

te
rfa

ce Triple 
StoreC

lie
nt

Ruleset

Inferred triples

Figure 1: Client-server architecture for remote rea-
soning

The benefits are three-fold. First, users can benefit from del-
egating some of the effort of reasoning to the server. Those
reasoning tasks performed within the owl ql space, can
easily be performed by the server by query rewriting. This
does not only result in faster reasoning times, but is also
cost-efficient. Actually, in the case of query rewriting, the
reasoning is done by query rewriting, typically at the client,
followed by basic graph pattern matching at the server. Sec-
ond, in many cases, a client only requires the reasoning re-
sults, i.e. the inferred triples. Therefore, eliminating the
harvesting and storing of data locally, drastically reduces
overhead in terms of time and storage consumption. Also,
data is not duplicated and synchronizing versions is there-
fore avoided. Third, the used inference rules are flexible,
dynamic and defined by the client, not the server. At the
moment sparql endpoints can already support some entail-
ment regimes, but here the sparql endpoint providers de-
cides the inference rules used for reasoning. In many cases,
the data consumer wants to define the inference rules to
support its application.

In order to integrate remote reasoning on the Web, there
are a few requirements. First, reasoning happens within the
constraints of the server. Second, a syntax and communica-
tion protocol need to be defined to assure interoperability.
In this paper we focus on this last requirement, which are
discussed in the next Section.

4. EXTENDING SPARQL
In general, a reasoning cycle can be divided into five steps,
as shown by LarKC [14]:

1. Identification
2. Selection
3. Transformation
4. Reasoning
5. Decision

sparql already covers the first three steps (construct queries
can be considered as transformations). By extending the
sparql query language, the fourth step can also be covered
by sparql, allowing for remote reasoning.



Listing 1: A reason query for executing n rules
declared in an external file over all triples
REASON <http :// t e s t . com/ r u l e s . n3>
OVER {

? s ?p ?o
} WHERE {

? s ?p ?o
}

4.1 The REASON query
Reasoning can be performed by executing a sparql query.
Therefore, we introduce a new query form reason equiva-
lent to select, construct, ask, and describe. The syn-
tax consists of three main parts (as illustrated in listing 1):

• the reason keyword
• a rule set in an ontology or declarative language. This

can either be a URL to a rule file, supplied between
<>, or inline n rules between {}
• the over and where keyword combination which de-

fines the triples to reason over. It is equivalent to the
construct keyword in combination with its where
clause. Its content is placed between {}.

A reason query returns a valid rdf graph, equivalent to
the construct query. This graph includes only the inferred
triples.

We chose for the new sparql query form because:

• The structure of the reason query form supports a
selection step, as discussed in the context of larkc [14]
and section 4. This way, we can do remote reasoning
on a snapshot of the data. By doing this, the server
keeps control over the memory consumption a certain
reasoning task might require. The sparql endpoint
provider can, e.g., require the selection step trims down
the graph to reason over 10.000 triples or to stop rea-
soning the moment it has inferred 10.000 triples. Al-
though the results can be incomplete.
• sparql allows for subqueries. Subqueries are a way to

embed sparql queries within other queries, normally
to achieve results which cannot otherwise be achieved,
such as limiting the number of results from some sub-
expression within the query. Thus, implementing the
remote reasoning over sparql via a new query form
allows to query the returned entailed triples, as will be
shown in the next section 4.1.1.
• The combination of the reason query form with a ser-

vice extension of sparql 1.1 provides a way to bal-
ance workload with federated querying, as explained
in section 4.1.2.

4.1.1 Precise reasoning with nested queries
The sparql 1.1 specification allows subqueries and nesting
of queries. This can be fully exploited to allow queries on the
entailed triples. This enables fine-grained reasoning, which
enables optimization of results and execution time. Exam-
ples of nested queries are given in listing 2 and listing 3.

Listing 2: Only the inferred child relationship of
Jenna is selected.
SELECT ? c h i l d
WHERE {

: Jenna : c h i l d ? c h i l d .
{

REASON {
{ ?x : parent ?y } => { ?y : c h i l d ?x } .

}
OVER {

? s : parent ?o .
}
WHERE {
? s a : Person ; : parent ?o .
}

}
}

Listing 3: The worksWith relationship is inferred
only for persons working at UGhent
REASON {
{ ?x : knows ?y } => { ?y : knows ?x } .

}
OVER {? s : knows ?o}
WHERE
{

CONSTRUCT {? s : workedWith ?o}
WHERE {

? s : worksAt : UGhent .
? s : p a r t i c i p a t e d I n P r o j e c t ? p r o j e c t .
?o : worksAt : UGhent .
?o : p a r t i c i p a t e d I n P r o j e c t ? p r o j e c t .

}
}

4.1.2 Balancing workload with Federated Querying
Federated querying is another possibility in sparql. It al-
lows triples to be fetched from another endpoint, and in-
clude them in your query using the service element. When
we include this into a reason query, we can reason with
one endpoint, over data from another. This is very power-
ful, because it allows a high performance server to reason
over remote data with a single query. Therefore, the biggest
workload can be performed on the machine best suited for
it. An example query is shown in listing 4.

4.2 Ontology classification
The inference rules used for reasoning can come from owl
ontologies or declarative rules. Classification of the used in-
ference rules will allow to select the appropriate reasoner
for doing the inferencing. Today, highly optimised reason-
ers such as EYE[4], Pellet [12], FaCT++ [13], RacerPro [8]
and HermiT [6] are able to classify many ontologies used
in applications. The optimisations employed by these rea-
soners aim not only to improve performance on individual
subsumption tests, but also to reduce the number of tests
performed when classifying a given ontology. Such an ontol-
ogy classification can also be a means to enforce a constraint
of the server. The server can decide to only support owl ql
inference rules, because in this case the query can be rewrit-
ten and SPARQL can be exploited to the fullest, without
actual generating inferred triples.



Listing 4: Example query showing how the data is
first fetched from two endpoints and then used for
reasoning
REASON {
{ ?x f o a f : knows ?y } => { ?y f o a f : knows ?x } .

}
OVER {

: Jenna f o a f : knows ? person .
}

WHERE{
{
SERVICE <http :// example . org / sparq l> {

: Jenna f o a f : knows ? person .
} } UNION {
SERVICE <http :// example2 . org / sparq l> {

: Jenna f o a f : knows ? person .
} }

}

Listing 5: Without the presence of foaf:knows (not
selected in the over clause) no triples will be in-
ferred.
REASON {
{ ?x f o a f : knows ?y }

=> { ?y f o a f : knows ?x } .
}
OVER {

: Jenna a f o a f : Person .
}
WHERE {

: Jenna a Foaf : Person ; ?p ?o
}

4.3 Handling triple selection validation for rea-
soning

When executing a reason query, the triples to reason over
are selected in the over clause. This principle holds a po-
tential pitfall. When the selection lacks the necessary triples
for the given inference rule set, the result will be empty.
An example is given in listing 5. Although this can not be
considered an error, it needs to be discussed in the query
specification. In the end, the user is made responsible for
the triple selection in the over clause. When a result set
turns up empty, it can two reasons (i) the inference rules
lead to no inferred triples, or (ii) the selection of the triples
to reason over was incomplete. Automatic validation is also
possible using the aforementioned reasoners, but in combi-
nation with the entailment regimes, this becomes hard. A
query can at first sight lead to no results and invalidate, but
can rely on the supported entailment regime of the sparql
endpoint provider to provide the results.

5. A SPARQL REASONING ENDPOINT
For the proof-of-concept, we have extended Apache Jena
arq1 query engine to support remote reasoning. This engine
is very popular and is often used for implementing sparql
endpoints. By extending the arq library to support remote
reasoning, existing sparql endpoints can be extended easily

1http://jena.apache.org/documentation/query/index.html

Listing 6: A query overcoming interoperability is-
sues
SELECT ?name
WHERE {

? s a : A r t i s t .
{

REASON {
{ ?x : r o l e ’ a r t i s t ’ } => { ?x a : A r t i s t } .

}
OVER {

? s : r o l e ?o
}
WHERE {

? s a f o a f : Person ; : r o l e ?o
}

}

to support this remote reasoning. As explained in section 4,
we introduced a new sparql query form: the reason query
form. In our first prototype, this new sparql query form
supports n rules. This way, we are able to offer already
reasoning on top of SPARQL. For the future, special atten-
tion will go to owl ql inference rules, because these can be
rewritten. This way, the server impact can remain minimal.
owl ql seems to be the fit for empowering sparql with
reasoning capabilities.

6. USE CASES
In this section, we discuss two possible use cases for remote
reasoning: ontology interoperability and distributed reason-
ing. In both cases, the remote reasoning on top of sparql
offers some possibilities, discussed in the next sections.

6.1 Ontology interoperability
Interoperability between different ontologies can be simpli-
fied by supplying mapping rules at query time similar to the
approach followed by [10]. This allows a user to use a cus-
tom vocabulary in a sparql query that differs from the one
used in the endpoint. This is typically a problem for query
federation frameworks, where different parts of a query are
evaluated by different sparql endpoints. These sparql
endpoints often use different vocabularies to describe their
data. By including mapping rules, interoperability issues are
avoided when querying. An example of a federated query,
supporting ontology interoperability is shown in listing 6.

6.2 Distributed reasoning
Many federated query frameworks rely on sparql to fed-
erate sub queries (parts of the incoming query) to the ap-
propriate sparql endpoints and to aggregate all the results.
These frameworks can already benefit from remote reason-
ing to solve interoperability issues between the contacted
sparql endpoints. These federated querying frameworks
could be extended with this sparql extension to become
federated reasoning frameworks. The example shown in list-
ing 7 shows how this could work.



Listing 7: A subset from the reason results can be
extracted using sparql features
SELECT ? a r t i s t
WHERE {

? a r t i s t a : A r t i s t .
{ REASON {

{?y dbpprop : a r t i s t ?x .}
=>
{?x a : A r t i s t } .

}
OVER {

? artwork dbpprop : a r t i s t ? person .
}

WHERE {
SERVICE <http :// example . org / sparq l> {
? person a f o a f : Person .
? artwork dbpprop : a r t i s t ? person .

}
}

}

7. FUTURE WORK
Future work will first focus on the following things:

• We want to add support for other rule languages be-
sides n. Special focus will go to inference rules be-
longing to the owl ql profile.
• For the owl ql inference rules, reasoning can be re-

placed by query rewriting. These conversions will be
investigated for integration into our solution.
• For other inference rules, dedicated reasoners can be

selected. Here, the classification comes into play. Ded-
icated reasoners perform much faster then general pur-
pose reasoners. Thus a good classification can increase
performance by selecting dedicated reasoners or a com-
bination of dedicated reasoners.

A second objective for the future will be the integration of
remote reasoning via sparql into federated querying frame-
works to build a distributed reasoner, as shown in section 6.

8. CONCLUSION
Distributed reasoning is becoming more important nowa-
days, because of the distributed characteristic of Linked
Open Data. In this paper, we have proposed an extension
to the sparql query language to support remote reasoning.
This extension will support two use cases: ontology interop-
erability, e.g., when federating queries, and distributed rea-
soning. In the future, reasoning on distributed data sources
will become more important and this extension to sparql
can be a building block to facilitate distributed reasoning.
By extending sparql, the selection of data to reason over is
incorporated into the remote reasoning framework we pro-
pose. This is a very important feature to restrict the amount
of data to reason over, because it allows to reason on certain
snapshots of distributed data, e.g., versions.

9. ACKNOWLEDGEMENTS
The research activities that have been described in this pa-
per were funded by Ghent University, iMinds, the Institute
for the Promotion of Innovation by Science and Technol-
ogy in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWO-Flanders), and the European Union.

10. REFERENCES
[1] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic.

EP-SPARQL: a unified language for event processing
and stream reasoning. In Proceedings of the 20th
international conference on World wide web, WWW
’11, pages 635–644, New York, NY, USA, 2011. ACM.

[2] Berners-Lee, T. and Connolly, D. Notation3, 2006.
Available at
http://www.w3.org/DesignIssues/Notation3.

[3] Bizer, C. and Heath, T. and Idehen, K. and
Berners-Lee, T. Linked Data on the Web. In
Proceedings of the 17th International World Wide
Web Conference – LDOW Workshop, pages
1265–1266, Beijing, China, April 2008.

[4] De Roo J. Eye reasoner.

[5] S. H. Garlik, A. Seaborne, and E. Prud’hommeaux.
SPARQL 1.1 Query Language. World Wide Web
Consortium, 2013.

[6] B. Glimm, I. Horrocks, B. Motik, R. Shearer, and
G. Stoilos. A novel approach to ontology classification.
J. Web Sem., 14:84–101, 2012.

[7] Glimm, B. and Ogbuji, C., editor. SPARQL 1.1
Entailment Regimes. W3C Recommendation. World
Wide Web Consortium, January 2013. Available at
http://www.w3.org/TR/sparql11-entailment/.

[8] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The
RacerPro knowledge representation and reasoning
system. Semantic Web, 3(3):267–277, 2012.

[9] Motik, B. and Patel-Schneider, P. F., and Parsia,
Bijan, editor. OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax.
W3C Recommendation. World Wide Web
Consortium, December 2012. Available at http:

//www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

[10] A. Polleres, F. Scharffe, and R. Schindlauer. Sparql++
for mapping between rdf vocabularies. In
R. Meersman and Z. Tari, editors, OTM Conferences
(1), volume 4803 of Lecture Notes in Computer
Science, pages 878–896. Springer, 2007.

[11] L. Serafini and A. Tamilin. Drago: Distributed
reasoning architecture for the semantic web. In
ESWC, pages 361–376. Springer, 2005.

[12] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur,
and Y. Katz. Pellet: A practical OWL-DL reasoner.
Web Semantics, 5(2):51–53, 2007.

[13] D. Tsarkov and I. Horrocks. Fact++ description logic
reasoner: System description. In In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2006,
pages 292–297. Springer, 2006.

[14] L. Ying and J. Shujuan. International Workshop on
LarKC - a Platform for Massive Distributed
Incomplete Reasoning. Digital Library Forum, China
Science and Technology Information Institute, Beijing,
April 2011.


