
Towards a Compendium of Process Technologies

The jBPT Library for Process Model Analysis

Artem Polyvyanyy1 and Matthias Weidlich2

1 Queensland University of Technology, Brisbane, Australia
artem.polyvyanyy@qut.edu.au

2 Technion – Israel Institute of Technology, Haifa, Israel
weidlich@tx.technion.ac.il

Abstract. This paper presents the idea of a compendium of process
technologies, i.e., a concise but comprehensive collection of techniques for
process model analysis that support research on the design, execution,
and evaluation of processes. The idea originated from observations on the
evolution of process-related research disciplines. Based on these observa-
tions, we derive design goals for a compendium. Then, we present the
jBPT library, which addresses these goals by means of an implementation
of common analysis techniques in an open source codebase.

Keywords: Compendium, process technology, process analysis, jBPT

1 Introduction

Study of processes, i.e., orderings of observed events, is integral to the field of
information systems. Usually, processes are studied by means of models. A process
model is a particular representation of processes of the same nature. A workflow
model and a business process model are examples of process models within the
information systems discipline. Many research activities that deal with the design,
execution, and evaluation of processes, rely on analysis of process models. Results
of these endeavors are often validated by means of prototypical implementations.
Such prototypes serve as a proof of concept and provide other researchers with a
reference to enter competition for better results.

Unfortunately, such prototyping is usually hindered by different program-
ming languages, frameworks, availability of other scientific prototypes and their
reusability. Moreover, a considerable portion of a researcher’s time must often be
spent on making results applicable for different contexts, e.g., for process models
captured in different modeling languages, such as BPMN and EPC. This holds
even though these different contexts usually share similar characteristics. For
instance, languages for specifying process models are rather similar w.r.t. the
core modeling elements and their semantics.

This paper proposes design principles for a compendium of process technologies
and discusses a concrete instantiation of these principles in the jBPT project1.
The project develops a library of often used resources and algorithms when

1 jBPT stands for “Business Process Technologies for Java”.

mailto:Artem.Polyvyanyy@qut.edu.au
mailto:weidlich@tx.technion.ac.il

2 Artem Polyvyanyy and Matthias Weidlich

dealing with analysis of process models. The library is implemented in Java and
published2 as open source under the GNU Lesser GPL license. The Java language
is often chosen as a programming language for scientific prototypes due to its
“architecture-neutral and portable” principle, which is also summarized in the
Java promise of “write once, run anywhere” (despite of the fact that this claim is
still arguably questionable). The jBPT project enjoys the cross-platform benefits
of Java but also incorporates its own design philosophy which aims at maximal
reuse of developed techniques.

The core design principle of the compendium is to bridge the heterogeneity of
different process modeling languages by a unified framework that builds upon the
most generic notions of graph theory. The methods and techniques included in
the jBPT library are implemented for the common entities of different modeling
languages and, thus, often can be reused for models captured in different languages.
This principle has found its wide use in numerous research prototypes.

The next section lists observations on research that led to the idea of a
compendium of process technologies. Sect. 3 summarizes design goals for the
compendium. Sect. 4 presents the jBPT library (an instantiation of the com-
pendium design), gives a usage example, outlines its functionality, and illustrates
its maturity by enumerating research projects which rely on the library. Sect. 5
positions jBPT among other research frameworks, before we conclude the paper.

2 Observations on Process Research

In order to derive requirements for a compendium of process technologies, we
start with a number of observations on process-related research.

The Nucleus of Process Modeling Languages. First and foremost, we
observe that the plethora of process modeling languages, all defining their own
syntax, semantics, and notation, largely hides the fact that most languages have
a common conceptual root. On the one hand, they can essentially be seen as
control flow graphs, with nodes relating to functional entities (what is done?) and
edges defining the coordination for process execution (how is it done?). Clearly,
process models capture more than the functional and the control flow perspective.
However, most other perspectives, such as data handling and organizational
structures, are often attached to the control flow graph (e.g., by partitioning the
graph with swimlanes for organizational roles). Hence, the control flow graph can
be seen as the backbone of any process model. On the other hand, we observe
that control flow graphs are not arbitrary graphs, but are structured by ‘common
behaviors’ of processes. Execution alternatives, concurrency, repetitive behavior,
and hierarchical refinement are basic behavioral patterns that are supported
by all major process modeling languages. Although languages define different
mechanisms for realizing these patterns, they lead to similar control flow graphs.

The Need for Evaluation. In recent years, there has been a clear trend
towards empirical evaluation of process research. Depending on the type of
the concept that is to be validated, user studies or experiments with large

2 http://code.google.com/p/jbpt/

http://code.google.com/p/jbpt/

Towards a Compendium of Process Technologies 3

(and often real-world) datasets are conducted. Consequently, virtually all newly
proposed concepts and techniques are implemented at least in prototypes. Yet,
most evaluations reported in research papers are not reproducible. This is only
partly due to the non-availability of non-disclosed datasets. Often, the actual
implementations are either not available or are hard to run and extend in the
absence of a generic research framework for process model analysis. Also, we
observe that a lot of functionality clones exist across these research prototypes,
a result of redundant development efforts. Generic research frameworks may
overcome these problems as successfully demonstrated in certain areas, e.g., by
the ProM framework [1] for process mining research.

Broad Applicability of Structural or Behavioral Concepts. Another
remarkable trend in process research is the broad applicability of certain concept
and techniques for a large number of research questions. That is, a number of
structural and behavioral concepts and techniques are on the one hand specific to
process models (and thus not covered by frameworks for graph analysis), but on
the other hand general enough to address a variety of research issues. Prominent
examples are the Refined Process Structure Tree [2,3] and Behavioral Profiles [4]
of a process model. The former has been applied, for instance, for modeling
support, verification of process models, and clone detection in large repositories.
The latter turned out to be useful for consistency analysis, the definition of
re-usable action patterns, and compliance checking. A compendium of process
technologies that features these techniques, therefore, supports the creation of
prototypes in a broad context.

3 Design Goals

Based on the observations outlined in the previous section, this section enumerates
design goals for a compendium of process technologies.

Reuse of Resources and Algorithms. The core idea behind the design
of a compendium is reuse of functionality in all possible contexts. Resources
and algorithms needed to conduct process model analysis should be applicable
in different contexts. Here, different contexts are often dictated by different
modeling languages. As detailed above, these languages usually operate within
the common notion of a control flow graph. Therefore, the support of several
abstraction levels when working with the notion of a control flow graph, which
might range from a concrete syntax specification of a modeling notation to a
generic graph-based formalism, is identified as a fundamental requirement for the
design of a compendium. Every resource and every algorithm from a compendium
should address the most abstract level of the control flow notion possible. This
principle allows maximal reuse of techniques across all contexts that share the
same abstraction level of concepts under consideration.

Don’t Repeat Yourself. Every implementation of an analysis technique
should be unique within a compendium. All tests and optimizations should target
this unique implementation.

Effective Modularity. It is expected that a concrete realization of a com-
pendium will comprise a large collection of methods and techniques. Therefore,

4 Artem Polyvyanyy and Matthias Weidlich

the availability of mechanisms for its effective modularization is essential. A
compendium should allow natural identification of its independent functional
components, which may be separated and/or recombined.

Utility Functionality. Research prototypes often require utility function-
ality besides the actual implementation of the analysis technique. An example
would be the support of different serialization formats. In particular, serialization
formats for common modeling notations and means to generate graph definitions
used by standard software for graph visualization, e.g., dot graph description
language [5], are required to support the implementation of analysis techniques.

Publishing Philosophy. To support researchers during the implementation
of research prototypes, a compendium of process technologies needs to be publicly
available with little restrictions on it usage. Further, extensions and future devel-
opments of a compendium are fostered by an open source publishing philosophy.
In particular, a compendium published under the GNU Lesser GPL3 ensures
that any extensions will be available for the research community.

4 The jBPT Library

To achieve the design goals for a compendium of process technologies, we devel-
oped the jBPT library. In this section, we review the essentials of this library
by first sketching its architecture and giving an illustrative example of how the
library can facilitate development of process model analysis techniques. Finally,
we lists some of the most used functionality of the library and give an overview
of its application in concrete research projects.

Architecture. An excerpt of the core structure of jBPT is shown in Fig. 1.
It illustrates the interface and class hierarchy to capture different types of graphs,
starting with multi-hypergraphs as the most general model. It also shows that
all graph models are typed with generics, which allows, for instance, to define a
PetriNet as an AbstractDirectedGraph with parameter E being bound to Flow

classes and parameter V to Node classes. A Flow class represents a specialization
of a directed edge, i.e., a AbstractDirectedEdge with V being bound to Node

classes. The definition of process model classes, or more specific classes for BPMN
or EPC models, and Petri nets as specializations of different kinds of graphs is the
basis for extensive reuse of analysis algorithms. Those may be implemented on
the according level of the graph hierarchy and then be used for all specializations.

Illustrative Example. To illustrate how jBPT facilitates the development
of research prototypes, we consider two properties of process models. First,
structural soundness4 relates to the structure of a process model, see [7], and
holds if the model has at least one source node (no direct predecessors) and at
least one sink node (no direct successors), such that each node of the model lies
on a path from some source to some sink. Intuitively, execution is instantiated
at some of the source nodes and terminates eventually at some of the model’s
sink nodes. Moreover, each node should have a chance to contribute to some

3 All changed versions of a GNU Lesser GPL program must be released as free software.
4 Not to be confused with the classical notion of soundness, a behavioral criterion [6].

Towards a Compendium of Process Technologies 5

AbstractDirectedGraph

AbstractMultiDirectedGraph

AbstractMultiDirectedHyperGraph

AbstractMultiHyperGraph

PetriNetProcessModel

Bpmn Epc NetSystem Place Transition

Node

Vertex

IVertex

GObject

IGObject

Flow

<E extends IDirectedEdge<V>,
V extends IVertex>

<E extends IDirectedEdge<V>,
V extends IVertex>

<E extends IDirectedHyperEdge<V>,
V extends IVertex>

<E extends IHyperEdge<V>,
V extends IVertex>

AbstractDirectedEdge

AbstractDirectedHyperEdge

AbstractHyperEdge

IHyperEdge

<V extends IVertex>

IDirectedHyperEdge

IEdge

IDirectedEdge

<V extends IVertex>

<V extends IVertex>

<V extends IVertex>

<V extends IVertex>

<V extends IVertex>

<V extends IVertex>

Fig. 1. Excerpt of the class and interface hierarchy of jBPT

execution of the model. Second, we consider testing a Petri net for the structure
of a Workflow net [6], i.e., whether it has a single source node, a single sink node,
such that every node is on some directed path from the source to the sink. Clearly,
the first question is more generic and relates to process models in general. The
latter, Workflow net structure, strengthens the notion of structural soundness
and is typically applied to Petri nets only.

Checking for structural soundness is equivalent to a check of strong connect-
edness5 of an enhanced version of the directed graph which is used to describe a
process model, see one possible implementation in the isMultiTerminal function
in DGA.java listing below. The enhanced graph is obtained by introducing a fresh
source vertex (src) and a fresh sink vertex (snk), lines 8–10, to the graph, and
then adding a fresh edge from the fresh sink to the fresh source. A directed graph
describes a structurally correct process model if its enhanced version is strongly
connected. A directed graph is strongly connected if it constitutes a single strongly
connected component (SCC)6. Strongly connected components of directed graphs
are discovered in O(∣V ∣+∣E∣) time with V and E as the sets of vertices and edges of
the graph [8]. Hence, the isMultiTerminal check of a graph is done in linear time
to its size. Note that prior to returning a result, we remove vertices src and snk

(line 14), which implies removal of all adjacent edges. The isTwoTerminal function
(lines 18–23) restricts the isMultiTerminal check to a single source and a single
sink. Functions isMultiTerminal and isTwoTerminal can be applied to every
Java object which implements the IDirectedGraph interface instantiated with
IDirectedEdge and IVertex types, e.g., a ProcessModel, an EPC, or a PetriNet.

5 A directed graph is called strongly connected if there is a directed path from each
vertex in the graph to every other vertex.

6 A strongly connected component of a directed graph is its maximal strongly connected
subgraph.

6 Artem Polyvyanyy and Matthias Weidlich

As such, a method to implement the structural soundness check for an EPC, simply
requires calling the respective method.

DGA.java – Collection of algorithms to manipulate directed graphs.

1 : public class DGA<E extends IDirectedEdge<V>,V extends IVertex> {

2 : ...

3 : public boolean isMultiTerminal(IDirectedGraph<E,V> g) {

4 : if (g==null) return false;

5 : Collection<V> sources = this.getSources(g);

6 : Collection<V> sinks = this.getSinks(g);

7 : if (sources.isEmpty() || sinks.isEmpty()) return false;

8 : V src = g.getFreshVertex(); V snk = g.getFreshVertex();

9 : for (V v : sources) g.addEdge(src,v);

10: for (V v : sinks) g.addEdge(v,snk);

11: g.addEdge(snk,src);

12: SCCs<E,V> sccs = new SCCs<E,V>();

13: boolean result = sccs.isStronglyConnected(g);

14: g.removeVertex(src); g.removeVertex(snk);

15: return result;

16: }

17:

18: public boolean isTwoTerminal(IDirectedGraph<E,V> g) {

19: if (g==null) return false;

20: if (this.getSources(g).size()!=1 || this.getSinks(g).size()!=1)

21: return false;

22: return this.isMultiTerminal(g);

23: }

24: }

Below, the generic usage of the outlined functionality is illustrated by the Workflow
net check for PetriNet objects. Function isWorkflowNet simply wraps the
isTwoTerminal function for PetriNet objects, see lines 5–6 below.

PetriNetStructuralClassChecks.java – Structural tests for Petri nets.

1 : public class PetriNetStructuralClassChecks {

2 : ...

3 : public static boolean isWorkflowNet(PetriNet net) {

4 : if (net==null) return false;

5 : DGA<Flow,Node> dga = new DGA<Flow,Node>();

6 : return dga.isTwoTerminal(net);

7 : }

8 : }

jBPT Functionality. Besides already mentioned object models for various
process modeling languages, the jBPT library offers a collection of supporting
management routines, such as parsing and serialization to standard formats.
Further, the functionality of the jBPT library comprises, among others, basic
graph algorithms, connectivity-based decompositions of graphs and related pro-
cess model related applications, e.g., the RPST [3], models and algorithms for
behavioral profiles [9], algorithms for process model similarity (based on the

Towards a Compendium of Process Technologies 7

graph edit distance or behavioral relations), techniques from the theory of net
systems and net systems unfolding, transformations of process models, etc. For
an up-to-date list of all resources and functionality included in the library, please
refer to the jBPT page at Google Code (http://code.google.com/p/jbpt/).

Applications. The idea of a compendium of process technologies as im-
plemented by jBPT proved indeed valuable for the implementation of various
research prototypes. Among others, the following projects are based on jBPT.
bpstruct7 is a collection of techniques proposed in [10] for transforming un-

structured process models into well-structured ones.
BPM Academic Initiative8 is an academic version of a professional business

process management tool. It integrates bpstruct through a REST API.
apromore9 is an open source repository to store and disclose process models of

a variety of languages, such as BPMN, EPCs, YAWL, Workflow nets, etc.
The jBPT initiative provides core functionality for the apromore platform.
It underpins the canonical process model format of apromore and many of
its core features and functionalities.

Flexab [11] is a tool that allows for flexible abstraction of process models. It
relies on algorithms for behavioral profiles as implemented in jBPT.

5 Related Work

There are several other research frameworks that have been designed in the spirit
of a compendium of process technologies, yet with a different focus. A prominent
example is the ProM framework [1] for process mining. It supports the creation
of research prototypes with a plugin infrastructure that allows for implementing
functionality based on the utilities provided by the ProM framework. In contrast
to jBPT, the ProM framework does not focus on providing a set of common
structural and behavioral analysis techniques, but rather features an infrastructure
that also addresses the visualization of process models and includes a GUI for
conducting experiments. Another platform for developing research prototypes for
process management is the Oryx Editor [12]. It features a process model repository
and a process model editor that are extensible in terms of modeling languages
and the integration of analysis functionality. However, the Oryx Editor offers
only limited support for implementing the actual analysis. Hence, it may serve
as a front-end for the visualization and integration of functionality implemented
in jBPT, as demonstrated by Flexab [11] for process model abstraction.

Various process model analysis techniques are available on demand in the
Business Process Services10 portal developed by IBM Research. These services can
be invoked for a process model description and, for instance, conduct control flow
analysis or refactor the model. The analysis of interactions between processes
is at the core of the ServiceTechnology toolset11, see also [13]. These tools

7 http://code.google.com/p/bpstruct/
8 http://academic.signavio.com/
9 http://code.google.com/p/apromore/

10 http://business-services.researchlabs.ibm.com
11 http://www.service-technology.org/

http://code.google.com/p/jbpt/
http://code.google.com/p/bpstruct/
http://academic.signavio.com/
http://code.google.com/p/apromore/
http://business-services.researchlabs.ibm.com
http://www.service-technology.org/

8 Artem Polyvyanyy and Matthias Weidlich

implement techniques for service composition, discovery, and substitution. Both
toolsets support the development of research prototypes by providing specific,
encapsulated functionality and, thus, have a different focus compared to jBPT,
which aims at supporting the actual development of prototypes with basic data
structures and algorithms.

6 Conclusion

In this paper, we argued for the creation of a compendium of process technologies.
The idea is to have a comprehensive collection of techniques for process model
analysis, thereby supporting the implementation of research prototypes. Based
on observations on process research, we derived design goals for a compendium.
Further, we presented the jBPT library as a first implementation of that idea.
This library offers a broad range of basis analysis and utility functionality and,
due to its open publishing model, can easily be extended. It regularly attracts
over 250 unique Internet visitors per month from more than 50 countries.

Acknowledgments. We highly appreciate the contributions to jBPT made by
the community as detailed at http://code.google.com/p/jbpt/people/list.

References
1. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES,

XESame, and ProM 6. In: CAiSE Forum. Vol. 72 of LNBIP., Springer (2010) 60–75
2. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data

Knowl. Eng. 68(9) (2009) 793–818
3. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization

of the refined process structure tree. In: WS-FM. Vol. 6551 of LNCS., Springer
(2010) 25–41

4. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Trans. Software Eng. 37(3) (2011)
410–429

5. Gansner, E.R., North, S.C.: An open graph visualization system and its applications
to software engineering. Software. Practice and Experience 30(11) (2000) 1203–1233

6. van der Aalst, W.M.P.: Verification of Workflow nets. In: ICATPN. Vol. 1248 of
LNCS., Springer (1997) 407–426

7. Weske, M.: Business Process Management: Concepts, Languages, Architectures,
Second Edition. Springer (2012)

8. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAMCOMP 1(2)
(1972) 146–160

9. Weidlich, M.: Behavioural Profiles: A Relational Approach to Behaviour Consistency.
PhD thesis, University of Potsdam (2011)

10. Polyvyanyy, A.: Structuring Process Models. PhD thesis, University of Potsdam
(2012)

11. Weidlich, M., Smirnov, S., Wiggert, C., Weske, M.: Flexab — flexible business
process model abstraction. In: CAiSE Forum. Vol. 734 of CEUR Workshop Pro-
ceedings., CEUR-WS.org (2011) 17–24

12. Decker, G., Overdick, H., Weske, M.: Oryx — an open modeling platform for the
BPM community. In: BPM. Vol. 5240 of LNCS., Springer (2008) 382–385

13. Lohmann, N., Wolf, K.: How to implement a theory of correctness in the area of
business processes and services. In: BPM. Vol. 6336 of LNCS., Springer (2010)

http://code.google.com/p/jbpt/people/list

	Towards a Compendium of Process Technologies
	Introduction
	Observations on Process Research
	Design Goals
	The jBPT Library
	Related Work
	Conclusion

