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Abstract. User-adaptive visualization aims to adapt visualized infor-
mation to the needs and characteristics of the individual user. Cur-
rent approaches deploy user personality factors, user behavior and pref-
erences, and visual scanning behavior to achieve this goal. We argue
that neurophysiological data provide valuable additional input for user-
adaptive visualization systems since they contain a wealth of objective
information about user characteristics. The combination of neurophysi-
ological data with other information like eye movement data can signif-
icantly improve system reliability by reducing the inherent uncertainty
in the interpretation of the user data. Moreover, neurophysiological data
can be obtained continuously and unobtrusively without disturbing the
interaction of the user with the system.
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1 Introduction

User-adaptive visualization is a novel approach to adapt an information visu-
alization to individual user differences. For example, it can mean adapting the
visualization to general (and typically static) user traits such as speed of percep-
tual processing or user expertise. In this case, adaptation to the user happens
only once or a limited number of times. Adaption can also occur more or less
continuously, e.g. when the visualization is adapted to the current mental and/or
cognitive state of the user (attention, emotion), or to the characteristics of the
user-visualization interaction (such as history of user actions).

One of the current research questions in user-adaptive visualization is which
individual characteristics can be used as ‘input’ for adaptation. In this paper
we explore the possibilities to adapt visualizations to the continuously changing
mental state of the user as can be estimated by (neuro)physiological variables
such as heart rate and brain signals. The advantages of using neurophysiological
variables are that they provide a continuous, online measure, and do not involve
potentially distorted or subjective post-hoc judgment. Also, ongoing miniatur-
ization and development of wireless sensing techniques will allow minimal user
interference in the near future.

In this paper, we first provide a short overview of related work in user-
adaptive visualization, focusing on the individual characteristics that are typi-
cally employed and how these are gathered. Next, we examine the state of the
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art in neurophysiological measurement. Finally, we provide ideas on how these
neurophysiological measures could be used to adapt the visualization, i.e. what
characteristics of the visualization can be adapted and how. This includes ideas
on how neurophysiological measures can complement other commonly used mea-
sures of individual characteristics, such as eye gaze data.

2 Adapting to the user

A variety of factors can be used to adapt a visualization to an individual user. In
this section, we briefly review the current state of research in user-adaptive visu-
alization, focusing on which individual differences can be used to personalize a
given visualization for a particular user. We distinguish differences in personality
factors, user actions and preferences, and visual scanning behavior.

Previous work [1, 2] has found that personality factors (locus of control, ex-
traversion and neuroticism) influence performance with different visualization
types. Also, several cognitive abilities correlate with various aspects of visu-
alizations. For example, spatial ability correlates with comprehension of (3D)
information visualizations [3]. Toker et al. [4] show that perceptual speed (also
see [5]), verbal working memory, visual working memory and user expertise have
a significant effect on task efficiency, user preference and ease of use of different
visualization types. Toker et al. [6] show that perceptual speed and verbal work-
ing memory also have a significant effect on eye-gaze behavior when viewing a
visualization. The authors suggest that adaptive interventions can be driven by
these individual characteristics, for example, by giving more emphasis to certain
elements of the visualization (e.g., more emphasis on text for users scoring low
on verbal working memory). We note that personality and cognitive abilities are
typically assessed with computer-based or paper-and-pencil tasks and question-
naires [3–6], or self-reports [4]. However, self-reports are potentially unreliable,
as several memory errors can undermine their accuracy [7]. Also, they are sus-
ceptible to social desirability biases. Steichen et al. [8, 9] address this problem by
using eye gaze to infer these cognitive abilities. Finally, we note that adapting
to these relatively static user traits is less suitable for interactive or continuous
adaption of the visualization.

Another commonly used approach, more suited continuous adaption of the
visualization, is to adapt to user actions and (implied or explicitly given) prefer-
ences (e.g. [10–12]). This information can be used to build a user model, which
can be updated over time based on new information, i.e. dynamic. An example
of a dynamic model is one that learns from expressed user dislike of a visualiza-
tion [13]. However, information on these actions and (dis)likes does not reveal
why these occurred, as they do not give information on the user’s (mental) state.

The use of eye gaze measures can provide information on user state. For
example, Steichen et al. [8, 9] use eye gaze to predict the user’s task. Also, they
use eye gaze to infer cognitive abilities such as perceptual speed, visual working
memory and verbal working memory. As noted above, these cognitive abilities
have a significant effect on the use of different visualization types. Conati et
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al. [14] investigate the possibilities of using eye gaze to detect when the user
needs an adapted visualization. For example, duration of a fixation can indicate
complexity, pupil dilation may indicate cognitive load and eye gaze data can
be used to determine areas that the user has not looked at. Also, eye gaze can
reveal informative patterns such as repeated scanning of the same area in a
visualization [15]. In general, for analyzing data generated by an eye-tracker,
several metrics are potentially informative: number of fixations (a large number
of fixations generally implies a less efficient search [16], or a large number of
fixations on a particular area of the screen can be indicative of high interest
in that area), fixation duration (long fixation duration often means the user
has difficulty extracting information [16]), number of saccades (more saccades
indicate a larger amount of visual search), scanpath metrics (such as length,
duration and convex hull [17]), or saccade direction changes (a direction change
larger than 90 degrees could imply that the user’s goals have changed or the
user interface is not the way the user expected [18]). Eye gaze measures can be
extracted online and continuously without interrupting the user. However, there
are several problems associated with eye gaze measures, such as how to define a
fixation, how to account for errors in gaze location and how to handle scanning
interruptions [15].

Summarizing, current approaches to user adaptive visualizations are based
on differences in personality factors, user actions and preferences, and visual
scanning behavior. However, since measures of personality factors are inherently
unreliable and biased, and since eye movements need additional information for
a correct interpretation, additional sources of information are needed to correctly
estimate a user’s state of mind. In the next section we argue that this information
can partly be obtained from neurophysiological measures.

3 Neurophysiological measures

In this section we will show which neurophysiological measures can provide ob-
jective information about the mental and cognitive characteristics of users.

A multitude of neurophysiological variables can be measured and analyzed
more or less continuously and non-invasively in an office environment. The ad-
vantages of using neurophysiological variables are that they are a continuous,
online measure, and do not involve potentially distorted or subjective post-hoc
judgment. Previous work has already suggested that user-state monitoring is the
next potential breakthrough in the use brain-computer interfaces [19]. Examples
include electrical brain activity as measured at the scalp (electroencephalogra-
phy or EEG), oxygen-bound hemoglobin in the brain (near-infrared spectroscopy
or NIRS), a combination of EEG and NIRS [20], cardiovascular measures (e.g.
heart rate and blood pressure), respiratory measures (e.g. respiration rate) and
electrodermal measures (electrical conductance of the skin which varies with
sweat excretion).

Non-invasive portable equipment that records brain signals (EEG and NIRS)
can only do so from the surface of the brain (the cortex). The signals themselves,
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electrical activity and the amount of oxygen-bound hemoglobin, are weakened
and smeared out by the tissue lying between the sensor and the origin of the
signal, and the signals themselves are rather indirect measures of what the brain
actually is doing. Still, they can provide us with potentially useful information.
Much of the cognitive and sensory functions are localized in the cortex. Roughly
speaking, the frontal area is involved in cognitive processing, the area at the back
of the brain in vision, auditory processing is at the sides of the brain and touch
is at the upper part. This localization knowledge can be combined with general
indicators of brain activity or inhibition. For EEG, the power of frequencies
around 12Hz (alpha band) indicate idling [21] or inhibition [22] of the recorded
part of the brain. For NIRS, a relatively large amount of oxygenated blood
generally corresponds to brain activity. For example, experiments on workload
indeed indicate that frontal alpha activity [20, 23, 24] and oxygenated hemoglobin
increases with task difficulty. For a more detailed overview of the usefulness of
brain-based indices for effort, vigilance, workload and engagement see [25].

Another common type of measurement extracted from EEG besides power
in frequency bands are event-related potentials (ERPs). These are the peaks
and valleys as observed in averaged EEG traces that are locked to an external
event, such as the onset of the presentation of an image. The P300 is a peak
occurring 300 ms (or somewhat later) after the presentation of a stimulus that
attracts special attention. This special attention can be because it either pops out
with respect to previous and subsequent stimuli (e.g. [26]), because of inherent
meaning (e.g. one’s own name in between others names [27]) or because the
stimulus is one that the individual is asked to consciously attended to [28].
Error related potentials [29–32] are ERPs associated with the onset of making
a mistake that is realized to be a mistake or with the onset of an unexpected
outcome of an action.

The correlates of cognitive and attentional processes in EEG as described
above cannot be observed in raw data with the naked eye. While classical EEG
studies make use of averaging over many trials to visualize and determine ef-
fects, applied neuroscientific studies (for which it is crucial to extract information
from one individual over a relatively short time period) commonly use classifica-
tion techniques (e.g. linear discriminant analyses, support vector machines). Van
Gerven et al. [33] give an overview of using classification techniques in brain-
computer interfaces. In short, EEG is recorded while an individual experiences
the states of interest at known time intervals (e.g. low and high workload, or
image of interest present or not). With these labeled EEG data a classification
model is trained. The trained model can then classify new unseen data into
the trained categories. Usually, models are personalized, though work is ongoing
create models that generalize over participants [34].

Whereas cognitive and perceptual processing occur mostly at the cortex,
emotional processing occurs mostly in the center areas of the brain. Therefore,
to track emotions, other (physiological) measures are needed. For example, an
increase in skin conductance (i.e., sweating) and a decrease of high-frequency
heart rate variability are associated with stress or arousal [35–38]. Kreibig [39]
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gives an extensive review of physiological correlates of different basic types of
emotion such as anger and disgust. However, it is important to note that phys-
iology does not correspond one-to-one to different emotions, but stimuli and
context matter. Alternatively, emotional valence and arousal could be dervied
from facial expressions (facial expression analysis software is available).

4 Neurophysiological data - novel opportunities for visual
adaptation

In the previous sections, we have shown that neurophysiological data can be em-
ployed to learn more about user characteristics. Naturally, a follow-up question
is how this can be linked to adaptation of the visualization. In other words, when
we know more about the user, what aspects of the visualization can be adapted
such that the user is supported better. In general, aspects of the visualization
that can be adapted to the user include:

– which data is shown,
– how the data is shown (visualization type, e.g. [5]),
– how the visualization is parameterized (how data attributes map to visual

attributes, e.g., size and color)
– how the data is laid out spatially (e.g., [10])
– what portion of the data is shown (e.g., zoom and filter settings),
– which details of the data are shown,
– which elements of the visualization are given more visual emphasis (sug-

gested by [6, 14]), and
– help provided to the user.

As noted, neurophysiological measures can be used to estimate workload
and stress/arousal. This information about the user could be used to adapt the
visualization. For example, if stress levels and workload are high, the level of
detail of the visualization, or the amount of data shown could be reduced. Also,
more help could be provided when workload is high.

While we are not aware of studies on the use of (neuro)physiological measures
in adaptive visualization, several studies have examined the use of information
as revealed by eye movements. Eye movements can also reflect mental state and,
as mentioned previously, share the advantages of (neuro)physiological measures.
Neurophysiological measures can be used to complement eye tracking data. In
general, we note that a combination of information sources (neurophysiological,
eye tracking or also facial expressions or body posture [40]) will likely prove most
effective. For example, while a fixation on a certain area of the visualization can
mean the user is interested in that area, it can also mean that the user does
not understand something in that area or that (s)he is simply staring. With
neurophysiological measures, these different states can be differentiated better.
Conversely, eye tracking can reveal information that neurophysiological measures
might not so easily capture. For example, point of gaze is a measure that is
most easily captured using an eye tracker. Another example of how combining
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neurophysiological measures with eye-tracking could lead to more insight into
current user behavior is differentiation between searching and exploring behavior.
Many gaze shifts in combination with hardly any long fixations can imply that
a person is searching for an item [18]. If this is found to be paired with a high
workload as indicated by EEG signals, it may imply that the user cannot find
what he/she is looking for. If paired with a low workload the user may just be
(casually) exploring the visualization.

As for ERP measures, we note that in the vast majority of ERP studies,
experimental participants do not move their eyes at the time that the stimuli of
interest are presented, so that perception onset is fixed and EEG artifacts caused
by eye movements are limited. This conflicts with every day (visualization) be-
havior where individuals look around freely. However, when EEG is examined
following eye fixation onset rather than image onset, similar ERPs can be distin-
guished [41]. This offers the possibility to deduct from EEG and eye movements
where the user is looking when he/she realized that there was mistake or an
unexpected outcome. This information can then be used to detect anomaly or
error, to present a pop-up help query, or to automatically highlight (or tag) the
area where this happened so the user can easily return to it later.

Because the neurophysiological measures discussed in this paper are con-
tinuous the effect of such adaptations can be measured on-the-fly, and different
adaptations can be experimented with. Combined with an adaptive (or learning)
user model this can lead to highly personalized visualizations.

5 Conclusion

User-adaptive visualization aims to adapt visualized information to the needs
and characteristics of the individual user. Current approaches typically deploy
user personality factors, user behavior and preferences, and visual scanning be-
havior to achieve this goal.

We have shown that neurophysiological measures can provide information
about the mental state of an individual. Challenges include noise and interpreta-
tion difficulties caused by body movements and speech. These can cause ‘actual’
disturbances to the signal as well as confounds (e.g. in a high workload situation
individuals move more than when workload is low, causing higher heart rate
due to movement rather than mental workload). However, since visualizations
are often used in a relatively quiet environment, with relatively stationary users,
there is minimal risk of noise and confounds in the neurophysiological data. We
therefore believe that user-adaptive visualizations are a relatively good case for
exploring the potential neurophysiological measures.

Finally, we note that robust, user friendly and high quality measurement
equipment needs to be developed, especially to reliably and easily record EEG.
Impressive progress is being made [42, 43] and first user friendly EEG measure-
ment equipment is on the market. Also, we note that some methods that are
more time- and resource-demanding, such as fMRI, whilst unsuitable for adapt-
ing visualizations online could be used for the evaluation of visualization.
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