
Proceedings of the
Second International Workshop on
Debugging Ontologies and
Ontology Mappings - WoDOOM13

Montpellier, France
May 27, 2013.

Edited by:
Patrick Lambrix

Guilin Qi
Matthew Horridge

Bijan Parsia

Preface

Developing ontologies is not an easy task and, as the ontologies grow in size,
they are likely to show a number of defects. Such ontologies, although often
useful, also lead to problems when used in semantically-enabled applications.
Wrong conclusions may be derived or valid conclusions may be missed. Defects
in ontologies can take different forms. Syntactic defects are usually easy to find
and to resolve. Defects regarding style include such things as unintended re-
dundancy. More interesting and severe defects are the modeling defects which
require domain knowledge to detect and resolve such as defects in the structure,
and semantic defects such as unsatisfiable concepts and inconsistent ontologies.
Further, during the recent years more and more mappings between ontologies
with overlapping information have been generated, e.g. using ontology alignment
systems, thereby connecting the ontologies in ontology networks. This has led
to a new opportunity to deal with defects as the mappings and other ontologies
in the network may be used in the debugging of a particular ontology in the
network. It also has introduced a new difficulty as the mappings may not always
be correct and need to be debugged themselves.

The WoDOOM series deals with these issues. This volume contains the pro-
ceedings of its second edition: WoDOOM13 - Second International Workshop on
Debugging Ontologies and Ontology Mappings held on May 27, 2013 in Mont-
pellier, France. WoDOOM13 was an ESWC 2013 (10th Extended Semantic Web
Conference) workshop.

In his excellent invited talk, Heiner Stuckenschmidt proposed approaches for
debugging weighted ontologies. In this generalization of the classical debugging
problem, axioms in the ontology to be debugged have weights assigned and the
task is to remove axioms from this set such that the resulting model is consistent
and the sum of weights is maximal. Further, there were presentations of six full
papers. The topics included both detection and repair of defects. Several papers
used patterns for the detection. Regarding repairing wrong information, one pa-
per proposed a method for reformulating axioms with the aim to retain as much
information as possible. Another paper formalized the repairing of missing infor-
mation in ontologies as a new abductive reasoning problem. Finally, a recently
started EU project was presented in which ontology and mapping management
is one of the core components. Two of the papers were selected for republication
in the ESWC 2013 post-proceedings.

The editors would like to thank the Program Committee for their work in
enabling the timely selection of papers for inclusion in the proceedings. We
also appreciate our cooperation with EasyChair as well as our publisher CEUR
Workshop Proceedings.

May 2013 Patrick Lambrix
Guilin Qi

Matthew Horridge
Bijan Parsia

Workshop Organization

Workshop Organizers

Patrick Lambrix Linköping University, Sweden
Guilin Qi Southeast University, China
Matthew Horridge Stanford University, USA
Bijan Parsia University of Manchester, UK

Program Committee

Samantha Bail University of Manchester, UK
Bernardo Cuenca Grau University of Oxford, UK
Jianfeng Du Guangdong University of Foreign Studies, China
Peter Haase fluid Operations, Germany
Aidan Hogan Digital Enterprise Research Institute, Ireland
Matthew Horridge Stanford University, USA
Maria Keet University of KwaZulu-Natal, South Africa
Patrick Lambrix Linköping University, Sweden
Yue Ma TU Dresden, Germany
Christian Meilicke University of Mannheim, Germany
Bijan Parsia University of Manchester, UK
Rafael Peñaloza TU Dresden, Germany
Guilin Qi Southeast University, China
Ulrike Sattler University of Manchester, UK
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Bariş Sertkaya SAP Research Dresden, Germany
Kostyantyn Shchekotykhin University Klagenfurt
Kewen Wang Griffith University, Australia
Peng Wang Southeast University, China
Renata Wassermann University of Sao Paulo, Brazil
Fang Wei-Kleiner Linköping University, Sweden

Table of Contents

Invited talk

Debugging Weighted Ontologies . 1
Heiner Stuckenschmidt

Papers

(*) Finding fault: Detecting issues in a versioned ontology 9
Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and
Robert Stevens

Optique System: Towards Ontology and Mapping Management in
OBDA Solutions . 21

Peter Haase, Ian Horrocks, Dag Hovland, Thomas Hubauer, Ernesto
Jimenez-Ruiz, Evgeny Kharlamov, Johan Klüwer, Christoph Pinkel,
Riccardo Rosati, Valerio Santarelli, Ahmet Soylu and Dmitriy Zheleznyakov

Repairing missing is-a structure in ontologies is an abductive reasoning
problem . 33

Patrick Lambrix, Fang Wei-Kleiner, Zlatan Dragisic and Valentina
Ivanova

Antipattern Detection: How to Debug an Ontology without a Reasoner . . 45
Catherine Roussey and Ondřej Zamazal

(*) Ontology Adaptation upon Updates . 57
Alessandro Solimando and Giovanna Guerrini

Checking and Repairing Ontological Naming Patterns using ORE and
PatOMat . 69

Ondřej Zamazal, Lorenz Bühmann and Vojtěch Svátek

Papers marked with (*) were selected for republication in the ESWC 2013 post-
proceedings.

Debugging Weighted Ontologies

Heiner Stuckenschmidt

University of Mannheim, Germany

Abstract. We present our work on debugging weighted ontologies. We define
this problem as computing a consistent subontology with a maximal sum of ax-
iom weights. We present a reformulation of the problem as finding the most prob-
able consistent ontology according to a log-linear model and show how existing
methods from probabilistic reasoning can be adapted to our problem. We close
with a discussion of the possible application of weighted ontology debugging to
web scale information extraction.

1 Motivation

Probably the most often quoted advantage of logic-based ontologies are the possibility
to check the model for different kinds of logical inconsistencies as possible symptoms
of modeling errors. Since the work of Schlohbach and Cornet [19] many researchers
have investigated the task of debugging description-logic ontologies, which dies not
only include the detection of logical inconsistency, but also the identifying minimal
sets of axioms causing it and removing axioms from the ontology to make it consistent
again (e.g. [18, 16, 6, 8]).

While computing the cause of an inconsistency is relatively well understood and es-
tablished techniques from diagnostic reasoning like the hitting set algorithm have been
successfully applied and adapted to the problem of debugging ontologies, the decision
which axioms to discard to retain consistency is still a largely unsolved problem. The
classical solution used for instance in the field of believe revision is principle of mini-
mal change that prefers solutions that remove the least number of axioms (compare e.g.
[21]. While this approach has theoretical merits, it is not adequate for practical appli-
cations. For certain special cases such as debugging ontology mappings we can even
observe that the principle of minimal change will remove correct axioms in most cases
leaving incorrect ones in. As a consequence, researchers have focused on interactive
debugging methods where a human user decides which axioms to remove while being
supported by the debugging system [8, 10].

While interactive repair of ontologies is feasible when ontologies are rather small,
more recently researchers get interested in debugging ontologies that have been auto-
matically created from text or data sources. The resulting models are typically quite big
and contain a high number of inconsistencies. While many classical debugging tools
already have trouble in more classical settings as we have shown in our study on the
practical applicability of debugging [20], using these tools on sets of automatically gen-
erated axioms turns out to be a hopeless endeavor.

In this paper, we summarize work on a new approach to ontology debugging that
can be seen as a generalization of classical ontology debugging and that is also bet-
ter suited for the task of debugging large, highly inconsistent models. Our approach is

1

based on the idea that axioms in the ontology to be debugged have weights assigned
and the task is to remove axioms from this set such that the resulting model is consis-
tent and the sum of weights is maximal. The second part of this definition provides us
with an unambiguous criterion for selecting axioms to remove. Further, this definition
of debugging weighted ontologies is equivalent to computing the most likely model in
log-linear probabilistic models. We can use this correspondence to apply scalable infer-
ence mechanisms from the area of statistical relational learning to the task of ontology
debugging.

The remainder of the paper is structured as follows: we first introduce a rather
generic model of weighted ontologies that applies to different logical formalisms in-
cluding light weight description logics and explain the relation to log linear models. In
the second part of the paper, we discuss different different algorithms for debugging
weighted ontologies based on linear integer programming and on Markov Chain Monte
Carlo Sampling. We also discuss approach for scaling up these algorithms by distri-
bution and parallel processing. We close with a discussion of open issues and future
work.

2 Weighted Ontologies

2.1 Ontologies

We use a rather abstract ontology model that regards an ontology as a set of Axioms
O = {A1, · · · , An}. We represent axioms as predicates over constants representing
classes, relations and instances. Existing representations of ontologies can be trans-
ferred into this representation by first normalizing the logical representation, eventually
introducing new concept constants and then translating normalized axioms into literals.
A complete translation for the logic EL+ can be found in [13]. The following exam-
ple shows our representation of an ontology talking about philosophers and celestial
objects:

A1 : type(Pluto, Philosopher) (1)
A2 : related(born− in, P luto,Athens) (2)
A3 : domain(born− in, Person) (3)
A4 : type(Pluto,DwarfP lanet) (4)
A5 : subconcept(Philosopher, Person) (5)
A6 : subconcept(Planet, CelestialObject) (6)
A7 : subconcept(DwarfP lanet, P lanet) (7)
A8 : disjoint(CelestialObject, Person) (8)

Our model further assumes the existence of an entailment relation |= between sets
of Axioms. Often, the entailment relation can be computed using a finite set of deriva-
tion rules. This observation corresponds to the investigation of consequence driven rea-
soning for description logics. In particular, for any description logic supporting conse-
quence driven reasoning, we can compute the entailment relation between sets of using

2

derivation rules over the predicate representation. A correct and complete set of infer-
ence rules for EL+ can be found in [13]. For our example, we assume the following
(incomplete set of) derivation rules for computing the entailment relation.

type(X,C) ∧ subclass(C,D) ` type(X,D) (9)
subclass(C,D) ∧ subclass(D,E) ` subclass(C,E) (10)
domain(R,C) ∧ related(X,R, Y) ` type(X,C) (11)

type(X,C) ∧ type(X,D) ∧ disjoint(C,D) ` ⊥ (12)
subclass(C,D) ∧ disjoint(C,D) ` ⊥ (13)

We include the ⊥ symbol for representing conflicts in the ontology. Abusing nota-
tion, we use⊥ for any kind of conflicts we want to exclude from the model. Concerning
classical debugging the operator can be used to determine the existence of a logical in-
consistency as well as incoherent classes in the same framework. We could also include
domain-specific types of inconsistencies and detect them using the same algorithms as
for the logical inconsistencies.

I our model, the task of ontology debugging can now be defined as finding a minimal
subontology O′ ⊆ O such that O′ 6|= ⊥ and there is no other subontology O′ ⊆
O′′ with this property. In our example such a sub-ontology can be generated by either
removing axiom 1 and 2 or any of the axioms 3 to 8.

2.2 Weighted Axioms and log-linear Models

In our work, we consider cases, where not all axioms in an ontology have the same
status, but some are preferred over others. We model this preference by a simple weight
function w : O → R ∪ {∞} where R denotes all real numbers and the weight function
maps each axiom of an ontology either on a real number or on {∞} if the axiom should
not be removed in any case. In the presence of a weight function, the notion of debug-
ging is slightly changed. It can now be phrased as the task of finding a sub ontology
O′ ⊆ O such that O′ 6|= ⊥ and the sum of the weights in the axioms is maximal:∑

Ai∈O′

w(Ai) ≥
∑

Aj∈O′′

w(Aj),∀O′′ ⊆ O

Let us assume that the first two axioms in our example have been automatically
extracted while the other statements have been manually created by an expert. We
could model this situation by assigning a lower weight to the first two axioms and
higher weights to the other statements to indicate that we have more trust in the man-
ually created parts of the model. So we might define w(Ai) = 2, i ∈ {1, 2} and
w(Ai) = 5, i < 2. In this case the only debugging of the resulting weighted ontology
isO′ = {A3, · · · , A8} with a weight-sum of 30, whereas all other possible debuggings
have at most a weight sum of 29.

In our work, we exploit the duality of this definition of debugging with log-linear
models - probabilistic models where the a priori probabilities are given in terms of real-
valued weights that are treated as logarithms of the actual probability. Thus, computing

3

the joint probability of independent events is done by summing up the weights instead
of multiplying the probabilities. This means that the ontology with the highest weight
sum is the most probable ontology according to a log-linear model over the weights of
the axioms. In the case of only positive weights as in our example, the most probable
ontology is always the one that contains all axioms. If we, however, force the probability
of any sub ontology O′ |= ⊥ to be zero, computing the most probable ontology turns
out to be equivalent to computing a debugging as defined above. In particular, we define
the probability of a subontology as follows:

P (O′) =


1
Z exp

(∑
{Ai∈O′}

w(Ai)

)
if O′ 6|= ⊥

0 otherwise

Using this definition, debuggings of an ontology are simply the results of argmaxO′⊆O(P (O′)).

3 Debugging Algorithms

Actually computing debuggings is quite challenging is requires a combination of logical
(for checking whether ⊥ follows from a subontology) and probabilitic (for computing
the probability of a model) inference. It turns out that naive approaches although they
work for some special cases such as debugging alignments between small ontologies
[9], fail to scale up to real world ontologies. At this point, we directly benefit from the
above explained duality of debugging and inference in log-linear models, because we
can build upon existing work in the area of probabilistic inference and design reasoning
methods that scale up to very large (weighted) knowledge bases.

In the following, we describe two directions of work on algorithms for efficient
debugging of weighted ontologies: the first one is based on a translation into an opti-
mization problem that can be computed by solving a linear integer program. This work
has already successfully been implemented in the ELOG reasoning system 1 develop at
the university of Mannheim and is ready to use with OWL ontologies that have weights
assigned as annotation properties [14]. The second direction is based on the idea of
Sampling-based approximate inference that has the potential to scale to very large mod-
els. This work, that is based on Markov Chain Monte Carlo Sampling of ontologies has
so far mostly been investigated on a theoretical level. First experiments have been made
that show the potential of the method, but so far no stable reasoner is available.

3.1 Exact Inference using Linear Integer Programming

The first direction of work is based on the simple observation, that computing the most
probable model can be phrased as an optimization problem and represented in terms of a
linear integer programm. A linear integer program consists of an objective function that
consists of the sum of integer variables with weights that has to be maximized. Further,
side-conditions on the values of the variables can be stated in terms of linear inequalities
over the variables. As we are interested in the presence or absence of axioms in an

1 http://code.google.com/p/elog-reasoner/

4

ontology, we only consider Variables that have values from {0, 1}. A simple example
of a linear integer program is maximize 0.6x1+1.0x2+0.5x3, subjecttox1+x2+
x3 ≤ 1.2. The solution of the example is: x1 = 1, x2 = 0, x3 = 1. Instantiating the
variables in the objective function with these values results in an objective value of 1.1.

The main task is now to find an optimal encoding of the problem into an integer
linear programme. Riedel has proposed such a translation as a basis for efficient inferene
in Markov logic [17]. As our representation of axioms as predicates and well as the
corresponding inference rules can be represented as a Markov logic model, we can use
the proposed translation as a basis for solving our problem. In particular, we can use the
following steps for translating an ontology and the corresponding deduction rules into
a linear integer programme:

1. replace non ground formulas with all possible groundings
2. Convert the resulting propositional knowledge base to conjunctive normal form
3. For each ground clause g determine positive L+(g) and negative L−(g) literals.
4. Determine the objective function as sum over all ground clause variable zg and their

weights
5. For each ground clause with weight 6=∞ add the following constraints:

∑
l∈L+(g)

xl +
∑

l∈L(g)

(1− xl) ≥ zg

xl ≤ zg,∀l ∈ L+(g)

(1− xl) ≤ zg,∀l ∈ L−(g)

6. For each ground clause with weight =∞ add the following constraint

∑
l∈L+(g)

xl +
∑

l∈L(g)

(1− xl) ≥ 1

7. Add the constraint x⊥ = 0 to enforce that ⊥ is excluded from the model.

The solution of the corresponding debugging problem can be read from the solution
of the linear integer programme. Each axiom in the ontology corresponds to a variable
in the objective function, the solution of the debugging problem is the ontology that
results from excluding all axioms from the model whose value is 0 in the objective
function.

In our work [15] we have further optimized the translation procedure by translating
clauses that share literals into a single constraint with counting variables. This approach
has been shown to deliver a significant improvement for models with a high number of
constants as it exploits symmetries in the resulting ground formulas to avoid repeated
computations.

5

3.2 Approximate Inference using Markov-Chain Monte Carlo Sampling

While the ILP-based approach described above works well for medium sized knowledge-
based, it runs into problems for very large models. In particular, if we think about using
the methods on web scale, we quickly recognize that an optimal approach like the one
described above is bound to fail. In such situations, where optimal algorithms fail, we
can still use approximate inference methods for probabilistic models. A class of approx-
imate inference methods that turned out to apply to our problem is Markov Chain Monte
Carlo Sampling. In particular, we can adapt methods for sampling in dependent node
sets from hypergraphs for our problem. For this purpose, we interpret an ontology as a
hypergraph, where every axiom is a node in the hypergraph and nodes are connected by
a hyperedge iff they form a diagnosis (i.e. a minimal set of axioms from which ⊥ fol-
lows). A debugging of the ontology then corresponds to finding a maximal independent
node set with respect to the weights of the axioms. Such an independent node set can
now be determined by a Markov chain [7]. In [12] we proposed the following Markov
Chain for computing weight-optimal debuggings in the sense of this paper.

A markov chain is a stochastic process with discrete time steps that is memoryless
in the sense that its state at time t only depends on the state in t-1. Markov Chain
Monte Carlo Methods are a class of algorithms that sample a probability distribution
by constructing a Markov Chain that converges towards the desired distribution. We
construct a Markov chain whose states are axiom subsets of the original ontology. It
starts with an empty set of axioms and converges towards a state that corresponds to the
weight optimal debugging of the ontology. Let X(t) be the state of the Markov Chain
at time t, the state of the chain at time t+1 is computed as follows:

– chose and Axiom A uniformly at random
– if A is in X(t) then remove it with probability 1

(exp(w(A))−1)
– if A is not in X(t) and it is not in any diagnosis than add it with probability

exp(w(A))
(1+exp(w(A)))

– if A is not in X(t) and it is in a diagnosis, then choose an other axiom from that
diagnosis as random and replace it with A with probability (m−1) exp(w(A))

(2m expw(A)−1)

First experiments on the PROSPERA Dataset [11] indicate that the method works
well also on very large datasets that cannot be handled by optimal algorithms any more.

4 Conclusion: Debugging the Web

In this paper, we discussed the problem of debugging weighted ontologies. The problem
can be seen as a generalization of ontology debugging where we have additional infor-
mation about axiom preference in terms of weights assigned to axioms that can be used
to compute a consistent ontology with a maximal sum of weights. We discussed the re-
lation to computing the most probable consistent ontology using log-linear models and
showed how we can exploit existing work from the field of probabilistic inference to
efficiently compute debuggings. We believe that this method has a lot of potential and
a lot of applications, in particular with respect to improving the results of web-scale
information extraction.

6

As already indicated in the previous sections, our aim is to scale up the methods
as far as possible. The ultimate goal is to address the web as a source of universal
knowledge about the world. Recently a number of large scale knowledge extraction
projects have been launched including NELL [2] TEXTRUNNER [3] and Knowitnow
[1]. These projects extract more or less accurate facts from webpages building large
knowledge bases about the world. Despite the use of high end extarctoin methods, the
resulting models still contain mistakes and contradictions that need to be resolved to
have a reliable model of world knowledge. In principle, our methods are able to inte-
grate the results of these systems into a single, non conflicting model. For this purpose,
however, we have to solve two problems: the first is to make our methods work on the
scale of millions of facts as provided by these projects, further we have to model knowl-
edge about conflicts between different facts in terms of a background ontology. While
the first one is currently being addressed in terms of implementing the above mentioned
sampling approach on a hadoop-based distributed infrastructure, we address the second
problem by aligning the results of the extraction projects to the dbpedia ontology by
matching objects and relations. If successful, we can use existing work on enriching the
DBpedia ontology [5, 4] to determine logical inconsistencies.

Acknowledgement

The work summarized in this abstract has been joint work with Christian Meilicke,
Mathias Niepert and Jan Noessner

References

1. Michael J. Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. Knowitnow:
Fast, scalable information extraction from the web. In Proceedings of the Conference on
Human Language Technology Conference and Conference on Empirical Methods in Natural
Language Processing (HLT-EMNLP), 2005.

2. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr, and T.M. Mitchell. Toward
an architecture for never-ending language learning. In Proceedings of the 24th Conference
on Artificial Intelligence (AAAI), page 13061313, 2010.

3. O. Etzioni, M. Banko, S. Soderland, and D.S. Weld. Open information extraction from the
web. Communications of the ACM, 51(12):68–74, 2008.

4. Daniel Fleischhacker and Johanna Vlker. Inductive learning of disjointness axioms. In On the
Move to Meaningful Internet Systems: OTM 2011 : Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2011, Lecture Notes in Computer Science, pages 680–697.
Springer, 2011.

5. Daniel Fleischhacker, Johanna Vlker, and Heiner Stuckenschmidt. Mining rdf data for prop-
erty axioms. In On the Move to Meaningful Internet Systems: OTM 2012 : Confederated
International Conferences: CoopIS, DOA-SVI, and ODBASE 2012, Lecture notes in com-
puter science, pages 718–735. Springer, 2012.

6. Gerhard Friedrich and Kostyantyn Shchekotykhin. A general diagnosis method for ontolo-
gies. In Proceedings of 4th International Conference on Semantic Web (ISWC?05), pages
232–246, Galway, Ireland, 2005.

7

7. M. Jerrum and A. Sinclair. The markov chain monte carlo method: an approach to approx-
imate counting and integration. In Approximation algorithms for NP-hard problems, pages
482–520. PWS Publishing, 1996.

8. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca-Grau. Repairing unsat-
isfiable concepts in owl ontologies. In York Sure and John Domingue, editors, The Semantic
Web: Research and Applications, 3rd European Semantic Web Conference, ESWC 2006, vol-
ume 4011 of Lecture Notes in Computer Science, pages 170–184, Budva, Montenegro, June
2006.

9. Christian Meilicke and Heiner Stuckenschmidt. Applying logical constraints to ontology
matching. In KI 2007: Advances in Artificial Intelligence : 30th Annual German Conference
on AI, 2007.

10. Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Supporting manual map-
ping revision using logical reasoning. In Dieter Fox and Carla P. Gomes, editors, Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, Illinois, USA, July
2008. AAAI Press.

11. N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge harvesting with high
precision and high recall. In Proceedings of the 4th International Conference on Web Search
and Data Mining (WSDM), pages 227–236, 2011.

12. Mathias Niepert, Christian Meilicke, and Heiner Stuckenschmidt. Towards distributed
mcmc inference in probabilistic knowledge bases. In NAACL-HLT 2012 Joint Workshop
on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-
WEKEX), Montreal, 2012.

13. Mathias Niepert, Jan Noessner, and Heiner Stuckenschmidt. Log-linear description logics.
In Toby Walsh, editor, IJCAI, pages 2153–2158. IJCAI/AAAI, 2011.

14. Jan Noessner and Mathias Niepert. Elog: A probabilistic reasoner for owl el. In Lecture Notes
in Computer Science Web Reasoning and Rule Systems : 5th International Conference, RR
2011, pages 281–286, Galway, Ireland, 2011. Springer.

15. Jan Noessner, Mathias Niepert, and Heiner Stuckenschmidt. Rockit: Rockit: Exploiting par-
allelism and symmetry for map inference in statistical relational models. In Proceedings of
the 27th Conference on Artificial Intelligence (AAAI), 2013.

16. Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging owl ontologies. In Proceedings
of the 14th international World Wide Web Conference, page 633?640, Chiba, Japan, 2005.

17. Sebastian Riedel. Improving the accuracy and efficiency of map inference for markov logic.
In David A. McAllester and Petri Myllymki, editors, UAI 2008, Proceedings of the 24th
Conference in Uncertainty in Artificial Intelligence, pages 468–475, Helsinki, Finland, July
9-12 2008. AUAI Press.

18. Stefan Schlobach. Diagnosing terminologies. In Proceedings of the 20th National Confer-
ence on Artificial Intelligence (AAAI-05), page 670?675, 2005.

19. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In Georg Gottlob and Toby Walsh, editors, Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages 355–362,
Acapulco, Mexico, August 2003. Morgan Kaufmann.

20. Heiner Stuckenschmidt. Debugging owl ontologies - a reality check. In Raul Garcia-Castro,
Asuncin Gmez-Prez, Charles J. Petrie, Emanuele Della Valle, Ulrich Kster, Michal Zaremba,
and M. Omair Shafiq, editors, Proceedings of the 6th International Workshop on Evaluation
of Ontology-based Tools and the Semantic Web Service Challenge (EON-SWSC-2008), vol-
ume 359 of CEUR Workshop Proceedings, Tenerife, Spain, June 2008. CEUR-WS.org.

21. Renata Wassermann. An algorithm for belief revision. In Proceedings of the Seventh Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR2000).
Morgan Kaufmann, 2000.

8

Finding fault: Detecting issues in a versioned ontology

Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and Robert Stevens

School of Computer Science, University of Manchester, Manchester, UK

Abstract. Understanding ontology evolution is becoming an active topic of in-
terest to ontology engineers, e.g., we have large collaborative developed ontolo-
gies but, unlike software engineering, comparatively little is understood about the
dynamics of historical changes, especially at a fine level of granularity. Only re-
cently has there been a systematic analysis of changes across ontology versions,
but still at a coarse-grained level. The National Cancer Institute (NCI) Thesaurus
(NCIt) is a large, collaboratively-developed ontology, used for various Web and
research-related purposes, e.g., as a medical research controlled vocabulary. The
NCI has published ten years worth of monthly versions of the NCIt as Web Ontol-
ogy Language (OWL) documents, and has also published reports on the content
of, development methodology for, and applications of the NCIt. In this paper, we
carry out a fine-grained analysis of the asserted axiom dynamics throughout the
evolution of the NCIt from 2003 to 2012. From this, we are able to identify ax-
iomatic editing patterns that suggest significant regression editing events in the
development history of the NCIt.

1 Introduction

This paper is part of a series of analyses of the NCIt corpus [1,2], the earlier of which
focus on changes to the asserted and inferred axioms. The current analysis extends pre-
vious work by tracing editing events at the individual axiom level, as opposed to the
ontology level. That is, instead of analysing the total number of axioms added or re-
moved between versions, we also track the appearance and disappearance of individual
axioms across the corpus. As a result, we are able to positively identify a number of re-
gressions (i.e., inadvertent introduction of an error) which occur over the last ten years
of the development of the NCIt ontology, as well as a number of event sequences that,
while not necessarily introducing errors, indicate issues with the editing process. We
are able to do this analytically from the editing patterns alone.

2 Preliminaries

We assume that the reader is familiar with OWL 2 [3], at least from a modeller per-
spective. An ontology O is a set of axioms, containing logical and non-logical (e.g.,
annotation) axioms. The latter are analogous to comments in conventional program-
ming languages, while the former describe entities (classes or individuals) and the rela-
tions between these entities via properties. The signature of an ontology O (the set of
individuals, class and property names in O) is denoted Õ.

We use the standard notion of entailment, an axiom α entailed by an ontology O is
denoted byO |= α. We look at entailments of the formA v B whereA andB are class

9

Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and Robert Stevens

names i.e., atomic subsumptions. This is the part of the type of entailment generated by
the classification reasoning task, a standard reasoning task that forms the basis of the
‘inferred subsumption hierarchy ’ .

Finally, we use the notions of effectual and ineffectual changes as follows:

Definition 1. Let Oi and Oi+1 be two consecutive versions of an ontology O.
An axiom α is an addition (removal) if α ∈ Oi+1\Oi (α 6∈ Oi\Oi+1).
An addition α is effectual if Oi 6|= α (written as EffAdd(Oi, Oi+1)), and

ineffectual otherwise (written as InEffAdd(Oi, Oi+1)).
A removal α is effectual ifOi+1 6|= α (written asEffRem(Oi, Oi+1)), and ineffectual
otherwise (written as InEffRem(Oi, Oi+1)) [1].

3 Conceptual Foundations

Prior to the study of fault detection techniques, we establish a clear notion of the type
of faults we are trying to isolate. In all cases, we define a fault as deviation from the re-
quired behaviour. In Software Engineering, software faults are commonly divided into
functional and non-functional depending on whether the fault is in the required func-
tional behaviour (e.g., whether the system is acting correctly in respect to its inputs,
behaviour, and outputs) or whether the fault is in the expected service the system needs
to provide (i.e., whether the (correct) behaviour is performed well). Functional and non-
functional faults can be further subdivided based on the impact to the system and/or to
the requirements specifications. For example, functional faults can be divided into fa-
tal and non-fatal errors depending on whether the fault crashes the system. Generally,
crashing behaviour is always a fatal fault, however it might be preferable to encounter
a system crash instead of a non-fatal fault manifested in some other, harder to detect,
manner. Faults that impact the requirements may be implicit, indeterminate (i.e., the
behaviour might be underspecified), or shifting. A shifting specification can render pre-
viously correct behaviour faulty (or the reverse), as faults are defined as deviations from
the “governing” specification. For convenience, we presume throughout this study that
the specification is stable over the lifetime of the examined ontology, i.e., we expect the
notation of ’acceptable model ’ or ’acceptable entailment ’ to be stable throughout the
lifetime of the ontology.

We also restrict our attention to the logical behaviour of the ontology, and we ap-
proximate this by sets of desired entailments. This restriction might not reflect the full
behaviour of an ontology in some application as 1) many entailments might be irrele-
vant to the application (e.g., non-atomic subsumptions for a terminologically oriented
application) or 2) the application might be highly sensitive to other aspects of the on-
tology, including, but not limited to, annotations, axiom shape, and naming patterns.
However, these other aspects are less standardised from application to application, so
are rather more difficult to study externally to a given project. Furthermore, faults in the
logical portion of an ontology both can be rather difficult to deal with and affect these
other aspects. With this in mind, we define a logical bug as follows:

Definition 2. An ontology O contains a (logical) bug if O |= α and α is not a desired
entailment or O 6|= α and α is a desired entailment.

10

Finding fault: Detecting issues in a versioned ontology

Of course, whether a (non)entailment is desired or not is not determinable by a
reasoner — a reasoner can only confirm that some axiom is or is not an entailment.
Generally, certain classes of (non)entailments are always regarded as errors. In analogy
to crashing bugs in Software Engineering, in particular, the following are all standard
errors:

1. O is inconsistent i.e., O |= > v ⊥
2. A ∈ Õ is unsatisfiable in O i.e., O |= A v ⊥
3. A ∈ Õ is tautological in O i.e., O |= > v A

In each of these cases, the “worthlessness” of the entailment is straightforward1 and
we will not justify it further here. That these entailments are bugs in and of themselves
makes it easy to detect them, so the entire challenge of coping with such is in explaining
and repairing them.

Of course, not all errors will be of these forms. For example, in most cases, the sub-
sumption, Tree v Animal would be an undesired entailment. Detecting this requires
domain knowledge, specifically, the denotation of Tree and Animal, the relation be-
tween them, and the intent of the ontology. If there is an explicit specification such e.g.
a finite list of desired entailments, then checking for correctness of the ontology would
be straightforward. Typically, however, the specification is implicit and, indeed, may be
inchoate, only emerging via the ontology development process. Consequently, it would
seem that automatic detection of such faults is impossible.

This is certainly true when considering a single version of an ontology. The case
is different when multiple versions are compared. Crucially, if an entailment fluctuates
between versions, that is, if it is the case that Oi |= α and Oj 6|= α where i < j,
then we can conclude that one of those cases is erroneous. However, it is evident that
Oi 6|= α butOj |= αmay not be as the fact thatOi 6|= α as it might just indicate that the
“functionality” has not been introduced yet. In what follows, we consider a sequence
of Oi, ... , Om of ontologies, and use i, j, k, ... , as indices for these ontologies with
i<j<k<... With this in mind, we can conservatively determine whether there are logical
faults in the corpus using the following definition.

Definition 3. Given two ontologies, Oi,Oj where i<j, then the set of changes such
that α is {EffAdd(Oi, Oi+1) ∩ EffRem(Oj , Oj+1)}is a fault indicating set of
changes written as FiSoC(i, j).

Note that if α ∈ FiSoC(i, j) either the entailment Oi |= α, thus α ∈ Oi, or the
non-entailment Oi 6|= α may be the bug in question and FiSoC(i, j) does not identify
which is the bug. Instead the fault indicating set tells us that one of the changes in-
troduces a bug. As mentioned earlier, the set shows the existence of a bug assuming a
stable specification. Any subsequent findings of the same α ∈ FiSoC(i, j) is a fault
indicate content regression. It is not surprising to find reoccurring content regressions
due to the absence of content regression testing.

We can have a similar set of changes wherein the removal is ineffectual i.e., α ∈ Oi,
α 6∈ Oi+1, but Oi+1 |= α. Since the functionality of the ontology is not changed by

1 There is, at least in the OWL community, reasonable consensus that these are all bugs in the
sort of ontologies we build for the infrastructure we use.

11

Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and Robert Stevens

an ineffectual removal, such a set does not indicate regression in the ontology. Indeed,
such a set is consistent with a refactoring of the axiom, that is syntactic changes to the
axiom that result in the axiom being strengthened or weakened based on the effectu-
allity of the change [1]. Of course, if the added axiom is the bug, then the ineffectual
removal from Oi to Oi+1 would be a failed attempt to remove the bug. Without ac-
cess to developer intentions or other external information, we cannot distinguish be-
tween these two situations. However, we can conclude that an iterated pattern of inef-
fectual changes is problematic. That is, even if the set of changesEffAdd(Oi, Oi+1)∩
InEffRem(Oj , Oj+1) is a refactoring, a subsequent ineffectual addition, InEffAdd(Ok, Ok+1),
would indicate a sort of thrashing. Meaning, if the original refactoring was correct, then
“refactoring back” is a mistake (and if the “refactoring back” is correct, then the original
refactoring is a mistake).

Definition 4. Given two ontologies, Oi,Oj where i<j, then any of the following sets
of changes for α

F1SSoC. {EffAdd(Oi, Oi+1) ∩ InEffRem(Oj , Oj+1)}
F2SSoC. {InEffAdd(Oi, Oi+1) ∩ InEffRem(Oj , Oj+1)}
F3SSoC. {InEffRem(Oi, Oi+1) ∩ InEffAdd(Oj , Oj+1)}

are fault suggesting set of changes written as FSSoC(i, j).

There is a large gap in the strength of the suggestiveness between sets of kind
F1SSoC and the sets of kind F2SSoC and F3SSoC. Sets of kind F1SSoC can be com-
pletely benign, indicating only that additional information has been added to the axiom
(e.g., that the axiom was strengthened), whereas there is no sensible scenario for the
occurrence of sets of kind F2SSoC and F3SSoC. In all cases, much depends on whether
the ineffectuality of the change is known to the ontology modeller. For instance, if a
set of type F1SSoC(i, j) was an attempt to repair α, then α is a logical bug if α is an
undesired entailment that was meant to have been repaired inOj , then this repair failed.

All these suggestive sets may be embedded in larger sets. Consider the set where α
is (1) EffAdd(Oi, Oi+1), (2) InEffRem(Oj , Oj+1), (3) InEffAdd(Ok, Ok+1),
(4) EffRem(Ol, Ol+1). From this we have an indicative fault in the set <(1),(4)>
and two suggestive faults in the sets, <(1),(2)> and <(2),(3)>. The latter two seem to
be subsumed by the encompassing former. The analysis presented here does not, at this
time, cover all paired possibilities. This is partly due to the fact that some are impossible
on their own (e.g., two additions or two removals in a row) and partly due to the fact
that some are subsumed by others.

Of course, as we noted, all these observations only hold if the requirements have
been stable over the examined period. If requirements fluctuate over a set of changes,
then the changes might just track the requirements and the ontology might never be in
a pathological state.

4 Methods and Materials

The verification of the concepts and definitions proposed in Section 3 is carried out by
conducting a detailed analysis of The National Cancer Institute Thesaurus (NCIt) ontol-
ogy. The National Cancer Institute (NCI) is a U.S. government funded organisation for

12

Finding fault: Detecting issues in a versioned ontology

the research of causes, treatment, and prevention of cancer [4]. The NCIt is an ontology
written in the Web Ontology Language (OWL) which supports the development and
maintenance of a controlled vocabulary about cancer research. Reports on the collabo-
ration process between the NCIt and its contributors have been published in 2005 and
2009 (see [5,6,7]), which provide a view of the procedural practices adopted to support
domain experts and users in the introduction of new concepts into the ontology. These
publications together with the publicly available monthly releases and concept change
logs are the basis for the corpus used in this study.

We gathered 105 versions of the NCIt (release 02.00 (October 2003) through to
12.08d (August 2012)) from the public website.2 Two versions are unparseable using
the OWL API [8], and were discarded, leaving 103 versions. The ontologies were parsed
and individual axioms and terms were extracted and inserted into a MySQL v5.1.63
database. The database stores the following data for each NCIt release, Oi (where i is
the version identifier):

1. Ontology Oi: Each ontology’s NCI identifier Oi is stored in a table “Ontology”
with a generated integer identifier i.

2. Axioms αj ∈ Oi: Each structurally distinct axiom αj is stored in an “Axioms”
table with identifier j, and a tuple (j, i) is stored in a table “Is In” (that is, axiom j
is asserted in ontology i).

3. Classes Cj ∈ Oi: Each class name Cj is stored in a table “Classes” with an identi-
fier j, followed by the tuple (j, i) into table “Class In”.

4. Usage of class Cj in Oi: Each class Cj that is used (mentioned) in axiom αk ∈ Oi

is stored in table “Used In” as a triple (j,k,i).
5. Effectual changes: Each added (removed) axiom αj ∈ EffAdd(Oi, Oi+1) (αj ∈
EffRem(Oi, Oi+1)), with identifier j, is stored in table “Effectual Additions”
(“Effectual Removals”) as a tuple (j, i+ 1).

6. Ineffectual changes: Each added (removed) axiom αj ∈ InEffAdd(Oi, Oi+1)
(αj ∈ InEffRem(Oi, Oi+1)), with identifier j, is stored in table “Ineffectual
Additions” (“Ineffectual Removals”) as a tuple (j, i).

The data and SQL queries to produced this study are available online.3

All subsequent analysis are performed by means of SQL queries against this database
to determine suitable test areas and fault detection analysis. For test area identification,
we select test sets based on the outcome of 1) Frequency Distribution Analysis of the
set of asserted axioms (i.e., in how many versions each axiom appears or follows), and
2) asserted axioms Consecutivity Analysis (whether an axiom’s occurrence pattern has
“gaps”). For fault detection, we conduct SQL driven data count analysis between the
selected test cases and the Effectual and Ineffectual database tables to categorise logical
bugs as FiSoCs or FSSoCs.

2 ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI_Thesaurus/archive/.
3 http://owl.cs.manchester.ac.uk/research/topics/ncit/
regression-analysis/

13

ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI_Thesaurus/archive/
http://owl.cs.manchester.ac.uk/research/topics/ncit/regression-analysis/
http://owl.cs.manchester.ac.uk/research/topics/ncit/regression-analysis/

Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and Robert Stevens

5 Results

5.1 Test Areas Selection

The test area selection for this study is determined by conducting analyses on axioms ’
frequency distribution and consecutivity evaluation. Frequency distribution analysis
calculates the number of versions an axiom is present in the NCIt. From this sequence
analysis we identify their consecutivity based on the type of occurrence in the corpus,
such as: continual occurrence, interrupted occurrence, and single occurrence. The anal-
ysis of axioms with continual occurrence provides knowledge about the stability of the
ontology, since it helps with the identification of axioms that, due to their consistent
presence throughout the ontology’s versions, can be associated with the ‘core’ of the
represented knowledge. As described in Section 3, axioms ’ presence can be success-
fully correlated with FiSoCs or FSSoCs depending on the effectuality of their changes.

In the analysis, we found that the highest number of 20,520 asserted axioms cor-
respond to frequency 11. This means that 20,520 axioms appear in the NCIt ontology
for exactly 11 versions. Of these asserted axioms, 20,453 asserted axioms (99.67%),
appear in 11 consecutive versions. The distribution of these axioms across the corpus
is concentrated between version 6 to 16 with 19,384 asserted axioms (the majority of
these additions took place in version 6 with 13,715 added axioms), between versions
1 to 52 with 593 asserted axioms, and 187 asserted axioms for the remaining versions.
These numbers do not account for the 358 new asserted axioms added in version 93
that are still in the corpus for version 103 with 11 occurrences but have the potential of
remaining in the corpus in the future versions.

The next highest frequency is 5 with 14,586 asserted axioms and 14,585 occur-
ring consecutively. Only the axiom Extravasation v BiologicalProcess is
present from version 20 to 23, it is removed in version 24 and re-enters in version 45
before being removed in version 46.

The next two rows in Table 1 show the results for frequency distribution 2 and 3 with
13,680 and 12,806 asserted axioms respectively. For frequency distribution 2, there are
10,506 asserted axioms with consecutive occurrence. Of these axioms, 445 entered the
corpus in version 102 and remain in the corpus until version 103. The total number of
axioms with non-consecutive occurrences is 3,174 asserted axioms. However, only 8
axioms are not included in the set of axioms that are part of the modification event tak-
ing place between versions 93 and 94. In this event 3,166 axioms with non-consecutive
occurrences were added in version 93, removed (or possibly refactored) in version 94,
and re-entered the ontology in version 103. This editing event is discussed in Section
6. Of the 12,806 asserted axioms with frequency distribution 3, 12,804 asserted axioms
occur in consecutive versions (99.98%) and 644 asserted axioms are present in the last
studied version of the corpus.

Our results show that three high frequency distributions are observed in the top
ten distributions with axioms occurring in 87, 79 and 103 versions. There are 12,689
asserted axioms present in 87 versions with 99.86% of asserted axioms occurring con-
secutively. From these axioms, 12,669 asserted axioms appear in the last version of the
ontology with 12,651 asserted axioms added in version 17 and remaining consecutively
until version 103. For frequency distribution 79, there exist 10,910 asserted axioms

14

Finding fault: Detecting issues in a versioned ontology

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

20000	

1	
 3	
 5	
 7	
 9	
 11
	

13
	

15
	

17
	

19
	

21
	

23
	

25
	

27
	

29
	

31
	

33
	

35
	

37
	

39
	

41
	

43
	

45
	

47
	

49
	

51
	

53
	

55
	

57
	

59
	

61
	

63
	

65
	

67
	

69
	

71
	

73
	

75
	

77
	

79
	

81
	

83
	

85
	

87
	

89
	

91
	

93
	

95
	

97
	

99
	

10
1	

10
3	

Fig. 1. Distribution of asserted axioms based on the number of versions they are present in (x-axis:
frequency, y-axis: number of asserted axioms).

that appear in 79 versions with 10,866 still present in version 103. From these 10,866
asserted axioms, 10,861 asserted axioms were added in version 25 and remain until
version 103 consecutively. Finally, there are 8,933 asserted axioms that appear in 103
versions of the NCIt. This means that 8,933 axioms were added in the first studied
version of the NCIt and remain until the last studied version. That is, of the 132,784 as-
serted axioms present in version 103, 6.73% of the axioms were present from version 1.
From this information it can be inferred that 6.73% of the asserted axioms population
found in the last version of the NCIt represent a stable backbone of asserted axioms
present in all versions of the NCIt.

Frequency
Axiom Occurring in Consecutive Non-consecutive
Count Version 103 Occurrence Occurrence

11 20,520 358 99.67% 0.33%
5 14,586 831 99.99% 0.01%
2 13,680 445 76.80% 23.20%
3 12,806 664 99.98% 0.02%

87 12,689 12,669 99.86% 0.14%
1 12,219 47 in v102 and 2,084 in v103 – –

79 10,910 10,866 99.93% 0.07%
8 10,662 599 99.93% 0.07%

103 8,933 8,933 100.00% 0.00%
Table 1. Frequency distribution trends.

As seen in Table 1, 12,219 asserted axioms occur in only 1 version of the NCIt. Of
these asserted axioms, 2,084 axioms appear in version 103 and may remain in future
versions. When taking this fact into account, we observe that a total of 10,135 asserted
axioms with single occurrences are present in the remaining 102 versions. From the 103
studied versions, 98 versions have asserted axioms that only appear in those versions;
and versions 45, 54, 88, 92, and 100 do not. A detailed representation of this distribu-
tion across the NCIt corpus demonstrates that the first three years of the studied NCIt
versions show the highest rate of single occurrences in the corpus with three identifiable

15

Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and Robert Stevens

high periods of single occurrences around version 1 to 5, versions 16 to 18, and versions
21 to 25.

5.2 Fault Detection Analysis

In this study, we limit Fault Detection Analysis to the finite set of asserted axioms with
non-consecutive occurrence for the top ten frequencies identified in the previous sec-
tion. It is important to note at this point that this study does not examine the set of
all FiSoC and FSSoC for the collected versions of NCIt. Instead we focus our atten-
tion on the identified 53 asserted axioms that occur in non-consecutive versions for
the top ten distributions, excluding all axioms that were part of the renaming events
identified between versions 91 to 103 of the NCIt. Of these 53 examined axioms, 32
asserted axioms have logical bugs of type FiSoC. Further examination of the change
sets of these FiSoCs indicate that 27 axioms conform directly with Definition 3 be-
cause all of their additions and removals are effectual; that is, the set of changes is
(EffAdd(Oi, Oi+1) ∩ EffRem(Oj , Oj+1)). The remaining 5 axioms have change
sets of type (EffAdd(Oi, Oi+1) ∩ InEffRem(Oj , Oj+1) ∩EffRem(Ok, Ok+1)).
Although in this set there is an ineffectual removal prior to the effectual removal, from
this change set we may conclude that ineffectual removal is “fixed” when the effectual
removal takes place.

We also identified the asserted axiom
Benign Peritoneal Neoplasmv Disease Has Primary Anatomic Site
only Peritoneum with axiom id 159025 as a logical bug of type FiSoC for the first
removal (EffAdd(O20, O21) ∩ EffRem(O21, O22)), and a second logical bug type
FSSoC for the second removal (EffAdd(O26, O27) ∩ InEffRem(O28, O29)). The
presence of both logical bugs, FiSoC and FSSoC, in this axiom suggests that the re-
introduction of the axiom to the ontology in version 27 after being removed in version
22 may correspond to content regression, and the second ineffectual removal in version
29 to refactoring.

The remaining 21 asserted axioms have logical bugs of type FSSoC . Seventeen of
these axioms conform with F1SSoC set, thus suggesting possible refactoring. To con-
firm these refactoring events, additional axiomatic difference analysis needs to be car-
ried out on these axioms, as suggested in [9]. Four axioms (axiom ids 110594, 153578,
157661, and 127241) have the change sets identified for F2SSoC. Two of these axioms
(axiom ids 157661, and 127241) suggest refactoring for the first change set (the set is
of type F1SSoC), and are later re-introduced in the ontology with logical bugs of type
FiSoC.

As mentioned earlier, the analysis conducted in this section excludes fault detection
for the set of axioms affected by the renaming event that took place between versions
91 and 103. We provide more information about this renaming event and the impact
to our results in Section 6. However, it is important to mentioned that our analysis is
sensitive to cosmetic changes to axioms, e.g., axiom renaming, and does not treat them
as logical bugs due to the superfluous nature of these changes.

16

Finding fault: Detecting issues in a versioned ontology

Frequency Axiom Versions for <Eff. Versions for Versions for <Eff. Versions for First NCIt Last NCIt
Rate ID Add., Eff. Re.> <Eff. Add.> Add., Ineff. Re., Eff. Re.> <Ineff. Add.> Version Version

11

57506 <4,5>, <7,17> 4 16
58364 <4,5>, <7,17> 4 16

103206 <7,17,26> 7 25
105069 <7,17,26> 7 25
210295 <40,47>, <51,55> 40 54

2

49544 <2,3>, <4,5> 2 4
50602 <2,3>, <4,5> 2 4
50858 <2,3>, <18,19> 2 18

120551 <12,13>, <16,17> 12 16
172613 <25,26>, <62,63> 25 62
172917 <25,26>, <62,63> 25 62

3
159025 <21,22> 21 28
257839 <83,84>, <93,94> <103> 83 103

87

30433 <1,12>, <14,75> <89> 1 103
39267 <1,2> <18> 1 103
68617 <5,6> <18> 1 103

118516 <12,74> <79> 12 103
119326 <12,74> <79> 12 103
121919 <13,47> <51> 13 103
122832 <13,47> <51> 13 103

79

6838 <1,17,86> <23> 1 85
8905 <1,6> <30> 1 103
44135 <1,17,86> <23> 1 85

125718 <15,19> <29> 15 103
125895 <15,19> <29> 15 103
162303 <23,93>, <94,103> 23 103
162304 <23,34> <34> 23 103

8

22465 <1,2,52> <45> 1 51
67505 <5,6>, <10, 17> 5 16

238416 <72,79> <103> 72 103
238488 <72,79> <103> 72 103
262226 <87,93>, <94,96> 87 95

Table 2. Indicating fault in sequence of changes (Effectual Addition abbrv. to “Eff. Add.”, Ef-
fectual Removal abbrv. to “Eff. Re.”, Ineffectual Addition abbrv. to “Ineff. Add.”, and Ineffectual
Removal abbrv. to “Ineff. Re.”).

6 Discussion

In general, the historical analysis of the NCIt, as recorded in their monthly releases
from 2003 to 2012, show that the ontology is consistently active and the evolution
management process in place for NCIt ’s maintenance (as described in [10] and [6])
may be positive contributors to the overall steady growth of the NCIt ontology.

The growth of the ontology is mostly driven by the asserted ontology where high
levels of editing activity took place in the first three years of the analysed population.
The change dynamics observed in this period suggest a trial and error phase, where edit-
ing and modelling activities are taking place until reaching a level of stability, possibly
related to reaching maturity, for the remainder of the observed versions.

Although the chronological analysis primarily points to the first three years as a
phase of rapid change, a more in-depth study of the diachronic data set revealed that
content regression takes place throughout all versions of the NCIt. A detailed study of
the ‘life of axioms’ in the ontology from the Frequency Distribution Analysis shows that
the evolution of the NCIt is marked by logical bugs of either FiSoC and/or FSSoC types.

17

Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and Robert Stevens

Frequency Axiom Versions for <Eff. Versions for <Ineff. Versions for Versions for <Ineff. First NCIt Last NCIt
Refactoring

Rate ID Add., Ineff. Re.> Add., Ineff. Re.> <Ineff. Add.> Add., Eff. Re.> Version Version

11
110594 <10, 20>, <31, 32> 10 31
215592 <50, 55> <98> 50 103 Refactoring
215897 <50, 55> <98> 50 103 Refactoring

5 157661 <20, 24> <45, 46> 20 45

2
99659 <6, 7> <16, 17> 6 16 Refactoring

127241 <16, 17> <21, 22> 16 21
3 159025 <27, 29> 21 28 Refactoring

87

3241 <1, 7> <23> 1 103 Refactoring
12085 <1, 17> <33> 1 103 Refactoring

106537 <9, 17> <25> 9 103 Refactoring
106569 <9, 17> <25> 9 103 Refactoring
106878 <9, 17> <25> 9 103 Refactoring
107407 <9, 17> <25> 9 103 Refactoring
107860 <9, 17> <25> 9 103 Refactoring
107952 <9, 17> <25> 9 103 Refactoring
108468 <9, 17> <25> 9 103 Refactoring
111380 <10, 17> <24> 10 103 Refactoring
114579 <10, 17> <24> 10 103 Refactoring

79 42533 <1, 17> <41> 1 103 Refactoring

8
153578 <17, 18>, <20, 27> 17 26
215709 <50, 53> <99> 50 103 Refactoring

Table 3. Suggesting fault in sequence of changes (Effectual Addition abbrv. to “Eff. Add.”, Ef-
fectual Removal abbrv. to “Eff. Re.”, Ineffectual Addition abbrv. to “Ineff. Add.”, and Ineffectual
Removal abbrv. to “Ineff. Re.”).

As a result, we found that asserted axioms with logical bugs enter the ontology in a
version, are removed in a different version, and later re-entered the ontology unchanged.
Only 6.73% of the asserted axioms in version 103 correspond to axioms that have been
present unchanged from the first version analysed until this last version.

Our study revealed that most asserted axioms appear in two versions of the ontology.
However, in this finding we identified 125,294 axioms are affected by the renaming
event that took place between versions 93 and 94. In a preliminary study conducted for
this paper, we found these asserted axioms first appear in version 93, are removed in
version 94, and then re-enter the NCIt unchanged in version 103 . We have confirmed
with the NCI that this editing event corresponds to the renaming of terms that took
place in version 93, where every term name was replaced from its natural language
name to its NCIt code. This renaming event also affects the set of asserted axioms with
frequency distribution 11. The non-consecutive version occurrences for 1,186 axioms
show that they first occur consecutively from versions 91 and 92, are removed in version
93, and then re-enter the ontology in version 94. These axioms remain consecutively
until version 102 before they are removed again in version 103. The identification of
this renaming event does not affect the information content dynamics of the ontology;
however, it does affect the overall change dynamics. This renaming event is important
to our analysis because it shows major editing periods are still part of the NCIt.

Taking into account these renaming events, the study found that the NCIt overall
‘survival’ rate for asserted axioms is 5 versions. Axioms with non-consecutive presence
in the ontology are directly linked to logical bugs that either indicate content regressions
or suggest axiom refactoring. Information content is not as permanent as the managerial
and maintenance processes indicate, but logical bugs for unmodified axioms are more
predominant than expected. The analysis conducted in this paper identifies specific sets

18

Finding fault: Detecting issues in a versioned ontology

of axioms that are part of this group of regression cycles, and it is able to provide in
detail the type of faulty editing patterns for these axioms and the location of these errors.
We argue that the identification axioms with re-occurring logical bugs is a crucial step
towards the identification of test cases and test areas that can be used systematically in
Ontology Regression Testing.

7 Limitations

This study has taken under consideration the following limitations: (i) The NCIt evolu-
tion analysis and asserted axiom dynamics correspond to the publicly available OWL
versions of the NCIt from release 02.00 (October 2003) to 12.08d (August 2012). His-
torical records of NCIt prior to OWL are not taken into consideration in this study. (ii)
The presented results and analysis is limited in scope to the set of asserted axioms only.
The inclusion of entailment analysis is only conducted in regards to the computation of
logical differences to categorise the asserted axioms ’ regression events into logical bugs
of types FiSoC or FSSoC. (iii) Test area selection for the set of axioms with presence in
non-consecutive versions is derived by selecting all axioms with non-consecutive pres-
ence based on their ranking in the high frequency analysis for all asserted axioms. The
selected test area should be viewed as a snapshot of the whole population of axioms
with non-consecutive presence, since the set of 53 analysed axioms correspond only
to the top 10 high frequency distribution as described in Section 5.1. Analysis of the
whole corpus is planned for future research. (iv) This study primarily corresponds to
Functional Requirement Test Impact Analysis since it deals directly with the ontology.
Non-functional Requirements are linked to entailment analysis such as subsumption
hierarchy study, which is excluded in this work.

8 Conclusion

Large collaborative ontologies such as the NCIt need robust change analysis in conjunc-
tion with maintenance processes in order to continue to effectively support the ontology.
The work presented in this paper shows that a detailed study of axioms with logical bugs
need to be part of ontology evaluation and evolution analysis techniques due to its sig-
nificant contribution to regression testing in ontologies. Although the study presented
here is limited in that it is only evaluating unchanged asserted axioms, it still shows that
a great portion of the editing efforts taking place in the NCIt is in the unmodified con-
tent. Regression analysis of this unmodified content can target specific changes in the
modelling and representation approaches which can potential safe effort and increase
productivity in the maintenance of the ontology.

Regression testing in Ontology Engineering is still a growing area of research, and
the work presented here shows that a step towards achieving regression analysis in
ontologies is by providing quantitative measurements of axiom change dynamics, iden-
tification of logical bugs, and the study of ontology evolutionary trends, all of which
can be extracted efficiently by looking at versions of an ontology.

19

Maria Copeland, Rafael S. Gonçalves, Bijan Parsia, Uli Sattler and Robert Stevens

References

1. Gonçalves, R.S., Parsia, B., Sattler, U.: Analysing the evolution of the NCI thesaurus. In:
Proc. of CBMS-11. (2011)

2. Gonçalves, R.S., Parsia, B., Sattler, U.: Analysing multiple versions of an ontology: A study
of the NCI Thesaurus. In: Proc. of DL-11. (2011)

3. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL
2: The next step for OWL. J. of Web Semantics (2008)

4. de Coronado, S., Haber, M.W., Sioutos, N., Tuttle, M.S., Wright, L.W.: NCI Thesaurus: Us-
ing science-based terminology to integrate cancer research results. Studies in Health Tech-
nology and Informatics 107(1) (2004)

5. Hartel, F.W., de Coronado, S., Dionne, R., Fragoso, G., Golbeck, J.: Modeling a description
logic vocabulary for cancer research. J. of Biomedical Informatics 38(2) (2005) 114–129

6. Thomas, N.: NCI Thesaurus - Apelon TDE Editing Procedures and Style Guide. National
Cancer Institute. (2007)

7. Noy, N.F., de Coronado, S., Solbrig, H., Fragoso, G., Hartel, F.W., Musen, M.A.: Represent-
ing the NCI Thesaurus in OWL: Modeling tools help modeling languages. Applied Ontology
3(3) (2008) 173–190

8. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL 2 ontolo-
gies. In: Proc. of OWLED-09. (2009)

9. Gonçalves, R.S., Parsia, B., Sattler, U.: Categorising logical differences between OWL on-
tologies. In: Proc. of CIKM-11. (2011)

10. de Coronado, S., Wright, L.W., Fragoso, G., Haber, M.W., Hahn-Dantona, E.A., Hartel, F.W.,
Quan, S.L., Safran, T., Thomas, N., Whiteman, L.: The NCI Thesaurus quality assurance life
cycle. Journal of Biomedical Informatics 42(3) (2009)

20

Optique System:
Towards Ontology and Mapping Management

in OBDA Solutions

Peter Haase2, Ian Horrocks3, Dag Hovland6, Thomas Hubauer5,
Ernesto Jimenez-Ruiz3, Evgeny Kharlamov3, Johan Klüwer1 Christoph Pinkel2,

Riccardo Rosati4, Valerio Santarelli4, Ahmet Soylu6, Dmitriy Zheleznyakov3

1 Det Norske Veritas, Norway
2 fluid Operations AG, Germany

3 Oxford University, UK
4 Sapienza University of Rome, Italy

5 Siemens Corporate Technology, Germany
6 University of Oslo, Norway

Abstract. The Optique project aims at providing an end-to-end solution for scal-
able Ontology-Based Data Access to Big Data integration, where end-users will
formulate queries based on a familiar conceptualization of the underlying domain,
that is, over an ontology. From user queries the Optique platform will automat-
ically generate appropriate queries over the underlying integrated data, optimize
and execute them. The key components in the Optique platform are the ontology
and mappings that provide the relationships between the ontology and the under-
lying data. In this paper we discuss the problem of bootstrapping and maintenance
of ontologies and mappings. The important challenge in both tasks is debugging
errors in ontologies and mappings. We will present examples of different kinds
of error, and give our preliminary view on their debugging.

1 Introduction

A typical problem that end-users face when dealing with Big Data is the data access
problem, which arises due to the three dimensions (the so called “3V”) of Big Data:
volume, since massive amounts of data have been accumulated over the decades, veloc-
ity, since the amounts may be rapidly increasing, and variety, since the data are spread
over a huge variety of formats and sources. In the context of Big Data, accessing the
relevant information is an increasingly difficult problem. The Optique project7 [5] aims
at overcoming this problem.

The project is focused around two demanding use cases that provide it with mo-
tivation, guidance, and realistic evaluation settings. The first use case is provided by
Siemens,8 and encompasses several terabytes of temporal data coming from sensors,
with a growth rate of about 30 gigabytes per day. Users need to query this data in com-
bination with many gigabytes of other relational data that describe events. The second

7 http://www.optique-project.eu
8 http://www.siemens.com

21

http://www.optique-project.eu
http://www.siemens.com

...Application
end-user

unified data sources

predefined
quieries

...
heterogeneous
data sources

end-user IT-expert

information
need

specialised
quieries

Fig. 1. Existing approaches to data access

use case is provided by Statoil9, and concerns more than one petabyte of geological
data. The data is stored in multiple databases which have different schemata, and the
user has to manually combine information from many databases in order to get the re-
sults for a single query. In general, in the oil and gas industry, IT-experts spend 30–70%
of their time gathering and assessing the quality of data [4]. This is clearly very expen-
sive in terms of both time and money. The Optique project aims at solutions that reduce
the cost of data access dramatically. More precisely, Optique aims at automating the
process of going from an information requirement to the retrieval of the relevant data,
and to reduce the time needed for this process from days to hours, or even to minutes. A
bigger goal of the project is to provide a platform10 with a generic architecture that can
be easily adapted to any domain that requires scalable data access and efficient query
execution for OBDA solutions.

The main bottleneck in the use cases discussed above is data access being limited
to a restricted set of predefined queries (cf. Figure 1, top). Thus, if an end-user needs
data that current applications cannot provide, the help of an IT-expert is required to
translate the information need of the end-user to specialized queries and optimize them
for efficient execution (cf. Figure 1, bottom). This process can take several days, and
given the fact that in data-intensive industries engineers spend up to 80% of their time
on data access problems [4] this incurs considerable cost.

The approach known as “Ontology-Based Data Access” (OBDA) [18,2] has the
potential to address the data access problem by automating the translation process from
the information needs of users to data queries (cf. Figure 2, left). The key idea is to
use an ontology that presents to the user a conceptual model of the problem domain.
The user formulates their information requirements (that is, queries) in terms of the
ontology, and then receives the answers in the same intelligible form. These requests
should be executed over the data automatically, without an IT-expert’s intervention. To
this end, a set of mappings is maintained which describes the relationships between the
terms in the ontology and the corresponding data source fields.

In complex domains, a complete specification of the ontology and the mappings
will typically be expensive to obtain, suggesting to start from partial specifications that
are incrementally refined and expanded according to users’ needs. Moreover, in some

9 http://www.statoil.com
10 Optique’s solutions are going to be integrated via the Information Workbench platform [8].

22

http://www.statoil.com

streaming data

end-user IT-expert

Ontology Mappings

...
heterogeneous
data sources

query

results

Query
Formulation

Ontology & Mapping
Management

...

end-user IT-expert

Application
Ontology Mappings

Query Answering

...
heterogeneous
data sources

query

results

Classical OBDA Optique OBDA

Application
(Analytics)

Query Transformation
Distributed Query Optimisation and Processing

Fig. 2. Left: classical OBDA approach. Right: the Optique OBDA system

applications, changes in the ontology and/or in the schemata of the data sources (and
thus in the mappings) are likely to happen. Thus, some means for bootstrapping and
maintenance of ontology and mappings is required. The classical OBDA approaches
fail to provide support for these tasks.

In the Optique project we aim at developing a next generation OBDA system (cf.
Figure 2, right); more precisely, the project aims at a cost-effective approach that in-
cludes the development of tools and methodologies for semi-automatic bootstrapping
of the system with a suitable initial ontology and mappings, and for updating them “on
the fly” as needed by a given application. This means that, in our context, ontologies
are dynamic entities that evolve (i) to incorporate new vocabulary required in users’
queries, (ii) to accommodate new data sources, and (iii) to repair defects in ontologies
and mappings. In all the cases, some way is needed to ensure that changes in the on-
tology and mappings are made in a coherent way. Due to this requirement, ontology
debugging technologies will be a cornerstone of the system.

Besides ontology and mapping management, the Optique OBDA system will ad-
dress a number of additional challenges, including: (i) user-friendly query formulation
interface(s), (ii) processing and analytics over streaming data, (iii) automated query
translation, and (iv) distributed query optimisation and execution in the Cloud. We will
not, however, discuss these issues in this paper and refer the reader to [5] for details.

The remainder of the paper is organized as follows. First, we discuss different on-
tology defects that may arise and will need to be debugged (Section 2). Then we discuss
how such defects can occur during the operation of the Optique OBDA system (Sec-
tion 3), and how they will be dealt with.

23

2 OBDA Systems: Components and Defects

2.1 Components of OBDA Systems

An OBDA setting includes three central components: data sources, an ontology, and
mappings (from data sources to the ontology).

Data sources. A data source consists of a data schema and a number of corresponding
data instances. A typical example for a data source is a relational or semi-structured
database.

Example 1. Consider the two data sources in Figure 3 (left): Source 1 (or S1 for short)
contains a unary table about production wells with the schema PWell and says that
the well ‘w123’ is a production well. Source 2 (or S2 for short) contains a unary table
about exploration wells with the schema EWell and says that ‘w123’ is an exploration
well.

Ontology. In the context of OBDA, it is usual to consider the ontology to be a Descrip-
tion Logic (DL) ontology [20] (or, equivalently, an OWL ontology). A DL ontology
consists of a finite set of axioms that are usually in the form of set inclusions between
two (possibly complexly defined) concepts that represent classes of objects. The ontol-
ogy captures general knowledge about the domain of interest, such as generalizations,
relational links, etc.

Example 2. Consider the ontology in Figure 3, left, (in the box). It describes (a part of)
the oil production domain and consists of three concepts: (i) the concept Well repre-
sents the class of wellbores,11 (ii) the concept PWell represents the class of production
wells,12 and (iii) the concept EWell represents the class of exploration wells.13 This
ontology says that production wells cannot be exploration wells (denoted as EWell v
¬PWell), wells are exploration wells (Well v EWell), and wells are production wells
(Well v PWell).

Mappings. Mappings associate data from the data sources with concepts in the ontol-
ogy.14 A mapping m has the form

m : q(x) N (x),

where q is a query over the data sources, and N is an element of the ontological vocab-
ulary, i.e., a concept or property name. Intuitively, q returns constants (resp., pairs of
constants) from the data sources and propagates them into concept (resp., property) N
(that is, instantiates N with them).
11 A wellbore is any hole drilled for the purpose of exploration or extraction of natural resources,

e.g., oil.
12 Production wells are drilled primarily for producing oil or gas.
13 Exploration wells are drilled purely for exploratory (information gathering) purposes in a new

area.
14 The mappings we are considering here are usually referred to as global-as-view mappings [13].

24

Source 3

hasCapacity
‘w456’ 1000

EWell v ¬PWell

EWell v Well

PWell v Well

PWell t EWell v Well

Source 1

PWell
‘w123’

Source 2

EWell
‘w123’

Source 1

PWell
‘w123’

EWell v ¬PWell

Well v EWell

Well v PWell

Source 2

EWell

m1 m2

Fig. 3. Example of ontology and mapping defects. PWell stands for Production Well and EWell
for Exploration Well.

Example 3. Consider Figure 3, left, again. The example includes two mappings, m1

and m2, which are depicted as arrows and defined as:

m1 : PWell(x) PWell(x), m2 : EWell(x) EWell(x).

Note that m1 connects S1 with the concept PWell , while m2 connects S2 with EWell :
m1 says that tuples from the table PWell are instances of the concept PWell , and m2

analogously for EWell . I.e., m1 instantiates PWell and m2 instantiates EWell .

Summing up Examples 1–3, we have the following OBDA setting depicted in Fig-
ure 3, left:

({S1, S2}, {EWell v ¬PWell ,Well v EWell ,Well v PWell}, {m1,m2}).

Another OBDA setting is illustrated in Figure 3, right, and we will comment on it in the
following section.

In what follows, we present a number of defects that can occur in an OBDA set-
ting and that may require debugging. We observe that several such defects have been
individually pointed out and studied in literature (see, for instance, [17,19,16,11]). The
Optique Project aims at facing these issues as a whole, and at individuating practical
solutions for addressing them.

2.2 Logical and Modeling Defects

We distinguish two types of defects, namely logical and modeling.
The three types of logical defects that are usually discussed in the literature (see,

for example, [22,15,21]) are inconsistency, unsatisfiability, and incoherency. Tradition-
ally, these notions are applied to ontologies, while in the OBDA scenarios, as we will
illustrate below, they may involve all three components of OBDA settings, that is, data
sources, ontologies, and mappings.

25

Inconsistency of OBDA settings. An OBDA setting is inconsistent if it contains contra-
dictory facts, so that there is no model of the ontology that is consistent with the data
and the mappings.

Example 4. The OBDA setting in Figure 3, left, is inconsistent. Indeed, the well ‘w123’
is an instance of both concepts PWell and EWell , and as the ontology asserts that
PWell and EWell are disjoint, this makes the OBDA setting inconsistent.

The inconsistency in Example 4 could have been caused by a mistake in one of the
data sources: either Source 1 or Source 2 provides wrong information about the well
‘w123’. Perhaps, this well was an exploration one at the beginning, but then became
a production one, but the information in Source 2 has not been brought up to date. A
possible solution would be to update the offending data source. In Figure 3, right, there
is an updated Source 2.

Unsatisfiability and Incoherency of Ontologies. This two types of defects are tightly
related. A concept in an ontology is unsatisfiable if it cannot be instantiated without
causing inconsistency, and an ontology is incoherent if an unsatisfiable concept occurs
in it.

Example 5. Continuing with the OBDA setting in Figure 3, left, consider the concept
Well . Observe that if we instantiate the concept with some object, say, ‘w234’, then it
will turn out that ‘w234’ is both exploration and production well, which is inconsistent.
Hence, the concept Well is unsatisfiable and the ontology is incoherent.

Ontology incoherence is invariably indicative of an ontology design error. In Exam-
ple 5, the two axioms stating that wells are exploration wells and wells are productive
wells are in conflict with both our intuition and with the axiom stating that PWell and
EWell are disjoint. Repairing this error will require one or more of these axioms to be
modified or deleted. A possible repair plan is to replace the two counterintuitive axioms
with axioms that make intuitive sense: EWell v Well (exploration wells are wells),
and PWell v Well (productive wells are wells). Figure 3, right, contains a repaired
version of the ontology.

Empty Mappings in OBDA settings. A mapping of an OBDA setting is empty if it
does not propagate any individuals (resp., pairs of individuals) into any concept (resp.,
property) in the ontology.

Example 6. Consider the OBDA setting in Figure 3, right. Besides the mappings m1

and m2 from Example 3, it includes the following mapping:

m3 : PWell(x),hasCapacity(x, y) PWell(x).

that describes how to populate the concept PWell by joining tuples from tables PWell
and hasCapacity on the well’s ID and projecting out the capacity value. Observe
that the mapping m3 is empty in this setting: when applying the mapping to the data

26

sources, no object will be propagated into the concept PWell, since there is no x such
that it appears in both table PWell and table hasCapacity.

Now consider the following mappings:

m4 : q1(x) PWell(x);

m5 : q1(x) EWell(x);

Since the ontology states that PWell v ¬EWell , it follows that the query q1 has to be
empty, i.e., its evaluation over the data sources must return the empty tuple.

The defect with the mapping m3 in Example 6 could be caused by (i) a mapping-
design error, that is, tables PWell and hasCapacity are incorrectly related in m3,
or (ii) incompleteness of data sources. In the former case, m3 should be deleted or re-
paired, while in the later case the problem should be solved at the data source level.
Moreover, mappings m4 and m5 show that combining the knowledge about the map-
ping and the ontology is a key aspect towards the formal analysis of the OBDA specifi-
cation.

Modeling defects are less intuitive than logical ones. A typical modeling defect is
redundancy [7].

Redundancy. We distinguish three types of redundancy: redundant axioms, concepts,
and mappings. Intuitively, an axiom, concept, or mapping is redundant in an OBDA
setting if the deletion of it from the setting results in a logically equivalent setting.

Example 7. Recall the OBDA system in Figure 3, right. To observe the phenomenon of
redundant axioms, note that the axiom α = PWell t EWell v Well (both production
and exploration wells are wells) would be redundant in this setting. Indeed, the pair of
axioms PWell v Well and EWell v Well already state the same thing, i.e., they are
logically equivalent to α, and so adding α would be vacuous.

To observe the phenomenon of redundant concepts, assume that the ontology im-
plies that two concepts, say PWell and ExWell (standing for Exploited Well) are equiv-
alent, i.e., PWell v ExWell and ExWell v PWell . Then, these two concepts are
synonymous, and we may prefer to remove one of them from the ontology.15 Even if
the ontology does not imply the logical equivalence of PWell and ExWell , but the
mappings for these concepts are the same, then the two concepts may be de facto syn-
onymous.

To observe the phenomenon of redundant mappings, consider the mapping m3 (Ex-
ample 6) and the following mapping m5:

m6 : PWell(x) PWell(x).

Note that, in the presence of m6, m3 becomes redundant. Indeed, m3 instantiates the
concept PWell with some objects from the table PWell, while m6 instantiates PWell
with all the objects found in PWell. Thus, m3 can be harmlessly dropped.

15 This is not always the case as synonyms may capture differences in vocabulary usage amongst
different user groups.

27

To conclude this section, we would like to note that it is not trivial to understand
whether a modeling defect is actually a defect and hence requires debugging. For ex-
ample, as noted above, redundancy can be intentionally introduced in an ontology by
an ontology engineer. Thus, the necessity of debugging such errors depends on the ap-
plication, and should be decided on a case-by-case basis.

3 Supporting the Life Cycle of OBDA Systems

Essential functionalities, required to support the life cycle of an OBDA system, are:

– Detection of defects,
– OBDA debugging,
– Ontology and mapping bootstrapping,
– OBDA evolution,
– OBDA transformation.

We will now discuss these functionalities in more detail.
An OBDA system should be able to analyze itself w.r.t. both logical and model-

ing defects as presented above. Thus, the system should be equipped with an OBDA
analyser: a routine that takes an OBDA setting as input, and returns a set of defects as
output. Based on the result of such analyses, the system should be able to debug itself.
Since, as we discussed in the previous section, there is no universal way to debug an
OBDA system, it is natural for the debugging to be semi-automatic. Thus, the system
should be equipped with an OBDA debugger: a routine that takes an OBDA setting
and its defects as input, and returns a debugged version of the setting, that is free from
the input defects. For examples of tools that perform these tasks, we refer the reader
to [16,12].

Clearly, OBDA systems crucially depend on the existence of suitable ontologies
and mappings. Developing them from scratch is likely to be expensive and a practical
OBDA system should support a (semi-) automatic bootstrapping of an initial ontology
and set of mappings. Thus, an OBDA system should be equipped with an OBDA boot-
strapper: a routine that takes a set of database schemata and possibly instances over
these schemata as input, and returns an ontology and mappings connecting it to the
input schemata.

As was discussed above, OBDA systems are not static objects and are subjects of
frequent changes, that is, evolution. Natural types of evolution are:

– Adding/deleting a new concept together with a mapping. It might be the case
that the ontology lacks some concepts, or some concept should be dropped from
the ontology, e.g., when it is synonymous with another concept. For example, con-
sider the ontology in Figure 3, right. Assume that a new concept, e.g., OilPr (Oil
Producer), is needed. Then one might add this concept to the ontology and create
a mapping that instantiates the concept.

– Adding/deleting an ontological axiom. An ontology may be missing relations
between concepts. For example, one may want to assert that the concept OilPr is a
subconcept of Well . This can be done by adding the axiom OilPr v Well to the
ontology.

28

Integrated via
Information Workbench

Application
 Layer

Presentation
Layer

Front end:
mainly Web-based

Component Optique solution

External solution

Components Colouring Convention
API Application

receiving answers

Visualisation
engine

Information Workbench frontend API
(E.g., widget development, Java, REST)

Query Formulation
Processing

Components

Ontology and Mapping
Management Interface

Ontology & Mapping Manager's
Processing Components

O&M matching,
alignment system

O&M
evolution and
transformation

engine

O&M
analyser,
reasoner

O&M revision,
control, editing

O&M
bootstrapper

O
W

L API

Sesame API

Shared
triple
store

- ontology
- mappings
- configuration
- queries
- answers
- history
- lexical
 information
- etc.

Ontology Processing

Ontology modularization

Ontology reasoners

Fig. 4. Ontology and Mapping Management component of the Optique OBDA system

– Mapping modification. Mappings can be added, changed, or deleted. For example,
if a new data source is added, one can create mappings from the new data source to
some existing concepts. Another scenario for mapping modifications is optimiza-
tion, that is, one may adjust mappings based on the constraints in the data sources
in order to improve the performance of query processing.

29

A task related to both bootstrapping and evolution is ontology transformation. For
example, one may want to reuse an existing third party ontology or mappings instead
of (or combined with) bootstrapping them from the data sources. It is possible that
the existing ontology or mappings are in a language that the system at hand does not
support. Thus, one will have to transform them into the supported language. This may
involve changes in the syntax and/or expressivity of the ontology.

Another reason for a transformation is optimization. One may want to improve the
overall performance of an OBDA system by restricting the expressiveness of the ontol-
ogy language, e.g., by moving from an OWL 2 ontology O to an OWL 2 QL ontology
O′. This would in general require “approximation” of O using the weaker OWL 2 QL
language [14,1].

To connect the five functionalities above, we observe that bootstrapping, evolution,
and transformation functionalities naturally introduce errors in OBDA settings, while
the detection functionality can detect the errors, and the debugging one can repair them.

In the following section, we present the Optique OBDA system, which will provide
all of the life cycle supporting functionalities described above.

4 Optique OBDA Ontology and Mapping Manager

In Figure 4, we present the Ontology and Mapping Management component (the O&M
manager) of the Optique OBDA system. The O&M manager has a Web interface at
the presentation layer. Functionalities of the O&M manager are intended for IT-experts
rather than end-users. The manager includes five subcomponents:

– The Bootstrapper extracts an initial ontology and mappings from data sources, as
discussed above. In Section 4.1, we will present our initial ideas on how to imple-
ment the bootstrapper.

– The Matching and alignment system performs ontology alignment.
– The Analyser and reasoner checks ontologies for defects.
– The Evolution and transformation engine performs debugging on defects found by

the analyser.
– The Revision, control and editing system supports versioning (which can be based

on, e.g., ContentCVS [10]) and editorial processes for both ontologies and map-
pings. It can also act as a hub, coordinating interoperation between the analyser
and evolution engine.

Also, the O&M manager interacts with other components of the Optique OBDA
system. In particular,

– It accesses the Shared triple store, where the ontology and mappings are physically
stored. It can both read the ontology and mappings and update them when needed.

– The analyser, alignment system, and evolution engine have access to reasoning ca-
pabilities, e.g., external ontology reasoners, ontology modularization engines, etc.

– The Query Formulation Component can call the O&M manager whenever a user
decides to add a new concept or axiom. We refer to this as query-driven ontology
construction.

– Finally, the O&M manager is connected to a Visualisation engine.

30

4.1 Directions

In the development of the Optique OBDA system, we plan to exploit existing techniques
from ontology evolution, e.g. [3,6], ontology modularisation, e.g. [23], and develop our
own novel techniques. For example, a possible bootstrapping technique could be the
following three step procedure:

– Step 1: Bootstrap direct16 and R2RML17 mappings from relational schemata of
the data sources. These mappings naturally give ontological vocabularies over the
schemata.

– Step 2: Construct a simple ontology over these vocabularies by extracting ontolog-
ical axioms from the integrity constraints of the schemata.

– Step 3: Align the simple ontologies and the vocabularies with a state of the art
ontology using an existing system, e.g. LogMap [9].

5 Conclusions

We have presented a selection of possible logical and modeling errors in OBDA sys-
tems and the main challenges to be faced in supporting the life-cycle of OBDA sys-
tems. Current approaches and methods only partially address the issues related to the
construction, maintenance, and transformation of an OBDA specification. Although the
EU project Optique is still at an early stage, we aim to turn our preliminary ideas into
novel solutions in the very near future, and to evaluate their effectiveness in our indus-
try use-cases. This will provide us with invaluable feedback to inform ongoing research
and development of enhanced ontology and mapping management components.

Acknowledgements

The research presented in this paper was financed by the Seventh Framework Pro-
gram (FP7) of the European Commission under Grant Agreement 318338, the Op-
tique project. Horrocks, Jiménez-Ruiz, Kharlamov, and Zheleznyakov were also par-
tially supported by the EPSRC projects ExODA and Score!

References

1. Botoeva, E., Calvanese, D., Rodriguez-Muro, M.: Expressive approximations in DL-Lite
ontologies. Proc. of AIMSA 2010 pp. 21–31 (2010)

2. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO System for Ontology-Based Data Access.
Semantic Web 2(1), 43–53 (2011)

3. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite Knowledge
Bases. In: International Semantic Web Conference (1). pp. 112–128 (2010)

16 http://www.w3.org/TR/2011/WD-rdb-direct-mapping-20110324/
17 http://www.w3.org/TR/r2rml/

31

4. Crompton, J.: Keynote talk at the W3C Workshop on Semantic Web in Oil & Gas Indus-
try: Houston, TX, USA, 9–10 December (2008), available from http://www.w3.org/
2008/12/ogws-slides/Crompton.pdf

5. Giese, M., Calvanese, D., Haase, P., Horrocks, I., Ioannidis, Y., Kllapi, H., Koubarakis, M.,
Lenzerini, M., Möller, R., Özep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R., Schmidt,
M., Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In: Rajendra Akerkar: Big
Data Computing. Florida: Chapman and Hall/CRC. To appear. (2013)

6. Grau, B.C., Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D.: Ontology Evolution Under
Semantic Constraints. In: KR 2012 (2012)

7. Grimm, S., Wissmann, J.: Elimination of Redundancy in Ontologies. In: ESWC (1). pp.
260–274 (2011)

8. Haase, P., Schmidt, M., Schwarte, A.: The Information Workbench as a Self-Service Platform
for Linked Data Applications. In: COLD (2011)

9. Jiménez-Ruiz, E., Grau, B.C.: LogMap: Logic-Based and Scalable Ontology Matching. In:
International Semantic Web Conference (1). pp. 273–288 (2011)

10. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Llavori, R.B.: Supporting Concurrent Ontology
Development: Framework, Algorithms and Tool. Data Knowl. Eng. 70(1), 146–164 (2011)

11. Keet, C.M., Alberts, R., Gerber, A., Chimamiwa, G.: Enhancing web portals with ontology-
based data access: the case study of south africas accessibility portal for people with disabil-
ities. In: Proc. of OWLED 2008. vol. 2008 (2008)

12. Lehmann, J., Bühmann, L.: ORE - A tool for repairing and enriching knowledge bases. In:
Proc. of ISWC 2010. Springer (2010)

13. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS. pp. 233–246 (2002)
14. Pan, J.Z., Thomas, E.: Approximating OWL-DL ontologies. p. 1434 (2007)
15. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL Ontologies. In: WWW. pp. 633–640

(2005)
16. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Validating ontologies with

OOPS! In: Proc. of EKAW 2012, pp. 267–281. Springer (2012)
17. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang,

H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL: Common errors &
common patterns. In: Proc. of EKAW 2004. pp. 63–81. Springer (2004)

18. Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over DL-Lite On-
tologies. In: KR (2012)

19. Roussey, C., Corcho, O., Vilches-Blázquez, L.M.: A catalogue of OWL ontology antipat-
terns. In: Proc. of K-CAP 2009. pp. 205–206. ACM (2009)

20. Sattler, U., Calvanese, D., Molitor, R.: Relationships with other Formalisms. In: Description
Logic Handbook. pp. 137–177 (2003)

21. Shchekotykhin, K., Friedrich, G., Fleiss, P., Rodler, P.: Interactive Ontology Debugging:
Two Query Strategies for Efficient Fault Localization. Web Semantics: Science, Services
and Agents on the World Wide Web 12(0) (2012)

22. Stuckenschmidt, H.: Debugging OWL Ontologies - A Reality Check. In: EON (2008)
23. Vescovo, C.D., Parsia, B., Sattler, U.: Logical Relevance in Ontologies. In: Description Log-

ics (2012)

32

http://www.w3.org/2008/12/ogws-slides/Crompton.pdf
http://www.w3.org/2008/12/ogws-slides/Crompton.pdf

Repairing missing is-a structure in ontologies
is an abductive reasoning problem

Patrick Lambrix1,2, Fang Wei-Kleiner1, Zlatan Dragisic1,2, Valentina Ivanova1,2

(1) Department of Computer and Information Science, (2) Swedish e-Science Research Centre
Linköping University, 581 83 Link̈oping, Sweden

Abstract. With the increased use of ontologies in semantically-enabled appli-
cations, the issue of debugging defects in ontologies has become increasingly
important. These defects can lead to wrong or incomplete results for the applica-
tions. Debugging consists of the phases of detection and repairing. In this paper
we focus on the repairing phase of a particular kind of defects, i.e., the missing re-
lations in the is-a hierarchy. We show that this can be formalized as an abduction
problem. Further, we define properties for the ontology, the set of is-a relations to
repair and the domain expert, as well as preference criteria on solutions and dis-
cuss the influences of these properties and criteria on the existence of solutions
for the abduction problem. We also discuss the consequences of our analyses of
the repairing problem for the development and use of debugging systems.

1 Introduction

Developing ontologies is not an easy task, and often the resulting ontologies are not
consistent or complete. Such ontologies, although often useful, also lead to problems
when used in semantically-enabled applications. Wrong conclusions may be derived
or valid conclusions may be missed. Defects in ontologies can take different forms
(e.g., [16]). Syntactic defects are usually easy to find and to resolve. Defects regarding
style include such things as unintended redundancy. More interesting and severe defects
are the modeling defects which require domain knowledge to detect and resolve, and
semantic defects such as unsatisfiable concepts and inconsistent ontologies. Debugging
consists of two phases - detection and repair. Most work up to date has focused on
debugging the semantic defects in an ontology (see related work in Section 5).

Modeling defects have mainly been discussed for taxonomies, i.e., from a knowl-
edge representation point of view, a simple kind of ontologies. The focus has been on
defects regarding the is-a structure (Section 5). In addition to its importance for the
correct modeling of a domain, the structural information in ontologies is also important
in semantically-enabled applications such as ontology-based search and annotation. In
this paper we formalize the problem of repairing the is-a structure of ontologies.

There are different ways to detect missing is-a relations (Section 5). One way is
inspection by domain experts. Another way is to use ontology learning techniques or
patterns. When the ontology is part of a network of ontologies connected by mappings,
missing is-a relations may be detected using logical derivation in the network. However,
although there are many approaches to detect missing is-a relations, these approaches,

33

Thing

autopod joint limb joint joint

hinderlimb joint forelimb joint joint of rib joint of vertebral arch

hip joint foot joint knee joint ankle joint hand joint elbow joint wrist joint shoulder joint

metacarpo-phalangea joint

Missing is-a relations

• wrist joint is-a joint

• hip joint is-a joint

• knee joint is-a joint

• elbow joint is-a joint

• ankle joint is-a joint

• shoulder joint is-a joint

• metacarpo-phalangeal joint is-a joint

Fig. 1: A part of MA concerning the conceptjoint.

in general,do not detectall missing is-a relations. For instance, although the precision
for the linguistic patterns approaches is high, their recall is usually very low.

In this paper we assume that the detection phase has been performed. We assume
that we have obtained a set of missing is-a relations for a given ontology (validated
or not) and focus on the repairing phase. In the ideal case where our set of missing
is-a relations containsall missing is-a relations, the repairing phase is easy. We just
add all missing is-a relations to the ontology and a reasoner can compute all logical
consequences. However, when the set of missing is-a relations does not contain all
missing is-a relations - and this is the common case - there are different ways to repair
the ontology.

For instance, Figures 1 and 2 (T) show a small ontology representing a part of the
Adult Mouse Anatomy (MA) ontology concerning joint, that is relevant for our discus-
sion.M is a set of detected missing is-a relations. Adding these relations to the ontology
will repair the missing is-a structure. However, there are other more interesting possi-
bilities. For instance, adding limb-joinṫ⊑ joint also repairs the missing is-a structure.
Further, this is-a relation is correct according to the domain and constitutes a new is-
a relation that was not derivable from the ontology and not originally detected by the
detection algorithm.

The contributions of this paper are the following. First, in Section 2 we formalize the
problem of repairing missing is-a structure as an abduction problem (extension of [18])
and introduce two decision problems - (i) do solutions exist, and (ii) if so, find a solution.
We also define different properties for the ontology, the set of is-a relations to repair,
and the domain expert and discuss the influences of these properties on the existence
of solutions for the abduction problem. In general, when solutions exist, there may be
many solutions. As not all solutions are equally interesting, in Section 3 we propose two
preference criteria on the solutions as well as different ways to combine these. We also
discuss the decision problems for the criteria and their preferences. Further, in Section
4 we discuss the consequences of our analyses for debugging in practice.

34

C = { autopod-joint, limb-joint, hinderlimb-joint, hip-joint, foot-joint, knee-joint, ankle-joint, forelimb-joint, hand-joint,
elbow-joint, wrist-joint, shoulder-joint, metacarpo-phalangeal-joint, joint,joint-of-rib, joint-of-vertebral-arch}

T = { autopod-joint⊑̇ ⊤, limb-joint ⊑̇ ⊤, hinderlimb-joint⊑̇ limb-joint , hip-joint ⊑̇ hinderlimb-joint,
foot-joint ⊑̇ hinderlimb-joint, knee-joint⊑̇ hinderlimb-joint, ankle-joint⊑̇ hinderlimb-joint, forelimb-joint⊑̇ limb-joint,
hand-joint⊑̇ forelimb-joint, elbow-joint⊑̇ forelimb-joint, wrist-joint⊑̇ forelimb-joint, shoulder-joint⊑̇ forelimb-joint,
metacarpo-phalangeal-joint⊑̇ hand-joint, joint ⊑̇ ⊤, joint-of-rib ⊑̇ joint, joint-of-vertebral-arch⊑̇ joint }

M = { wrist-joint ⊑̇ joint, hip-joint⊑̇ joint, knee-joint⊑̇ joint, elbow-joint⊑̇ joint,
ankle-joint⊑̇ joint, shoulder-joint⊑̇ joint, metacarpo-phalangeal-joint⊑̇ joint }

H1 = set of all is-a relations that are correct according to the domain
H2 = H1 \ {autopod-joint⊑̇ limb-joint, limb-joint ⊑̇ joint}
H3 = H2 ∪ {hinderlimb-joint⊑̇ joint-of-rib, forelimb-joint⊑̇ joint-of-vertebral-arch}
H4 = { A ⊑̇ B | A, B ∈ C }

LetPi = GTAP(T, C, Hi, M) for 1 < i < 4

Fig. 2: Small example.

2 Abduction Framework

In the following we explain how the problem of finding possible ways to repair the
missing is-a structure in an ontology is formalized as a generalized version of the TBox
abduction problem (extension of [18]). We assume that our ontology is represented
using a TBoxT . The identified is-a relations to repair are then represented by a setM

of atomic concept subsumptions. As discussed in Section 1,M usually does not contain
all missing is-a relations. To repair the ontology, it should be extended with a setS of
atomic concept subsumptions (repair) such that the extended ontology is consistent and
the missing is-a relations are derivable from the extended ontology. However, the added
atomic concept subsumptions should be correct according to the domain1. Therefore,
we assume that a domain expert validates whether an atomic concept subsumption is
correct and these validated to be correct atomic concept subsumptions are collected in
a setH. We note that in practiceH is not known beforehand, but acts as an oracle. It is
then required thatS ⊆ H. The following definition formalizes this.

Definition 1 (Generalized TBox Abduction) Let T be a consistent TBox andC be a
set of atomic concepts. LetM = { Ci ⊑̇ Di | 1 ≤ i ≤ m } be a set of TBox assertions
whereCi,Di ∈ C. Let H = {Ei⊑̇Fi | 1 ≤ i ≤ n} whereEi, Fi ∈ C. A solution to
the generalized TBox abduction problem (GTAP)(T,C,H,M) is any finite setS ⊆ H,
such thatT ∪ S is consistent andT ∪ S |= M . The set of all such solutions is denoted
asS(T,C,H,M).

Moreover, we are interested in two problems which are useful in practice. The first
problem is the so called existence problem. That is, the decision problem of whether
S(T,C,H,M) 6= ∅. Clearly, with a concrete debugging task the existence problem
should be answered at the beginning. If the answer to the existence problem is positive,

1 In the remainderof this paper when we say that concept subsumptions or is-a relations are
correct, we mean correct according to the domain.

35

we are interested in findinga solution2. This is normally a realistic goal in practice,
since the number of all solutions could be considerably big.

Next, we discuss different properties ofT , H andM and how these properties and
their combinations affect the existence and type of solutions. In this discussion we make
the assumption that the domain is consistent.

The GTAP definition requiresT to be consistent. If this would not be the case, it
would mean that the original ontology is not consistent. In this case approaches for
debugging semantic defects could be used to obtain a consistent ontology. We also note
that if T is not consistent then there are no solutions satisfying the definition (asT ∪ S

would be inconsistent). However, even ifT is consistent, it is possible thatT contains
relations which are not correct. It would mean that the developers introduced a modeling
defect. Therefore, we indentify two cases forT - all the is-a relations inT are correct
(’T correct’ in Table 1), or not (’T not correct’ in Table 1).

For M there are 2 cases. In the first case we assume that all is-a relations inM

are correct, and thus they are really missing is-a relations (’Missing’ in Table 1). In the
second caseM may contain missing as well as wrong is-a relations (’Missing + Wrong’
in Table 1). This is a common case when possible missing is-a relations are generated
by detection algorithms (e.g., using patterns or ontology learning methods) and not
validated by a domain expert. It may also occur whenM is generated by domain experts
(e.g., using inspection) - as it is an error-prone task, the experts may make mistakes.

For H we identified the following interesting cases. In the first case (’Complete
Knowledge’ in Table 1)H contains all correct is-a relations and no others. In this case
we are sure that if an is-a relation belongs toH, it is correct and if not, it is not cor-
rect. This case represents the ideal situation of an all-knowing domain expert. In the
second case (’Partial-Correct’ in Table 1)H contains only correct is-a relations, but not
necessarily all. This case represents a domain expert who knows a part of the domain
well. If the domain expert validates an is-a relation as correct, it is correct. Otherwise,
the is-a relation is wrong or the domain expert does not know. An approximation of
this case is when using several domain experts and a skeptical approach. We only con-
sider an is-a relation correct if all domain experts validate it as correct. In the third
case (’Wrong’ in Table 1)H may contain relations that are not correct. In this case,
the domain expert can make mistakes regarding the validation of is-a relations. Some
wrong is-a relations may be validated as correct. This is a common case as exemplified
by the use case in [12]. The fourth and fifth cases represent situations where there is no
domain expert. In the fourth case all possible is-a relations are validated as correct and
thusH = {Ei⊑̇Fi | Ei, Fi ∈ C} (’No Expert’ in Table 1). In the fifth case (not in in
Table 1) no is-a relation is validated as correct and thusH = ∅. For the fifth case there
can be only 1 solution, i.e., S =∅ and this only in the case whereT |= M (and thus the
is-a relations inM were not actually missing). We have the following relations between
the different cases. LetHc, Hpc, Hw, Hno be sets corresponding to the cases 1-4, re-
spectively and related to the same domain. ThenHpc ⊂ Hc ⊂ Hno andHw ⊂ Hno.
Therefore, we also have thatS(T,C,Hpc,M) ⊂ S(T,C,Hc,M) ⊂ S(T,C,Hno,M)
andS(T,C,Hw,M) ⊂ S(T,C,Hno,M). In our example in Figure 2H1, H2, H3 and
H4 are examples ofHc, Hpc, Hw andHno, respectively.

2 Often regarding various preference criteria, see Section 3.

36

M Missing
H T correct T not correct
Complete M ⊆ H M ⊆ H

Knowledge No solution ifT ∪ M inconsistent
M is solution M is solution iffT ∪ M consistent
All solutions are correct All solutions are correct

Partial- M ⊆ H or M 6⊆ H M ⊆ H or M 6⊆ H

Correct No solution ifT ∪ M inconsistent
No solution ifM 6⊆ H ∧ T ∪ H 6|= M No solution ifM 6⊆ H ∧ T ∪ H 6|= M

No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if M ⊆ H thenM is a solution if T ∪ M consistent∧ M ⊆ H thenM is a solution
if M 6⊆ H ∧ T ∪ H |= M thenH is a solution if T ∪ H consistent∧ M 6⊆ H ∧ T ∪ H |= M

thenH is a solution
All solutions are correct All solutions are correct

Wrong M ⊆ H or M 6⊆ H M ⊆ H or M 6⊆ H

No solution ifT ∪ M inconsistent
No solution ifM 6⊆ H ∧ T ∪ H 6|= M No solution ifM 6⊆ H ∧ T ∪ H 6|= M

No solution if No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent ∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if M ⊆ H thenM is a solution if T ∪ M consistent∧ M ⊆ H thenM is a solution
if M 6⊆ H ∧ T ∪ H |= M ∧ T ∪ H consistent if T ∪ H consistent∧ M 6⊆ H ∧ T ∪ H |= M

thenH is a solution thenH is a solution
If M is solution, then correct, no guarantee otherwise If M is solution, then correct (but notT∪ M), noguarantee otherwise

No M ⊆ H M ⊆ H

Expert M is solution M is solution iffT ∪ M consistent
If M is solution, then correct, no guarantee otherwise If M is solution, then correct (but notT∪ M), noguarantee otherwise

M Missing + Wrong
H T correct T not correct

Complete M 6⊆ H M 6⊆ H

Knowledge No solution No solution ifT ∪ M inconsistent
No solution ifT ∪ H 6|= M

No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if T ∪ H consistent∧ T ∪ H |= M

thenH is a solution
The solutions are not correct

Partial- M 6⊆ H M 6⊆ H

Correct No solution No solution ifT ∪ M inconsistent
No solution ifT ∪ H 6|= M

No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if T ∪ H consistent∧ T ∪ H |= M

thenH is a solution
The solutions are not correct

Wrong M ⊆ H or M 6⊆ H M ⊆ H or M 6⊆ H

No solution ifT ∪ M inconsistent No solution ifT ∪ M inconsistent
No solution ifM 6⊆ H ∧ T ∪ H 6|= M No solution ifM 6⊆ H ∧ T ∪ H 6|= M

No solution if No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent ∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if T ∪ M consistent∧ M ⊆ H thenM is a solution if T ∪ M consistent∧ M ⊆ H thenM is a solution
if M 6⊆ H ∧ T ∪ H |= M ∧ T ∪ H consistent if T ∪ H consistent∧ M 6⊆ H ∧ T ∪ H |= M

thenH is a solution thenH is a solution
The solutions are not correct The solutions are not correct

No M ⊆ H M ⊆ H

Expert M is solution iffT ∪ M consistent M is solution iffT ∪ M consistent
The solutions are not correct The solutions are not correct

Table 1: Different combinations of cases forT , H andM .

Table 1shows the properties forT , H, M and their combinations. For each combi-
nation we give information about the relationship betweenM andH, the existence of
solutions and the correctness of the solutions. Here, we summarize the findings.

An ideal situation is the case where the domain expert has complete knowledge (H
contains all correct is-a relations and no others) andT andM contain only correct is-a
relations. In this case,M ⊆ H. Further,M is a solution and all solutions are correct.

For any case whereT ∪ M is inconsistent, there is no solution. Indeed, for any
solutionS we have thatT ∪ S |= M and thusT ∪ S would not be consistent.

In the cases whereM contains wrong is-a relations, there may be no solutions.
If there are solutions, these are not correct. Further, correctness of solutions is only
guaranteed whenM does not contain wrong is-a relations andH represents complete
knowledge or partial-correct.

37

There are no solutions ifT ∪ S is inconsistent forevery non-empty subsetS of H.
If M ⊆ H andT ∪ M is consistent, thenM is a solution. IfM 6⊆ H, T ∪ H is

consistent andT ∪ H |= M , thenH is a solution.
In the case of no expert (H= {Ei⊑̇Fi | Ei, Fi ∈ C}) we have thatM ⊆ H and all

is-a relations are allowed in the solution. Therefore, ifT ∪ M is consistent, thenM is
a solution, otherwise there is no solution. However, as there is no domain expert, there
is no guarantee that any solution other thanM is correct. Further, in the cases whereM

contains wrong is-a relations,M is a solution, but not correct. As there is no validation,
only logical consistency can be guaranteed, but no correctness.

3 Solutions with preference criteria

There can be many solutions for a GTAP and, as explained in Section 1, not all solutions
are equally interesting. Therefore, we propose two preference criteria on the solutions.

Definition 2 (Subset Minimality) A solutionS to the GTAP(T,C,H,M) is said to
be subset minimal iff there is no proper subsetS′ (S such thatS′ is a solution. The
set of all subset minimal solutions is denoted asSmin(T,C,H,M).

Examples of subset minimal solutions forP1 in Figure 2 are{limb-joint ⊑̇ joint}
and{hinderlimb-joint⊑̇ joint, forelimb-joint⊑̇ joint}.

Assuming there exist solutions, the answer to the existence problem for subset-
minimal solutions is yes, if and only ifT ∪ H |= M . To find a solutionS, we can start
from H, and remove the is-a relationsh stepwise, such thatT ∪H \h |= M holds. The
process continues until no is-a relation can be removed. Thus if the entailment problem
for the underlying ontology is tractable, finding a solution can be done in polynomial
time. This is indeed the case for the is-a taxonomy.

The second criterion prefers solutions that imply more information.

Definition 3 (More Informative) LetS andS′ be two solutions to the GTAP(T,C,H,M).
S is said to bemore informativethanS′ iff T ∪ S |= T ∪ S′ and there exists aψ such
that T ∪ S |= ψ andT ∪ S′ 6|= ψ. Further, we say thatS is equally informativeasS′

iff T ∪ S |= S′ andT ∪ S′ |= S.

Consider two solutions toP1 in Figure 2, S ={limb-joint ⊑̇ joint} and S’={hinderlimb-
joint ⊑̇ joint, hand-joint⊑̇ joint}. S is more informative than S’ as T∪ S entails limb-
joint ⊑̇ joint in addition to everything that T∪ S’ entails.

Definition 4 (Semantic Maximality) A solutionS to the GTAP(T,C,H,M) is said
to be semantically maximal iff there is no solutionS′ which is more informative thanS.
The set of all semantically maximal solutions is denoted asSmax(T,C,H,M).

Analogous to the subset minimality, assuming the existence of GTAP solutions, the
answer to the existence problem for a semantically maximal solution is yes, if and only
if T ∪ H |= M holds. Moreover, in the case whereM ⊆ H, andT ∪ H is consistent,
H is a semantically maximal solution.

38

In practice, both of the above two criteria are desirable. However, only with the se-
mantic maximality we might obtain a solution with redundancy. Although subset min-
imality does not yield redundancy, there is no guarantee that the solution is the most
informative. In the following we propose definitions on solutions by combining these
criteria. There are diverse interpretations for the combination of subset minimality and
semantic maximality, depending on what kind of priority we assign for the single pref-
erences. A first interpretation implies a higher priority on subset minimality than the
semantic maximality. As the second interpretation, higher priority for semantic maxi-
mality can be assigned to subset minimality. In the third interpretation, the skyline-style
interpretation, we treat both preferences equally and the chosen solution is such that
there does not exist another solution which is preferable on both criteria.

Definition 5 (Combining with priority for subset minimality) A solutionS to the GTAP
(T,C,H,M) is said to be minmax optimal iffS is subset minimal and there does not
exist another subset minimal solutionS′ such thatS′ is more informative thanS. The
set of all minmax optimal solutions is denoted asSmax

min
(T,C,H,M).

Lemma 1. Smax
min

(T,C,H,M) ⊆ Smin(T,C,H,M)

As an example,{limb-joint ⊑̇ joint} is a minmax optimal solution forP1, while
{hinderlimb-joint⊑̇ joint, forelimb-joint⊑̇ joint} is a minmax optimal solution forP2.

The existence problem is equivalent to the existence problem of the subset minimal
solutions, i.e., there exists a subset minimal solution if and only if there exists a minmax
optimal solution. On the other hand, finding a minmax optimal solution tends to be a
harder problem. One naive method is first collecting all the subset minimal solutions,
then removing those which are less informative. Obviously this is intractable, because
theoretically there could be an exponential number of subset minimal solutions already.

In practice, minmax optimal solutions ensure fewer is-a relations to be added, thus
avoiding redundancy. This is desirable if the domain expert would prefer to look at as
small solutions as possible. The disadvantage is that there may be redundant relations
that are correct and not be derivable when they are not added.

Definition 6 (Combining with priority for semantic maximality) A solutionS to the
GTAP(T,C,H,M) is said to be maxmin optimal iffS is semantically maximal and
there does not exist another semantically maximal solutionS′ such thatS′ is a proper
subset ofS. The set of all maxmin optimal solutions is denoted asSmax

min (T,C,H,M).

Lemma 2. Smax

min (T,C,H,M) ⊆ Smax(T,C,H,M)

As an example,{limb-joint ⊑̇ joint, autopod-joint⊑̇ limb-joint} is a maxmin opti-
mal solution forP1.

Analogous to the case of minmax optimal, the existence problem of maxmin optimal
is equivalent to the existence problem of the semantic maximal solutions. Moreover, if
H is a semantically maximal solution, finding a maxmin optimal solutionS can be done
by starting fromH, and stepwise removing the is-a relationsh such thatT ∪ S \ h |=
H holds. Intuitively, the goal is to remove the redundant relations inH. Of course
there might be multiple maxmin optimal solutions in this regard, but finding one such a
solution is tractable as long as the reasoning task for the underlying logic is tractable.

39

The advantage of the maxmin optimal semantics is that a maximal body ofcorrect
information is added to the ontology. If the domain expert would prefer to look at as
informative solutions as possible without (set) redundancy, maxmin optimal solutions is
preferable than the minmax optimal solutions. This conclusion can even be strengthened
from the efficiency point of view, as finding a maxmin optimal solution is more efficient
than finding a minmax optimal one. The disadvantage is that more relations need to be
validated.

For the skyline interpretation, we consider the subset minimality and the semantic
maximality as two dimensions for a solutionS. S is skyline optimal if it is not dom-
inated by any other solution. A solution dominates another solution if it is as good or
better in all dimensions and better in at least one dimension. Therefore regarding the
above two dimensions we define that a solutionS dominates another solutionS′ if one
of the following conditions is fulfilled:

1. S (S′ andS is more informative thanS′, or
2. S = S′ andS is more informative thanS′, or
3. S (S′ andS is equally informative asS′.

It is easy to verify that condition 1 and 2 can never be fulfilled, due to the mono-
tonicity property of the entailment. Therefore, a solutionS dominates another solution
S′ if and only if condition 3 is fulfilled. Accordingly, we have the definition for the
skyline optimality as follows.

Definition 7 (Skyline optimal) A solutionS to the GTAP(T,C,H,M) is said to be
skyline optimal iff there does not exist another solutionS′ such thatS′ is a proper
subset ofS andS′ is equally informative asS. The set of all skyline optimal solutions
is denoted asSmax

min (T,C,H,M).

Skyline optimal is a relaxed criterion. It requires subset minimality for some level
of informativeness. It comprises all the subset minimal solutions – which in turn com-
prises all the minmax optimal solutions – and all the maxmin optimal solutions. This
relationship can be easily verified.

Lemma 3. Smin(T,C,H,M) ∪ Smax

min (T,C,H,M) ⊆ Smax
min (T,C,H,M).

As an example,M in Figure 2 is a skyline optimal solution forP1, P2, P3 and
P4. All previous examples for subset mininal, minmax optimal and maxmin optimal
solutions are also skyline optimal solutions. However, there are semantically maximal
solutions that are not skyline optimal. For instance,{hinderlimb-joint⊑̇ joint, forelimb-
joint ⊑̇ joint, hand-joint⊑̇ joint} is a semantically maximal solution forP2, but it is
not skyline optimal as its subset{hinderlimb-joint⊑̇ joint, forelimb-joint ⊑̇ joint} is
equally informative.

4 Debugging in practice

4.1 General observations

A system for repairing the missing is-a structure in ontologies, takes as input the ontol-
ogy T and a set of is-a relations to repairM . C is implicit and can be computed using

40

T . Further, the system should be used by a domain expert who validates is-a relations
(H)3. In general, however, when starting a debugging session, we do not know the prop-
erties ofT , M andH. Further,H represents the knowledge about is-a relations from the
domain expert, but is normally not available beforehand, but only through interaction
of the domain expert with the debugging system. This means that even in the situations
whereH is a solution, this does not readily provide us a solution in practice. It also
means that one cannot just take subsets ofH and check whether they are solutions.

Table 1 provides us with some guidelines for the development and the use of debug-
ging systems. First, it is clear that we prefer an all-knowing expert. The second best case
for obtaining correct solutions is the partial-correct expert. As discussed in Section 2,
this could be approximated by using multiple domain experts and a skeptical approach.

If there are wrong is-a relations inM , there will be no solution or solutions that are
not correct. The repaired ontology will contain incorrect is-a relations. Therefore, the
expert should validateM at the beginning of the debugging session. Those is-a relations
which are identified to be incorrect should be removed fromM .4 Another advantage of
the validation is that, after validation we have thatMvalidated ⊆ H.

Further, as we do not know whetherT is correct according to the domain or not,
it should be checked whetherT ∪ Mvalidated is consistent. If not, then there are no
solutions. Otherwise, we know thatMvalidated is a solution. When we remove the re-
dundancy fromMvalidated, then we also have a subset minimal solution. This solution
could then be used as a basis for finding more informative solutions. The difficulty is in
finding subsetsS of H (which is not available) such thatT ∪ S is consistent.

4.2 Lessons for an existing system

The system in [13] allows debugging the is-a structure of and mappings between tax-
onomies in a taxonomy network. The input to the system is an ontology network. In
this discussion we focus on one of the ontologies in the network (Tand thus alsoC).
The debugging workflow consists of three phases: (1) detection (generation ofM), (2)
validation ofM and (3) repair (solving the GTAP problem). The domain expert is in-
volved in the validation ofM as well as in phase 3 for validation of possible solutions
(S). The domain expert can switch between the different phases at any time. The sys-
tem was used in a real case for the Swedish National Food Agency [12] and in several
experiments with ontologies from the Ontology Alignment Evaluation Initiative [19].

Although the system allows to switch between the different phases, in all our exper-
iments we started with validatingM , which is as suggested by our analysis in Section
4.1. If M contained wrong is-a relations, we used semantic debugging techniques to re-
pair these. This allowed us to remove incorrect is-a relations inT . When all the wrong
is-a relations are repaired and removed fromM , we obtain a newMvalidated. If the
domain expert validatedM in a correct way, we are in a situation in the upper part of
Table 1. The is-a relations inMvalidated are then repaired. When they are repaired using

3 If there would be no expert, as shown in Table 1, in the best caseM could be a correct solution,
but there is no guarantee for solutions. We do not discuss this case further in this section.

4 Depending on the detection method to generateM , the wrong is-a relations inM may lead to
other debugging opportunities for semantic defects (e.g., [13]).

41

solutions that are more informative thanMvalidated, then new knowledge is added to
the network and a new round of detection was started, possibly leading to the detection,
validation and repair of new is-a relations.

Initially, Mvalidated is added to the ontology. This means that we start with a least
informative solution. When removing redundancy fromMvalidated, it is also a subset
minimal solution. Then, the system tries to generate more informative solutions. For
this, the missing is-a relations are repaired one at the time. For each missing is-a relation
mi a set of is-a relationsRi is computed that guarantees thatT ∪ {ri} |= mi for each
ri ∈ Ri. Thus, for each missing is-a relation, at most one is-a relation is added to
the ontology. By removing redundancy subset minimal solutions can be guaranteed.
Further, for each missing is-a relation on its own semantically maximal solutions are
generated with the extra conditions that only one is-a relation is used for repairing and
no unnecessary equivalences (≪SH in [21]) are introduced in the ontology.

One immediate consequence of our analysis is that we should allow a domain ex-
pert to choose several elements of eachRi. This is an easy extension to the system
that would provide more informative solutions. Another consequence is that it would
be advantageous to allow a domain expert to deal with a previously repaired is-a re-
lation again, when new knowlegde was added to the ontology. New more informative
solutions may be found. Further, there should be a way for domain experts to add new
is-a relations that do not occur within the repairing process.

An interesting observation during the debugging described in [12] was that the do-
main experts changed their mind about the correctness of some is-a relations after de-
bugging some other is-a relations. This means thatH may actually change during a
session, and we may move upwards in Table 1.

5 Related Work

Repairing missing is-a relations.There is not much work on the repairing of missing
is-a structure. In [21, 20] this was addressed in the setting of taxonomies where the prob-
lem as well as some preference criteria were defined. Further, an algorithm was given
for finding a solution to the repairing problem and an implemented system was pro-
posed. A later version of that system was then used for debugging ontologies related to
a project for the Swedish National Food Agency [12]. The system was further extended
to deal with missing and wrong is-a relations and mappings [19] and integrated with
ontology alignment [13]. In [18] the problem was formalized as an abduction problem
and an algorithm was given for finding solutions forALC acyclic terminologies.

TBox abduction.Except for [18] in which GTAP withoutH was defined, there is
no other work yet on GTAP. There is some work on TBox abduction. [11] proposes an
automata-based approach to TBox abduction using abducibles. It is based on a reduction
to the axiom pinpointing problem which is then solved with automata-based methods.

Related topics.There is work that addresses related topics but not directly the prob-
lem that is addressed in this paper. Regardingdetecting missing is-a relationsthere is
much work on finding relationships between terms in the ontology learning area [2].
Further, there is work on finding is-a relations based on different kinds of patterns (e.g.,
[9, 4]). When the ontology is part of a network of ontologies connected by mappings,

42

knowledge itrinsic to the ontology network can be used to detect missing is-arelations
using logical derivation [21, 12]. These approaches, in general, do not detectall miss-
ing is-a relations. There is much work ondebugging semantic defects. Most of the work
on debugging semantic defects aims at identifying and removing logical contradictions
from an ontology (e.g., [8, 26, 16, 10, 24, 27, 1, 23]). In [22, 28, 25, 14, 15] the setting is
extended to repairing ontologies connected by mappings. Further, there is some work on
abductive reasoning in description logics. In [7] four different abductive reasoning tasks
are defined - concept, ABox, TBox and knowledge base abduction. Concept abduction
deals with finding sub-concepts. Abox abduction deals with retrieving instances that,
when added to the knowledge base, allow the entailment of a desired ABox assertion.
Knowledge base abduction includes both ABox and TBox abduction. Most existing
approaches focus on ABox [17, 6] and concept abduction [3, 5].

6 Conclusion

In this paper we formalized repairing missing is-a structure in ontologies as an abduc-
tion problem. We defined properties for the ontology, the set of is-a relations to repair
and the domain expert, as well as preference criteria on solutions and discussed the in-
fluences of these properties and criteria on the existence of solutions for the abductive
problem. We also discussed the consequences of our analyses for the development and
use of debugging systems. One direction for future work is to analyze the complexity
of the decision problems for different knowledge representation languages. Further, we
want to investigate in algorithms that satisfy the preference criteria for different lan-
guages and that can be used in practice in a debugging system.

References

1. S Bail, B Parsia, and U Sattler. Declutter your justifications: Determining similarity between
OWL explanations. In1st International Workshop on Debugging Ontologies and Ontology
Mappings, pages 13–24, 2012.

2. Ph Cimiano, P Buitelaar, and B Magnini.Ontology Learning from Text: Methods, Evaluation
and Applications. IOS Press, 2005.

3. S Colucci, T Di Noia, E Di Sciascio, F Donini, and M Mongiello. A uniform tableaux-
based approach to concept abduction and contraction in ALN. InInternational Workshop on
Description Logics, pages 158–167, 2004.

4. O Corcho, C Roussey, L M Vilches, and I Pérez. Pattern-based OWL ontology debugging
guidelines. InWorkshop on Ontology Patterns, pages 68–82, 2009.

5. F Donini, S Colucci, T Di Noia, and E Di Sciasco. A tableaux-based method for comput-
ing least common subsumers for expressive description logics. In21st International Joint
Conference on Artificial Intelligence, pages 739–745, 2009.

6. J Du, G Qiand Y-D Shen, and J Pan. Towards practical Abox abduction in large OWL DL
ontologies. In25th AAAI Conference on Artificial Intelligence, pages 1160–1165, 2011.

7. C Elsenbroich, O Kutz, and U Sattler. A case for abductive reasoning over ontologies. In
OWL: Experiences and Directions, 2006.

8. P Haase and L Stojanovic. Consistent Evolution of OWL Ontologies. In2nd European
Semantic Web Conference, pages 182–197. 2005.

43

9. M Hearst. Automatic acquisition of hyponyms from large text corpora. In14th International
Conferenceon Computational Linguistics, pages 539–545, 1992.

10. M Horridge, B Parsia, and U Sattler. Laconic and precise justifications in OWL. In7th
International Semantic Web Conference, pages 323–338, 2008.

11. T Hubauer, S Lamparter, and M Pirker. Automata-based abduction for tractable diagnosis.
In International Workshop on Description Logics, pages 360–371, 2010.

12. V Ivanova, J Laurila Bergman, U Hammerling, and P Lambrix. Debugging taxonomies
and their alignments: the ToxOntology - MeSH use case. In1st International Workshop on
Debugging Ontologies and Ontology Mappings, pages 25–36, 2012.

13. V Ivanova and P Lambrix. A unified approach for aligning taxonomies and debugging tax-
onomies and their alignments. In10th Extended Semantic Web Conference, pages 1–15,
2013.

14. Q Ji, P Haase, G Qi, P Hitzler, and S Stadtmuller. RaDON - repair and diagnosis in ontology
networks. In6th European Semantic Web Conference, pages 863–867, 2009.

15. E Jimenez-Ruiz, B Cuenca Grau, I Horrocks, and R Berlanga. Ontology Integration Using
Mappings: Towards Getting the Right Logical Consequences. In6th European Semantic
Web Conference, pages 173–187, 2009.

16. A Kalyanpur, B Parsia, E Sirin, and J Hendler. Debugging Unsatisfiable Classes in OWL
Ontologies.Journal of Web Semantics, 3(4):268–293, 2006.

17. S Klarman, U Endriss, and S Schlobach. Abox abduction in the description logic ALC.
Journal of Automated Reasoning, 46:43–80, 2011.

18. P Lambrix, Z Dragisic, and V Ivanova. Get my pizza right: Repairing missing is-a relations in
ALC ontologies. In2nd Joint International Semantic Technology Conference, pages 17–32,
2012.

19. P Lambrix and V Ivanova. A unified approach for debugging is-a structure and mappings in
networked taxonomies.Journal of Biomedical Semantics, 4:10, 2013.

20. P Lambrix and Q Liu. Debugging the missing is-a structure within taxonomies networked
by partial reference alignments.Data & Knowledge Engineering, 2013.

21. P Lambrix, Q Liu, and H Tan. Repairing the Missing is-a Structure of Ontologies. In4th
Asian Semantic Web Conference, pages 76–90, 2009.

22. C Meilicke, H Stuckenschmidt, and A Tamilin. Repairing Ontology Mappings. In22th
National Conference on Artificial Intelligence, pages 1408–1413, 2007.

23. T Nguyen, R Power, P Piwek, and S Williams. Measuring the understandability of deduc-
tion rules for OWL. In1st International Workshop on Debugging Ontologies and Ontology
Mappings, pages 1–12, 2012.

24. R Penaloza and B Sertkaya. On the complexity of axiom pinpointing in the EL family of
description logics. In12th International Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 280–289, 2010.

25. G Qi, Q Ji, and P Haase. A Conflict-Based Operator for Mapping Revision. In8th Interna-
tional Semantic Web Conference, pages 521–536, 2009.

26. S Schlobach. Debugging and Semantic Clarification by Pinpointing. In2nd European Se-
mantic Web Conference, pages 226–240, 2005.

27. K Shchekotykhin, G Friedrich, Ph Fleiss, and P Rodler. Interactive ontology debugging:
Two query strategies for efficient fault localization.Journal of Web Semantics, 12-13:88–
103, 2012.

28. P Wang and B Xu. Debugging ontology mappings: a static approach.Computing and Infor-
matics, 27:21–36, 2008.

44

Antipattern Detection: How to Debug an
Ontology without a Reasoner

Catherine Roussey1 and Ondřej Zamazal2

1 Irstea, 24 Av. des Landais, BP 50085, 63172 Aubiére, France
catherine.roussey@irstea.fr

2 Knowledge Engineering Group, University of Economics Prague, Czech Republic
ondrej.zamazal@vse.cz

Abstract. In ontology design, an Ontology Design Pattern (ODP) is a
modeling solution to a recurrent ontology design problems. As opposed
to ODP, antipatterns are bad modeling practices. This paper deals with
detection of antipattern for debugging purpose of huge ontologies. We
focus on the detection of the Onlyness Is Loneliness (OIL) antipattern.
We propose an antipattern detection method based on ontology transfor-
mations and SPARQL queries. This approach does not need reasoner to
detect antipattern. Our method detects candidates of OIL antipattern.
These candidates localize class definitions where OIL occurrences can ap-
pear. This enables to draw ontology developer’s attention to avoid errors
during ontology development process. We conduct some experiments to
detect OIL antipattern in an OWL ontology corpus obtained from the
Watson ontology search engine.

Keywords: OWL, OWL-DL, ontology, ontology pattern, antipattern,
SPARQL, ontology transformation

1 Introduction

In ontology design an Ontology Design Pattern (ODP) is a modeling solution
to a recurrent ontology design problems as defined in [7]. As opposed to ODP,
antipatterns are bad modeling practices implemented in ontologies. Antipat-
terns produce the side effect of inferring wrong or undesired knowledge or of
preventing the capabilities to infer the desired knowledge [16]. First, ontology
antipatterns might help with guiding and training new ontology developers (edu-
cational purpose). Second, antipatterns can be directly used for ontology design
purpose since ontology designers could take advantage of antipattern detection
using some ontology editor during ontology development. Finally, detection of
ontology antipatterns can contribute to ontology quality assessment.

In our previous work we first published our catalogue of antipatterns [6].
We have also provided some recommandations about ontologies repairing pro-
cesses based on the antipattern detection. These patterns basically resulted in
unsatisfiable classes or modeling errors due to the misuse or misunderstanding of
Description Logics (DL) expressions. In [18] we proposed a general approach of

45

antipattern detection based on SPARQL queries which was applied on selected
antipatterns from the catalogue [6].

The motivation for the work presented in this paper was twofold. On the
one side, in [18] we show that each antipattern needs its own specific detection
method. On the other side, reasoners might have troubles to tackle ontologies
with complex axioms. But, reasoner output is usually prerequisite for a detection
of complex antipatterns. Therefore, here we come up with an extension of our
general detection method for one specific antipattern and in the situation that we
cannot apply a reasoner. Instead of reasoner we apply ontology transformation
pre-processing step and we evaluate it on one of the most complex antipatterns
from our catalogue, Onlyness Is Loneliness (OIL) antipattern. Transformation
have several goals: harmonization of ontology developer’s implementation style,
simulation of reasoner inferences and simplification of class definition axioms.
It enables us to detect candidates of OIL antipattern. They are localized in
class definitions where OIL occurrences can appear. Thus, they draw ontology
developer’s attention so that (s)he can avoid errors arised during ontology de-
velopment process. We conduct some experiments to detect OIL antipattern in
an OWL ontology corpus obtained from the Watson ontology search engine.3

The rest of the paper is structured as follows. Next section gives a brief
overview of ontology design patterns and antipatterns for ontology development.
Section 3 describes the OIL antipattern that is used to run our experiments.
Next, Section 4 describes the detection method and our transformation rules.
Section 5 describes the experiment setup and the results of the experimentation.
Finally, Section 6 wraps up the paper by providing conclusions and future work.

2 Related Work

From Regarding educational purpose of bad modeling practices in DL, authors
in [17] describe common difficulties in understanding of the logical meaning of
expressions for newcomers to DL. Explicit antipatterns are then proposed in [6]
presenting a catalogue of antipatterns based on DL expressions and proposing
some recommendations on how to repair them.

To the best of our knowledge research in antipatterns are mainly connected to
ontology debugging task. One of the earliest work was the OntoClean method [8],
which defined a set of meta-properties applied to classes and a set of procedures
to check and correct the subsumption relations between classes. Other source of
antipatterns is [19], where authors proposed four terminological patterns applied
on class names to detect possible errors along taxonomy. Next, the OntOlogy
Pitfalls Scanner (OOPS) [15] enables an ontology developer to detect common
pitfalls during the development of ontology.

There are several tools which can be used for antipattern detection. They
are mostly available inside ontology editors and require the use of a reasoner to
provide their justifications. For instance Pellint [5] focuses on the detection and

3 http://watson.kmi.open.ac.uk/

46

repair of antipatterns to improve ontology reasoning performance. The Protégé
Explanation Workbench [9] and SWOOP [12] provide justifications of inconsis-
tencies in ontologies based on the output from DL reasoners. SWOOP has also
a repair plug-in to help user during the debugging process [11]. However, using
a reasoner for this purpose is not always possible, since in some big ontologies
reasoners fail to provide any result [13]. Furthermore, the antipatterns repertory
that these tools can detect is fixed.

Next, Ontology Pre-processor Language (OPPL) [10] enables pattern-based
manipulation with ontologies. Authors of [14] describe an experiment using
OPPL to detect ontology design patterns in a repository of biomedical ontolo-
gies. They also use transformations to harmonize the ontology, but their set of
transformations only normalize ‘syntactic sugar’ conventions of OWL 2.

3 “Onlyness Is Loneliness” (OIL) Antipattern

One of the most common error made by ontology developer is captured by On-
lyness Is Loneliness (OIL) antipattern. This antipattern can be manifested by
one of the following sets of DL axioms:

C3 v ∀r.C1;C3 v ∀r.C2; Disj(C1, C2); (1)

C3 ≡ ∀r.C1;C3 v ∀r.C2; Disj(C1, C2); (2)

C3 ≡ ∀r.C1;C3 ≡ ∀r.C2; Disj(C1, C2); (3)

C3 v ∀r.C1 u ∀r.C2; Disj(C1, C2); (4)

C3 ≡ ∀r.C1 u ∀r.C2; Disj(C1, C2); (5)

An OIL antipattern occurrence is defined by two disjoint classes C1 and C2

and a third class C3 whose definition contains two universal restrictions using a
property r. The first universal restriction expresses that instances of C3 can only
be linked with r to instances of C1.4 The second one expresses that instances of
C3 can only be linked with r to instances of C2.

Based on our experience the origin of this error is that an ontology developer
forgets that there is already a constraint about the class C3 using an universal
restriction and (s)he adds a new constraint about this class using another uni-
versal restriction. Moreover, one of these constraints can be inherited from any
of the parent classes.

This error is already mentioned in several works such as [17] or [15]. In [15],
the OIL antipattern is linked to the pitfall number 14, related to the misuse
of universal restriction. Notice that even if the OIL antipattern is declared as
Pitfall 14 in the catalogue of common pitfalls, the OntOlogy Pitfalls Scanner is
not yet able to detect it.

4 To be detectable, property r must have at least a value, normally specified as a
(minimum) cardinality restriction for that class, or with existential restrictions.

47

Detection of OIL antipattern is a difficult task (similarly to other antipat-
terns) due to various problems. First, antipatterns have various manifestations.
For example, we present above 5 logical formulae related to OIL but we could
imagine more formulae. Furthermore, ontology developers can have very dif-
ferent implementation styles when designing an OWL ontology. For example,
some developers prefer to write long class definitions. In that case, a class
is defined by a conjunction of unnamed classes (or anonymous classes), e.g.,
C v (∃R.X) u (∀R.Y). In that case parts of antipattern can also be located at
different places. Others can prefer to write short definitions. A class is defined
by a set of atomic axioms,5 e.g., C v ∃R.X;C v ∀R.Y . Each implementation
style corresponds to a different logical formula of the OIL antipattern. Finally,
we also have to consider that parts of the OIL antipattern can be asserted by
the ontology developer or inferred by a reasoner.

4 OIL Antipattern Detection Method

General detection approach was presented in [18] based on SPARQL queries and
reasoner output. However, none of those presented methods gives significant re-
sults for the OIL antipattern. Here, we describe a method aiming at detection of
OIL antipattern in OWL ontologies. The main objective of this new method is
to enable detection of OIL antipattern without reasoner output. As we experi-
enced during debugging/repairing of complex ontologies (e.g. HydrOntology) by
using the reasoner (e.g. Pellet)6 and the Explanation Workbench tool,7 applying
reasoner for the antipattern detection is not always possible. It turns out that
reasoner may fail to provide any results on complex ontologies. Generally, the
more the number of repaired axioms increases, the more time reasoner needs to
take in order to provide justifications for unsatisfiable classes.

This new method consists of two steps. First transformation rules are applied,
see Section 4.1, and then SPARQL query (or, in general, SPARQL queries), see
Section 4.2, is (are) executed using PatOMat ontology pattern detection tool, see
Figure 1.8 This tool is part of the PatOMat suite of tools, which is focused on
the pattern detection in ontologies and their transformations. This detection
tool is based on Jena 2.6.2 [1] and Pellet 2.0.1 [2], and enables the processing
of a set of SPARQL queries over a set of ontologies in a batch. It produces a
report in terms of numbers of patterns detected and details for each ontology.
It processes either only asserted axioms or both inferred and asserted axioms of
given ontology.

Our transformations have several objectives:

5 We defined an atomic axiom as a constraint (necessary condition v or sufficient
condition ≡) associated to a named class C using at most one DL constructor (∀,
∃, ¬ or u) and its associated operands: one class and one property for ∀, ∃ and two
classes for u . All these classes should be named classes.

6 http://owl.cs.manchester.ac.uk/explanation/
7 http://owl.cs.manchester.ac.uk/explanation/
8 http://owl.vse.cz:8080/DetectionTool/

48

Fig. 1. Overview of the OIL detection method

– to decompose the class definition to simpler set of atomic axioms,
– to harmonize the different implementation styles of ontology developers,
– to simulate inferences in order to avoid applying a reasoner.

Our transformation rules only add new axioms and do not remove any origi-
nal axioms from the ontology. The transformation rules have to be applied in
the specific order. The rules are incremental, which means that the new ax-
ioms created by one transformation rule are already considered by a subsequent
transformation rule.

According to [18], the use of a reasoner is mandatory to detect a disjoint
axiom. In this previous work, we tried to detect OIL antipattern with asserted
disjointness axioms. Since only few OIL occurrences were detected, we came up
with the following hypothesis:

Hypothesis On the one side the disjoint axiom of the OIL antipattern is difficult
to detect without a reasoner output and on the other side it turns out that
asserted disjoint axioms do not help in detection. Thus, we limit the detection
of OIL antipattern to the two first atomic axioms:

C3 v ∀r.C1;C3 v ∀r.C2; (6)

We defined a class definition that contains this set of axioms as an OIL
candidate.

4.1 Applied Transformation Rules

Here, we will explain our transformation rules one by one. For clarity purpose
the transformation rules presented in this section are merely dedicated to the

49

OIL detection. For the general antipattern detection, there is a larger set of
transformation rules.

TR AC: Transformation of Anonymous Classes TR AC consists of the following
transformation rules:

C v ∀r.(X t Y); ⇒ C v ∀r.Or X Y ;Or X Y ≡ X t Y ; (7)

C v ∀r.(X u Y); ⇒ C v ∀r.And X Y ;And X Y ≡ X u Y ; (8)

C v ∀r.(∃s.Z); ⇒ C v ∀r.Some S Z;Some S Z ≡ ∃s.Z; (9)

C v ∀r.(∀s.Z); ⇒ C v ∀r.Only S Z;Only S Z ≡ ∀s.Z; (10)

C ≡ ∀r.(X t Y); ⇒ C ≡ ∀r.Or X Y ;Or X Y ≡ X t Y ; (11)

...

The goal of this transformation is to name anonymous class in order to detect
any antipattern in new named class definitions. Moreover, this transformation
removes brackets and shortens class definitions. Some ontology developers write
long definition of class using anonymous classes (or unnamed classes), e.g., as on
the left-hand-side of formulae above. To simplify the query of OWL ontologies,
class definitions must be transformed in this way. Ideally, class definitions are
only composed of atomic axioms, so we need to remove anonymous classes, e.g.
(X t Y), (X u Y) or (∃s.Z). The antipattern can be located in the anonymous
class definition so we need to create a named class for each of them. In order
to easily detect that these named classes come from the transformation rule we
apply the following naming convention, e.g., And X Y in the case of (X u Y).

In all, this transformation will be applied on each anonymous class in brackets
so that new named class will be created and will replace original anonymous class
in all axioms of the ontology. This new class will be defined by the anonymous
class content and ideally correctly placed to the taxonomy, e.g. And X Y ≡
X u Y should be a child class of X and of Y and Or X Y ≡ X t Y should be a
parent class of X and of Y .

TR EA: Transformation of Equivalence Axioms TR EA consists of the following
transformation rule:

CA ≡ CB ; ⇒ CA v CB ;CB v CA; (12)

The ≡ symbol should be transformed into both-sided v, i.e. we create two
new axioms with the subClassOf relationship. This transformation is necessary
because each antipattern can be written with a ≡ or v symbol. Due to this
transformation rule we can just consider atomic axioms of the form C v ... for
antipattern detection.

In all, this transformation will be applied on all equivalence axioms according
to which new two subsumptions (subClassOf) axioms will be added.

50

TR Conj: Transformation of Conjunctions TR Conj consists of the following
transformation rules:

C v ∀r.X1 u ...
u∃r.X2 u ...
u ≤ x r.> u ...
u ≥ x r.> u ...
u = x r.> u ...
uXi...
uXn


⇒



C v ∀r.X1;
C v ∃r.X2

C v≤ x r.>;
C v≥ x r.>;
C v= x r.>;
...;
C v Xi;
...;
C v Xn;

(13)

An ontology developer has her/his own implementation style. Some of them
prefer to write long axioms using conjunction of anonymous classes. On the con-
trary, others prefer to define lots of named classes in order to identify small
part of knowledge. Depending on the implementation style of the ontology de-
veloper, the antipattern detection may be facilitated. For antipattern detection,
we recommend to split all the long axioms into several atomic axioms.

In all, this transformation will be applied on conjunction of anonymous
classes so that it will be split into its components, e.g. C v ∀r.X u ∃r.Y will
generate two new axioms C v ∀r.X and C v ∃r.Y .

TR PI: Transformation about Property Inheritance TR PI consists of the fol-
lowing transformation rule:

r1 v r;

CA v ∀r1.CB ; ⇒ CA v ∀r.CB ; (14)

The ontology developer can forget that (s)he has defined a property r1 as a
subproperty of another one, r. Thus, for each axiom using the subproperty r1 we
need to add a redundant axiom using the parent property r. This transformation
is applied along the whole taxonomy of properties. The new axiom changes the
semantics of the ontology. Thus, it should be added only if the class CA is already
defined by a universal restriction using the r property in order to check that there
is no conflict between different universal restrictions using r.

TR CI: Transformation about Class Inheritance TR CI consists of the following
transformation rule:

CB v CA;CA v ∀r.Y ; ⇒ CB v ∀r.Y ; (15)

The main purpose of this transformation is to simulate reasoning so that all
subclasses inherit all (asserted) constraints from their parents. It is applied at
the end of the transformation process because we want to inherit all previously
added (due to the application of other transformation rules) axioms as well.

51

4.2 SPARQL Query

According to Figure 1 SPARQL query, by using PatOMat detection tool, is
performed after application of transformations. The following query retrieves
OIL candidates defined by equation 6:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?c3 ?r ?c1 ?c2

WHERE

{ ?c3 rdfs:subClassOf _:restrictionA1.

_:restrictionA1 rdf:type owl:Restriction.

_:restrictionA1 owl:onProperty ?r.

_:restrictionA1 owl:allValuesFrom ?c1.

?c3 rdfs:subClassOf _:restrictionB1.

_:restrictionB1 rdf:type owl:Restriction.

_:restrictionB1 owl:onProperty ?r.

_:restrictionB1 owl:allValuesFrom ?c2.

FILTER

(isURI(?c1) && isURI(?c2) && isURI(?c3) && ?c1!= ?c2)

}

ORDER BY ?c3 ?r ?c1

The query finds a class ?c3 defined by two universal restrictions using the
same property ?r. The first restriction is linked to the ?c1 class, the second one
is linked to the ?c2 class. As shown in the filter part of the query, all the class
variables (?c3, ?c1, ?c2) should be named classes.

OIL candidates localize class definitions where OIL antipattern occurrences
can appear. Thus, these candidates draw ontology developer’s attention to avoid
errors arised during long ontology development process.

5 Experimentation: Finding Antipatterns in Real-world
Ontologies

In this section, we describe the results of our experiments with a corpus of
ontologies downloaded directly from the Web and by the Watson semantic search
engine. We will first describe how we have built the ontology corpus, and then
we present the results of applying our detection method from Section 4 over this
ontology corpus.

5.1 Building a Corpus of (Debuggable) OWL Ontologies

We have used the Watson API [3] to retrieve publicly available ontologies and
we have always accessed these ontologies using the Watson cache, since there
are sometimes mismatches between the stored URIs of those ontologies and the

52

actual files that can be obtained. We searched ontologies satisfying the following
two constraints: they should be represented in OWL and they should have at
least five classes. We collected 66 inconsistent ontologies. From these ontologies
we have selected ontologies that cannot be classified by Pellet in a reasonable
time. Using PatOMat, we queried and processed several sets of ontologies at
the same time. We materialized the inferred axioms using Pellet and then we
queried the resulting ontologies with a OIL query.9 If Pellet could not classify
the ontology or if the classifying process took more than 10 seconds, the ontology
was used for our experimentation. 10

Table 1 presents the ontologies used for our experimentation. For each ontol-
ogy, this table indicates: its number of classes, information whether Pellet can
classify it or not, the time which classification process by Pellet takes, its number
of unsatisfiable classes. The last column indicates if the ontology was debugged
or not. We use the Explanation Workbench tool [9] to debug these ontologies.
This tool provides for each unsatisfiable class the minimal set of axioms in which
the class is unsatisfiable. Regarding repairing process we do not simply remove
problematic axioms. Our repairing process is rather collaborative task between
a DL expert and a domain expert, i.e. the DL expert identifies what the domain
expert wants to express and proposes the correct DL axioms capturing intended
domain knowledge. When an ontology is debugged it means that we know the
total number of OIL occurrences.

name nr. of classes Pellet time execution nr. of unsatisf. classes debugged

HydrOntology 159 no 114 yes

Tambis 395 yes 27 s 112 yes

inconsistent 613 6 no 1 yes

inconsistent 623 11 no 1 yes

Open Cyc 2846 yes 43 s 1663 no

proteonic 401 yes 17 s 5 no

CSNCS 1274 yes 139 s 154 no
Table 1. the list of ontologies

5.2 Experiments

Evaluation of Antipattern Detection Precision The precision of the OIL can-
didate detection process was evaluated. One evaluator analyzed the SPARQL
results and assigned to each OIL candidate one of the following values:

– TI (True positive Inconsistency): the evaluator is sure that the OIL candi-
date participates in the unsatisfiability of classes.

9 This query is looking for the RDF representation of the OIL antipattern expressed
by the equation number 1 in section 3

10 All of these ontologies are available from [4].

53

– UI (Unknown Inconsistency): the evaluator is not able to take a decision.

– FI (False positive Inconsistency): the evaluator is sure that the OIL candi-
date does not participate in the unsatisfiability of classes.

5.3 Results of OIL candidate detection

Due to the symmetric property of OIL candidate11, the query identifies an OIL
candidate twice. Table 2 presents the query results and the evaluation results.
The first column indicates the total number of OIL candidates found by the
query. The next columns indicate the number of TI, UI and FI from the OIL
candidates decided by the evaluator.

All the FI we found in the query results come from the fact that: (1) c1 and
c2 are linked by a subClassOf relationship; (2) the c1 class is built by the TR
AC transformation rule, and c2 class is one of the named classes used in the c1
definition. For example, there is the following OIL candidate in the results from
the Hydrontology: c3 = Poza; r = parte de; c1 = OR Lago Rio; c2 = Rio.

set nr. of results nr. of TI nr. of UI nr. of FI

HydrOntology 84 44 (52 %) 0 41 (48 %)

Tambis 314 0 121 (39 %) 193 (61 %)

inconsistent 613 0 0 0 0

inconsistent 623 6 6 (100 %) 0 0

Open Cyc 0 0 0 0

Proteonic 610 0 65 (11 %) 545 (89 %)

CSNCS 21 914 0 0 21 914 (100 %)
Table 2. results of OIL candidate detection process

In the case of HydrOntology all the OIL antipattern occurrences were re-
trieved by our query. In the case of Tambis ontology, it does not contain any
OIL antipattern occurrences. But thanks to the OIL candidates retrieved by the
query, some dangerous classes definitions are detected because there exist two
universal restrictions with sibling classes (these sibling classes are not inferred
as disjoint classes so that there is no OIL antipattern). For example, we found:
c3 = gene−product; r = polymer−of ; c1 = ribo−nucleotide; c2 = amino−acid.
Such results were tagged as UI by the evaluator.

The inconsistent 623 and 613 ontologies were debugged and they do not
contain any OIL antipattern occurrences. These ontologies contain only one un-
satisfiable class that is very difficult to debug due to the presence of transitive
and inverse properties. In the case of the inconsistent 623 ontology, the detected
OIL candidates identify one of the class involved in the class unsatisfiability.

11 C1 and C2 can be switched in the equation 6.

54

Proteonic ontology was not yet debugged. The OIL candidates retrieved by
the query identify some dangerous classes because there exist some OIL candi-
dates, e.g. c3 = collection; r = direct− part− of ; c1 = collection; c2 = element.
These results were tagged as UI by the evaluator.

CSNCS ontology imports several ontologies. It imports the DUL ontology
which describe classes using lots of universal restrictions. All the OIL candidates
contains some DUL classes like Entity, Object, Social Object. This ontology also
imports several large ontologies, e.g. the DOLCE Ultra Light ontology, which
leads to many OIL candidates detected by the query.

Results from Table 2 are encouraging, because OIL candidates may be useful
to detect error or dangerous class definitions. Using a list of transformations and
a simple SPARQL query is sufficient for detecting complex antipattern like OIL
one, even on large ontology that cannot be processed by a reasoner. Moreover
during long development process it is useful to detect OIL candidates in order
to localize dangerous class definitions where an error can often occur.

In this experimentation we have validated the fact that transformation pro-
cesses and simple SPARQL queries are sufficient for detection some OIL an-
tipattern without a reasoner. Note that in our previous work [18], the previous
detection method based on reasoner output and using SPARQL queries were
not able to detect any OIL occurrences at all. If we want to apply our method
to other antipattern, we should define the adequate transformation rules and
SPARQL queries.

Our immediate work will aim at presenting the SPARQL results so that the
candidates where c1 and c2 classes are linked by a subClassOf relationship will
be eliminated.

6 Conclusions and Future Work

In this paper we have shown how complex antipatterns such as OIL can be
detected. Our detection method can work without a reasoner. It is based on
ontology transformations and one SPARQL query. These transformations have
several goals: harmonizing ontology developer implementation style, simulating
reasoner inference and simplifying class definition axioms. Our method detects
OIL antipattern candidates. These candidates localize class definition where OIL
occurrences can appear. Thus, they draw ontology developer’s attention to avoid
errors during long ontology development process. We conduct some experiments
to detect OIL antipattern in an OWL ontology corpus obtained from the Wat-
son ontology search engine. Our future work will focus on the definition of new
transformations to detect other complex antipatterns from our antipattern cat-
alogue.

References

1. Apache jena. http://jena.apache.org/ (2012)
2. Pellet: Owl 2 reasoner for java. http://clarkparsia.com/pellet/ (2012)

55

3. Watson: Exploring the semantic web. http://watson.kmi.open.ac.uk/WS_and_

API.html (2012)
4. web site related to our ontology antipattern detection methods. https://sites.

google.com/site/ontologyantipattern (2012)
5. Clark, K.: Pellint: An ontology repair tool. http://weblog.clarkparsia.com/

2008/07/02/pellint-an-ontology-repair-tool/ (2008)
6. Corcho, O., Roussey, C., Vilches Blázquez, L.M., Pérez, I.: Pattern-based OWL

ontology debugging guidelines. In: Proceedings of WOP. pp. 68–82. CEUR-WS.org
(2009)

7. Gangemi, A., Presutti, V.: Ontology design patterns. Handbook on Ontologies pp.
221–243 (2009)

8. Guarino, N., Welty, C.A.: Evaluating ontological decisions with OntoClean. Com-
mun. ACM 45(2), 61–65 (2002)

9. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Proceedings of ISWC. pp. 323–338 (2008)

10. Iannone, L., Rector, A.L., Stevens, R.: Embedding knowledge patterns into OWL.
In: Proceedings of ESWC. pp. 218–232 (2009)

11. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B.: Repairing unsatisfiable con-
cepts in OWL ontologies. In: Proceedings of ESWC. pp. 170–184 (2006)

12. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in
OWL ontologies. Journal of Web Semantics 3(4), 268–293 (2005)

13. Lehmann, J., Bhmann, L.: ORE - a tool for repairing and enriching knowledge
bases. In: proceedings of ISWC. LNCS, vol. 6497- part 2, pp. 177–193. Springer,
Shanghai, China (2010)

14. Mortensen, J., Horridge, M., Musen, M., Noy, N.: Modest use of ontology design
patterns in a repository of biomedical ontologies. In: Proceedings of WOP. vol.
929. CEUR-WS.org, Boston, USA (2012)

15. Poveda-Villalon, M., Suarez-Figueroa, M.C., Gomez-Perez, A.: Validating ontolo-
gies with OOPS! In: proceedings of EKAW. LNCS, vol. 7603, pp. 267–281. Springer
Berlin Heidelberg, Ireland (2012)

16. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-based ontology design.
Ontology Engineering in a Networked World pp. 35–64 (2012)

17. Rector, A.L., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL:
common errors & common patterns. In: Proceedings of EKAW. pp. 63–81 (2004)

18. Roussey, C., Corcho, O., Svab-Zamazal, O., Scharffe, F., Bernard, S.: SPARQL-DL
queries for antipattern detection. In: Proceedings of WOP. vol. 929. CEUR-WS.org,
Boston, USA (2012)

19. Šváb-Zamazal, O., Svátek, V.: Analysing ontological structures through name pat-
tern tracking. In: Proceedings of EKAW. pp. 213–228 (2008)

56

Ontology Adaptation upon Updates

Alessandro Solimando, Giovanna Guerrini

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi
Università di Genova, Italy
name.surname@unige.it

Abstract. Ontologies, like any other model, change over time due to
modifications in the modeled domain, deeper understanding of the do-
main by the modeler, error corrections, simple refactoring or shift of
modeling granularity level. Local changes usually impact the remainder
of the ontology as well as any other data and metadata defined over
it. The massive size of ontologies and their possible fast update rate
requires automatic adaptation methods for relieving ontology engineers
from a manual intervention, in order to allow them to focus mainly on
high-level inspection. This paper, in spirit of the Principle of minimal
change, proposes a fully automatic ontology adaptation approach that
reacts to ontology updates and computes sound reformulations of onto-
logical axioms triggered by the presence of certain preconditions. The
rule-based adaptation algorithm covers up to SROIQ DL.

1 Introduction and Motivations

Ontologies, like any other model, change over time and a revalidation of all data
and metadata defined on top of the modified ontology is needed upon updates.
Massive ontology size and fast update rate1 call for automated support and
adaptation algorithms. Despite the great attention devoted in the last ten years
to ontology evolution [1, 7], to the best of our knowledge there are no proposals
in the literature coping with ontology adaptation upon updates. With similar
motivations, an adaptation algorithm for a subset of SPARQL queries (with ex-
pressivity equivalent to union of Conjunctive Queries) in response to ontology
updates is proposed in [6]. Protégé2, one of the most complete ontology frame-
works, does not support any kind of adaptation w.r.t. ontology updates: when a
concept or a role is deleted, all the axioms referring it are removed as well. Even
if there are cases in which this behavior is acceptable (e.g., error corrections),
there are others for which it is detrimental, for instance a modification of the
modeling granularity of the ontology. In this scenario, a sound reformulation of
axioms by means of super/sub concepts or roles is not only desirable but usu-
ally manually performed by the modeler. Additionally, in Artificial Intelligence
(Belief Revision), knowledge deletion usually follows the Principle of Minimal

1 An example is the Gene Ontology (http://www.geneontology.org/), with ∼ 416K
axioms and ∼ 40K entities, daily updated (statistics for data-version 2013-02-22).

2 Available here: http://protege.stanford.edu/

57

Change [5], which suggests that the amount of lost information should be as
minimal as possible. Given that ontologies do not necessarily (explicitly) include
all their logical consequences, also the implicit knowledge should be taken into
account, as well as explicit one (that is, ontology axioms).

While a set of basic ontology changes can be easily defined, it is impossible
to identify a set of complex changes without fixing the granularity level, i.e., up-
dates expressed as arbitrarily complex graph patterns (see [10], Section 3.2.1). In
this proposal we consider the basic updates proposed by [3]: addition, deletion
and update of entities (concepts and roles). Given that adding or updating enti-
ties do not reduce knowledge, and that ontology consistency can be tested using
ontology reasoners, our adaptation algorithm focuses only on entity deletions.

In this paper, we propose an algorithm that, given an ontology and an entity
(concept or role) to delete, scans for an equivalent, a super and a sub-entity
and tries to reformulate the axioms involving the entity in question, with a rule-
based approach. Our reformulated axioms are a fraction of the implicit knowledge
of the ontology under update that would be lost by deleting all of the axioms
involving the removed entity. An alternative would be to compute the closure
(that is, complete inference of implicit knowledge) for the ontology prior to entity
deletion. Due to its high computational cost and possible non-finiteness of the
result, a suboptimal but less expensive approach is preferable for our target
scenario, that is interactive modeling.

Even if the adaptation algorithm is completely automatic, it may not always
be aligned with the modeler’s intention. For this reason, the present proposal
has to be intended as an optional feature. When activated, it provides a preview
of the changes to show the automatic adaptation effects. On this basis, the mod-
eler can accept or ignore the proposed changes. In addition, a straightforward
extension could be the possibility, for the modeler, to select the equivalent (resp.
sub/super) entity for the reformulation, when different alternatives are available.

The contribution of the present paper can be summarized as follows: an
automatic adaptation algorithm supporting up to SROIQ expressivity, its cor-
rectness proof, and temporal complexity analysis (Section 3), an experimental
evaluation of the percentage of adaptable entities and axioms on a dataset of
real ontologies (Section 4). First, DL basics are introduced (Section 2), and the
paper concludes discussing future work (Section 5).

2 Preliminaries

Our proposal covers up to SROIQ Description Logic (DL), on top of which the
Ontology Web Language (OWL2) [11] is defined. The notations and definitions
used in this section are borrowed from [4]. An ontology is defined by a set
of axioms and a set of entity names (signature), composed by three disjoint
subsets: NR for role names, NI for individual names, NC for concept names.
These entities are defined by means of expressions. We have Role expressions
R ::= U | NR | N−R , and Concept expressions C ::= NC | (CtC) | (CuC) | ¬C |
> | ⊥ | ∃R.C | ∀R.C | ≥n R.C | ≤n R.C | ∃R.Self | {NI}, with n ≥ 0. For the

58

Precondition Rule

a.1 C ≡ C′, axiom→ axiom[C/C′]
C ∈ signature(axiom)

a.2 C v D E ≡ ∃R.C → E v ∃R.D
a.3 C v D E ≡≥n R.C → E v≥n R.D
a.4 C v D E ≡ C t F → E v D t F
a.5 C v D E ≡ C u F → E v D u F
a.6 C v D E ≡ ¬C → ¬D v E
a.7 C v D C(a)→ D(a)
a.8 C v D E ≡ ∀R.C → E v ∀R.D

a.9 B v C E ≡≤n R.C → E v≤n R.B
a.10 B v C E ≡ C t F → B t F v E
a.11 B v C E ≡ C u F → B u F v E
a.12 B v C E ≡ ¬C → E v ¬B
a.13 B v C C v E → B v E

Table 1. Adaptation rules for concept deletion DEL(C), where B,C,C′, D,E, F ∈ NC,
R ∈ NR and a ∈ NI .

semantics associated with nominals, role and concept expressions the reader may
refer to [4]. The set of axioms of an ontology, denoted with Axioms, is defined as
Axiom ::= ABox∪RBox∪TBox. The reader may refer to [4] also for a detailed
description of the different available axioms for SROIQ DL, and to [9] for the
definitions of ontology interpretation and ontology satisfiability. W.l.o.g. in the
paper we will consider normalized ontologies in Negation Normal Form (NNF),
with an application of Structural Reduction (SR), as shown in [9] (Subsection
5.3). SR introduces fresh concept names for (complex) concept expressions, thus
letting us to easily refer to each concept expression by means of its associated
concept name. Neither the SR nor the NNF are required for the application of
our method. NNF, however, may increase the ratio of adapted axioms.

3 Algorithm

This section introduces the adaptation rules (Section 3.1), the rule-based adap-
tation algorithm (Section 3.2), the correctness proof for the given rules (Sec-
tion 3.3), and the temporal complexity of the algorithm (Section 3.4).

3.1 Adaptation Rules

The adaptation rules are presented in Table 1 (rules for concepts) and Table 2
(rules for roles). We denote by axiom[A/B] the alpha renaming of an axiom of
entity A by entity B. A rule r is composed by a left hand side, LHS(r), a right
hand side, RHS(r), and a precondition prec(r). A rule is defined applicable
iff prec(r) is satisfied by at least one concept (resp. role). Given an ontology o
and an entity e to delete, the LHS of a rule r is said to be matching iff an
axiom in o exists that is equal to LHS(r) modulo alpha renaming of C (resp. R)

59

Precondition Rule

b.1 R ≡ R′, axiom→ axiom[R/R′]
R ∈ signature(axiom)

b.2 Q v R T0 ◦ . . . ◦ Tm ◦R ◦ T ′0 ◦ . . . ◦ T ′p v T
→ T0 ◦ . . . ◦ Tm ◦Q ◦ T ′0 ◦ . . . ◦ T ′p v T

b.3 Q v R E ≡ ∀R.C → E v ∀Q.C
b.4 Q v R E ≡≤n R.C → E v≤n Q.C
b.5 Q v R T ≡ R− → Q− v T
b.6 Q v R Disjoint(R, T)→ Disjoint(Q,T)

b.7 R v S R(a, b)→ S(a, b)
b.8 R v S E ≡ ∃R.C → E v ∃S.C
b.9 R v S E ≡ ∃R.Self → E v ∃S.Self
b.10 R v S E ≡≥n R.C → E v≥n S.C
b.11 R v S T ≡ R− → T v S−

b.12 R v S T0 ◦ . . . ◦ Tq v R→ T0 ◦ . . . ◦ Tq v S

Table 2. Adaptation rules for role deletion DEL(R), where E, C ∈ NC , Q, R, R′, S,
T , Ti, T

′
j ∈ NR, with m,n, p, q ≥ 0, and a, b ∈ NI .

with e, denoted with LHS(r)[e]. The application of an applicable rule r w.r.t.
o and e rewrites any axiom of o matching LHS(r)[e] into RHS(r)[e′], where
e′ is the selected entity for reformulation. It is worth noting that if a DL less
expressive than SROIQ is adapted, only a subset of the rules will be applicable,
depending on the axioms and constructors available. For instance, for basic ALC
with General Concept Inclusion (i.e., C v D), rules a.3, a.9, b.2, b.4, b.5, b.9,
b.10, b.11, b.12 are not applicable.

3.2 Adaptation Algorithm

Algorithm 1 presents the adaptation algorithm for ontology updates. It takes as
input the entity e to be deleted and the ontology o it belongs to. By means of
function computePrec, the set of axioms related to e is computed, as well as
a triple p consisting of a (nondeterministically choosen) equivalent, a sub and
a super entity, if any (line 3). For each axiom a having e in its signature (line
4), it tests if the axiom matches the left hand side of the rule (line 5). At this
point, function satisfies (line 6) checks if the current axiom is compatible with
rule r and if the required element in p is not null. The reformulated axiom is
inserted in o (line 7). Finally, all the axioms involving entity e are removed from
o (line 8). Even if a preliminar classification phase is not required, it may increase
the algorithm effectiveness. In what follows we give a toy example of ontology
update, comparing the result of adaptation to classical deletion approach.

Example 1. Consider an ontology o consisting of these axioms and the ob-
vious associated signature: Human ≡ ∃eats.Food, Food(cheese), Eater ≡
∀eats.Food, ⊥ ≡ Plastic u Food, Uneatable ≡ ¬Eatable, Pizza v Food,
Food v Eatable. Deleting Food concept from o with adaptation we obtain:
Human v ∃eats.Eatable, Eatable(cheese), Eater v ∀eats.Eatable, Plastic u

60

Algorithm 1 Ontology Update Adaptation
1: function OntoUpdateAdapt(Entity e, Ontology o)
2: axioms = ∅
3: p := 〈eq, sub, sup〉 ← computePrec(e, axioms, o)
4: for a ∈ axioms do
5: for r ∈ Rules . a = LHS(r)[e] do
6: if satisfies(〈a, e, e′〉, prec(r)), e′ ∈ {eq, sub, sup} then
7: Axioms(o)← Axioms(o) ∪ {RHS(r)[e′]}
8: end if
9: end for

10: end for
11: Axioms(o)← Axioms(o) \ axioms
12: end function
13: function computePrec(Entity e, Set axioms, Ontology o)
14: eq, sub, sup← ε
15: for a ∈ Axioms(o) . e ∈ signature(a) do
16: axioms← axioms ∪ {a}
17: if eq, sub, sup 6= ε then
18: break
19: end if
20: if a = e ≡ e′ or a = e′ ≡ e then
21: eq ← e′

22: else if a = e v e′ then
23: sup← e′

24: else if a = e w e′ then
25: sub← e′

26: end if
27: end for
28: return 〈eq, sub, sup〉
29: end function

Pizza v ⊥, Pizza v Eatable, Uneatable ≡ ¬Eatable (using rule a.2, a.7, a.8,
a.11 and a.13, respectively). Without adaptation, instead, only the last axiom
would be present in o after concept deletion.

3.3 Rules Correctness Proof

Before stating the proposition about the correctness of the adaptation rules we
introduce some definitions and lemmata. For sake of brevity we will interchange-
ably refer to the axioms and their semantics, according to [4].

Definition 1. An axiom A1 entails an axiom A2 iff, for any interpretation I,
I |= A2 =⇒ I |= A1, that is A2

I ⊆ A1
I .

Definition 2. An adaptation rule r is sound iff {LHS(r), prec(r)} entails
RHS(r).

Lemma 1. ∀C,D, F ∈ NC . C v D =⇒ C t F v D t F .

Proof. By considering the associated semantics the Lemma can be restated as
CI ⊆ DI =⇒ CI ∪ F I︸ ︷︷ ︸

α

⊆ DI ∪ F I︸ ︷︷ ︸
β

. Assume that the preceding formula does

not hold, that is α 6⊆ β. This means ∃x ∈ β . x 6∈ α, and requires that at least
one of the following conditions holds:

61

– x ∈ F I , but this implies x ∈ α, resulting in a contradiction,
– x ∈ CI , and thus this implies CI ⊆ DI =⇒ x ∈ α, contradicting the

hypothesis. �

Lemma 2. ∀C,D, F ∈ NC . C v D =⇒ C u F v D u F .

Proof. By considering the associated semantics the Lemma can be restated as
CI ⊆ DI =⇒ CI ∩ F I︸ ︷︷ ︸

α

⊆ DI ∩ F I︸ ︷︷ ︸
β

. Assume that the preceding formula does not

hold, that is α 6⊆ β. This means ∃x ∈ β . x 6∈ α. Note that x ∈ β is equivalent
to requiring that x ∈ F I ∧ x ∈ DI holds. However, x ∈ F I ∧ x 6∈ α =⇒ x 6∈ CI .
Given that x ∈ DI holds, this contradicts the premise C v D. �

Lemma 3. ∀C,D ∈ NC . C v D =⇒ ∃R.C v ∃R.D.

Proof. Assume that {x | ∃y ∈ CI . 〈x, y〉 ∈ RI} 6⊆ {x | ∃y ∈ DI . 〈x, y〉 ∈ RI}
holds, that is, ∃R.C 6v ∃R.D. This requires that the following condition holds:
∃〈x, y〉 ∈ RI . y ∈ CI ∧ y 6∈ DI . But, if such condition holds, then C 6v D,
contradicting the premise. �

Lemma 4. ∀C,D ∈ NC . C v D =⇒ ∀R.C v ∀R.D.

Proof. Assume that {x | ∀〈x, y〉 . 〈x, y〉 ∈ RI =⇒ y ∈ CI} 6⊆ {x |
∀〈x, y〉 . 〈x, y〉 ∈ RI =⇒ y ∈ DI} holds, that is, ∀R.C 6v ∀R.D. This requires
that the following condition holds: (∃x . ∀〈x, y〉 . 〈x, y〉 ∈ RI =⇒ y ∈ CI)∧ (∃ȳ
. 〈x, ȳ〉 ∈ RI ∧ ȳ 6∈ DI). But, if this condition holds, then an ȳ exists and RI is
not empty. Therefore, since the left operand of the implication holds, then right
operand also does. From this, we obtain CI 6⊆ DI , contradicting the premise. �

Proposition 1. Adaptation rules application preserves ontology satisfiability.

Proof. Ontology satisfiability is preserved because every adaptation rule is
sound. We prove this for each rule separately:

a.1 The proof directly follows from Concept Equivalence axiom definition.
a.2 E ≡ ∃R.C → E v ∃R.D. ∃R.C v ∃R.D must hold: thanks to the rule

precondition, C v D, we can apply Lemma 3.
a.3 E ≡≥n R.C → E v≥n R.D. ≥n R.C v≥n R.D must hold, but it is

sufficient that {x | ∃y ∈ CI . 〈x, y〉 ∈ RI} ⊆ {x | ∃y ∈ DI . 〈x, y〉 ∈ RI}
holds. Thanks to the rule precondition, C v D, we can apply Lemma 3.

a.4 E ≡ C t F → E v D t F . C t F v D t F holds for Lemma 1 because
C v D holds.

a.5 E ≡ C u F → E v D u F . C u F v D u F holds for Lemma 2 because
C v D holds.

a.6 E ≡ ¬C → ¬D v E. ¬D v ¬C must hold: the semantics is ∆I \ DI ⊆
∆I \ CI , but this contradicts C v D.

a.7 C(a)→ D(a). C(a) =⇒ D(a) is guaranteed by the rule precondition.
a.8 E ≡ ∀R.C → E v ∀R.D. E ≡ ∀R.C =⇒ E v ∀R.D holds for Lemma 4

because C v D holds.

62

a.9 E ≡≤n R.C → E v≤n R.B. ≤n R.B v≤n R.C, but it is sufficient that
{x | ∃y ∈ BI . 〈x, y〉 ∈ RI} ⊆ {x | ∃y ∈ CI . 〈x, y〉 ∈ RI}. Thanks to the
rule precondition, B v C, we can apply Lemma 3.

a.10 E ≡ C tF → B tF v E. The proof for B tF v C tF is the dual of the
one given in item (a.4).

a.11 E ≡ C uF → B uF v E. The proof for B uF v C uF is the dual of the
one given in item (a.5).

a.12 E ≡ ¬C → E v ¬B. the proof for ¬C v ¬B is the dual of the one given
in item (a.6).

a.13 C v E → B v E. The rule precondition, B v C. By transitivity, this
implies B v E.

b.1 The proof directly follows from Role Equivalence axiom definition.
b.2 T0 ◦ . . . ◦ Tm ◦R ◦ T ′0 ◦ . . . ◦ T ′p︸ ︷︷ ︸

α

v T → T0 ◦ . . . ◦ Tm ◦Q ◦ T ′0 ◦ . . . ◦ T ′p︸ ︷︷ ︸
β

v

T . assume that βI 6⊆ αI holds. This requires that ∃x0, . . ., xm+p+3 .

〈x0, x1〉 ∈ T0
I ∧ . . . ∧ 〈xm+1, xm+2〉 ∈ QI∧ 〈xm+p+2, xm+p+3〉 ∈ T ′p

I ∧
〈xm+1, xm+2〉 6∈ RI . This contradicts Q v R.

b.3 E ≡ ∀R.C︸ ︷︷ ︸
α

→ E v ∀Q.C︸ ︷︷ ︸
β

. Assume that αI 6⊆ βI holds. This requires that

∃x . x ∈ αI ∧ x 6∈ βI , that is, ∃x.((∀y . 〈x, y〉 ∈ RI =⇒ y ∈ CI) ∧ (∃y′
. 〈x, y′〉 ∈ QI ∧ y′ 6∈ CI)). Given that Q v R, if such y′ exists, α cannot
hold, leading to a contradiction.

b.4 T ≡ ≤n R.C︸ ︷︷ ︸
α

→ T v ≤n Q.C︸ ︷︷ ︸
β

. Assume that αI 6⊆ βI . This requires that

∃x . |{y | y ∈ CI ∧ 〈x, y〉 ∈ RI}| ≤ n ∧ |{y | y ∈ CI ∧ 〈x, y〉 ∈ QI}| > n.
This implies |QI | > |RI |, contradicting Q v R.

b.5 T ≡ R− → Q− v T . Assume that Q−
I 6⊆ R−I . This requires that ∃〈x, y〉

. 〈y, x〉 ∈ QI ∧ 〈y, x〉 6∈ RI . This contradicts QI ⊆ RI .
b.6 Disjoint(R, T) → Disjoint(Q,T). Assume that RI ∩ T I = ∅ =⇒ QI ∩

T I = ∅ does not hold. This requires that ∃〈x, y〉 ∈ QI ∧ 〈x, y〉 ∈ T I ∧
〈x, y〉 6∈ RI holds, but 〈x, y〉 ∈ QI ∧ 〈x, y〉 6∈ RI contradicts Q v R.

b.7 R(a, b) → S(a, b). From R v S we have that ∀〈x, y〉 . 〈x, y〉 ∈ R =⇒
〈x, y〉 ∈ S.

b.8 E ≡ ∃R.C︸ ︷︷ ︸
α

→ E v ∃S.C︸ ︷︷ ︸
β

. Assume that αI 6⊆ βI . This requires that ∃x .

∃y ∈ CI . 〈x, y〉 ∈ SI ∧ 〈x, y〉 6∈ RI holds. This contradicts R v S.
b.9 E ≡ ∃R.Self︸ ︷︷ ︸

α

→ E v ∃S.Self︸ ︷︷ ︸
β

. Assume that αI 6⊆ βI . This requires that

∃x . 〈x, x〉 ∈ SI ∧ 〈x, x〉 6∈ RI holds. This contradicts R v S.
b.10 E ≡ ≥n R.C︸ ︷︷ ︸

α

→ E v ≥n S.C︸ ︷︷ ︸
β

. Assume that αI 6⊆ βI . This requires that

∃x . |{y | y ∈ CI ∧ 〈x, y〉 ∈ RI}| ≥ n ∧ |{y | y ∈ CI ∧ 〈x, y〉 ∈ SI}| < n.
This implies |RI | > |SI |, contradicting R v S.

63

b.11 T ≡ R− → T v S−. Assume that R−
I 6⊆ S−

I
. This requires that ∃〈x, y〉

. 〈y, x〉 ∈ RI ∧ 〈y, x〉 6∈ SI , thus contradicting R v S.
b.12 T0 ◦ . . . ◦ Tq v R → T0 ◦ . . . ◦ Tq v S. This immediately follows, by

transitivity, from R v S. �

3.4 Temporal Complexity

Proposition 2. The time complexity of the algorithm is in O(n), where n is
the number of axioms of the input ontology o.

Proof. computePrecond scans all the axioms of ontology o. For each of them it
performs some comparison having a total cost of c1, so it has a cost of n ·c1. The
for statement of line 4 in Algorithm 1 is executed n times in the worst case (each
axiom of the ontology refers to the entity in question). The for statement of line
5 is executed c2 = |Rules| times, where Rules is the set of adaptation rules.
satisfies test requires a constant (c3) time for checking the required conditions.
Axiom rewriting and its insertion requires constant (c4) time. The removal of
old axioms requires constant time (c5) too. The overall complexity is therefore
equal to n · c1 + c2 · c3 · c4 · n+ c5, that belongs to O(n). �

4 Experiments

In order to evaluate the practical applicability of our proposal we implemented
a Java prototype based on the OWL API library3. In OWL API the axioms are
immutable objects, and it supports only axiom addition and removal. Whenever
possible, the rule application has been simulated with a pair of add and delete
changes. In the other cases we employed Java Reflection for directly modifying
the involved axiom. In addition to correctness, we also experimentally evaluated
the coverage of OWL2 axioms and constructors of our set of rules. The dataset
is presented in Table 3 (manual selection on the Web based on ontology size and
DL expressivity).

Correctness The developed proof-of-concept prototype has been used for testing
correctness of our adaptation rules, the experimental counterpart of the proofs
given in Section 3.3. More precisely, the test consists in taking as input a satisfi-
able ontology composed by the precondition and an axiom corresponding to the
LHS of a rule r (modulo alpha renaming of the entity to delete). At this point,
using Hermit reasoner (v1.3.7)4, we check the entailment of RHS(r)[e′].

Evaluation An entity e is adaptable iff it satisfies at least one rule precondition,
while an axiom a is adaptable iff it at least one rule r s.t. LHS(r)[e] = a
exists, in case prec(r) holds w.r.t. e, the axiom is said fully adaptable. As
an estimation of the practical effectiveness of our algorithm, we consider, for

3 Available here: http://owlapi.sourceforge.net/
4 Hermit and related information are available at http://hermit-reasoner.com/

64

ID
D
L

U
R
I

A
x
io
m
s
L
o
g
ic
a
l
A
x
io
m
s
(C

.1
)
(C

.2
)
(C

.3
)
(C

.4
)
(C

.2
)*

(C
.4
)*

1
.

A
L

U
Q

(D
)

h
tt

p
:/

/
o
m

v
.o

n
to

w
a
re

.o
rg

/
2
0
0
9
/
0
9
/
O

W
L

C
h
a
n
g
es

1
8
6

1
0
0

1
0
0
.0

0
4
9
.4

9
0
.0

0
N

/
A

4
9
.4

9
N

/
A

2
.

S
H

IN
(D

)
h
tt

p
:/

/
cc

d
b
.u

cs
d
.e

d
u
/
S
A

O
/
1
.2

7
7
6
7

2
7
1
2

1
0
0
.0

0
1
7
.9

2
9
7
.2

2
7
6
.1

7
1
7
.9

5
7
6
.1

7
3
.

A
L

E
H

I+
(D

)
h
tt

p
:/

/
sw

a
t.

cs
e.

le
h
ig

h
.e

d
u
/
o
n
to

/
u
n
iv

-b
en

ch
.o

w
l

2
4
3

9
3

9
7
.6

7
3
5
.1

1
3
6
.0

0
4
5
.1

6
3
7
.1

0
4
5
.1

6
4
.

S
H

O
IN

(D
)

h
tt

p
:/

/
w

w
w

.w
3
.o

rg
/
T

R
/
2
0
0
3
/
C

R
-o

w
l-

g
u
id

e-
2
0
0
3
0
8
1
8
/
w

in
e

7
4
7

6
5
7

9
4
.8

1
6
7
.8

8
8
4
.6

2
6
6
.9

6
8
8
.2

9
6
6
.9

6
5
.

A
L

C
O

h
tt

p
:/

/
p
u
rl

.o
b

o
li
b
ra

ry
.o

rg
/
o
b

o
/
o
g
m

s.
ow

l
5
7
6

8
4

1
0
0
.0

0
5
0
.0

0
N

/
A

N
/
A

5
0
.0

0
N

/
A

6
.

A
L

Q
(D

)
h
tt

p
:/

/
ow

lo
d
m

.o
n
to

w
a
re

.o
rg

/
O

W
L

2
3
5
3

2
1
5

9
0
.8

0
4
5
.5

0
0
.0

0
N

/
A

4
6
.9

1
N

/
A

7
.

S
R

IQ
(D

)
h
tt

p
:/

/
se

m
a
n
ti

cs
ci

en
ce

.o
rg

/
o
n
to

lo
g
y
/
si

o
-c

o
re

.o
w

l
5
0
4
3

1
7
4
7

1
0
0
.0

0
4
8
.0

7
1
0
0
.0

0
9
3
.5

5
4
8
.4

3
9
3
.5

5
8
.

S
H

O
IN

h
tt

p
:/

/
w

w
w

.c
o
-o

d
e.

o
rg

/
o
n
to

lo
g
ie

s/
p
iz

za
/
p
iz

za
.o

w
l

9
3
9

7
1
2

1
0
0
.0

0
2
2
.1

4
7
5
.0

0
1
0
0
.0

0
2
2
.1

5
1
0
0
.0

0
9
.

S
H

O
IN

(D
)

h
tt

p
:/

/
sw

ee
t.

jp
l.
n
a
sa

.g
ov

/
2
.1

/
re

p
rS

ci
U

n
it

s.
ow

l
5
0
3

4
7
5

1
0
0
.0

0
8
.2

0
3
3
.3

3
0
.0

0
4
2
.8

6
0
.0

0
1
0
.

S
R

h
tt

p
:/

/
p
u
rl

.o
b

o
li
b
ra

ry
.o

rg
/
o
b

o
/
h
a
o
/
2
0
1
1
-1

1
-0

3
/
h
a
o
.o

w
l

2
0
0
2
7

8
4
9
3

9
6
.2

2
3
8
.5

3
0
.0

0
N

/
A

5
0
.4

7
N

/
A

1
1
.

S
R

O
IF

h
tt

p
:/

/
p
u
rl

.o
b

o
li
b
ra

ry
.o

rg
/
o
b

o
/
id

o
.o

w
l

3
4
9
9

1
0
2
5

1
0
0
.0

0
3
4
.6

7
8
6
.6

7
6
7
.0

2
3
6
.9

2
6
7
.7

3
1
2
.

S
R

O
IF

h
tt

p
:/

/
o
n
to

lo
g
y.

n
eu

in
fo

.o
rg

/
N

IF
/
D

y
sf

u
n
ct

io
n
/
N

IF
-D

y
sf

u
n
ct

io
n
.o

w
l

5
6
4
9

3
5
0

1
0
0
.0

0
5
0
.0

0
N

/
A

N
/
A

5
0
.0

0
N

/
A

1
3
.

S
H

IN
(D

)
h
tt

p
:/

/
a
im

s.
fa

o
.o

rg
/
a
o
s/

g
eo

p
o
li
ti

ca
l.
ow

l
2
3
5
2
7

2
2
8
3
4

1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
4
.

S
h
tt

p
:/

/
h
u
m

a
n
.o

w
l

3
0
3
6
4

1
1
5
4
5

9
9
.8

2
4
9
.8

4
0
.0

0
N

/
A

4
9
.8

4
N

/
A

1
5
.

A
L

E
h
tt

p
:/

/
m

o
u
se

.o
w

l
1
1
0
4
3

4
8
3
8

6
7
.0

2
3
6
.9

9
0
.0

0
N

/
A

3
8
.9

3
N

/
A

1
6
.

A
L

C
H

O
IN

h
tt

p
:/

/
ow

l.
m

a
n
.a

c.
u
k
/
2
0
0
5
/
0
7
/
ss

sw
/
p

eo
p
le

.o
w

l
3
9
6

1
0
8

1
0
0
.0

0
6
9
.9

4
7
1
.4

3
8
1
.2

5
7
1
.1

8
8
1
.2

5
1
7
.

S
R

O
IF

h
tt

p
:/

/
o
n
to

lo
g
y.

n
eu

in
fo

.o
rg

/
N

IF
/
B

io
m

a
te

ri
a
lE

n
ti

ti
es

/
N

IF
-G

ro
ss

A
n
a
to

m
y.

ow
l

1
9
8
4
9

2
9
3
0

9
9
.7

5
3
9
.6

2
1
8
.1

8
1
0
0
.0

0
3
9
.6

2
1
0
0
.0

0
1
8
.

S
R

O
IN

(D
)

h
tt

p
:/

/
p
u
rl

.o
b

o
li
b
ra

ry
.o

rg
/
o
b

o
/
fl
u
/
d
ev

/
fl
u
.o

w
l

8
7
4

2
0
4

1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
9
.

A
L

C
O

IF
h
tt

p
:/

/
w

w
w

.o
w

l-
o
n
to

lo
g
ie

s.
co

m
/
g
en

er
a
ti

o
n
s.

ow
l

6
0

3
8

9
4
.4

4
7
7
.1

4
7
5
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
2
0
.

A
L

(D
)

h
tt

p
:/

/
p
ro

te
g
e.

st
a
n
fo

rd
.e

d
u
/
p
lu

g
in

s/
ow

l/
ow

l-
li
b
ra

ry
/
ka

.o
w

l
4
0
4

2
1
6

1
0
0
.0

0
5
7
.0

3
0
.0

0
N

/
A

5
7
.1

8
N

/
A

2
1
.

S
R

O
IF

h
tt

p
:/

/
o
n
to

lo
g
y.

n
eu

in
fo

.o
rg

/
N

IF
/
B

io
m

a
te

ri
a
lE

n
ti

ti
es

/
N

IF
-C

el
l.
ow

l
3
5
0
8

3
9
8

1
0
0
.0

0
4
6
.7

3
0
.0

0
N

/
A

4
6
.7

3
N

/
A

2
2
.

S
O

IN
(D

)
h
tt

p
:/

/
w

w
w

.o
w

l-
o
n
to

lo
g
ie

s.
co

m
/
tr

av
el

.o
w

l
1
4
5

9
3

1
0
0
.0

0
4
9
.6

1
3
3
.3

3
1
0
0
.0

0
5
0
.0

0
1
0
0
.0

0
2
3
.

A
L

U
H

N
h
tt

p
:/

/
w

w
w

.h
o
zo

.j
p
/
ow

l/
Y

A
M

A
T

O
2
0
1
2
0
7
1
4
.o

w
l

4
4
2
8

2
4
4
4

1
0
0
.0

0
5
1
.6

9
9
5
.6

3
1
1
.6

7
5
1
.6

9
1
1
.6

7
2
4
.

A
L

H
IF

(D
)

h
tt

p
:/

/
p
u
rl

.o
rg

/
n
et

/
o
n
to

lo
g
y
/
b

ee
r.

ow
l

1
6
5

8
1

8
4
.4

8
4
2
.8

6
2
2
.2

2
1
0
0
.0

0
4
2
.8

6
1
0
0
.0

0
2
5
.

S
H

(D
)

h
tt

p
:/

/
m

si
-o

n
to

lo
g
y.

so
u
rc

ef
o
rg

e.
n
et

/
o
n
to

lo
g
y
/
N

M
R

.o
w

l
1
0
9
6

2
9
0

1
0
0
.0

0
5
0
.0

0
N

/
A

N
/
A

5
0
.0

0
N

/
A

2
6
.

S
H

IF
(D

)
h
tt

p
:/

/
w

w
w

.n
a
d
a
.k

th
.s

e/
∼

m
eh

ra
n
a
/
D

el
eg

a
ti

o
n
.o

w
l

1
0
3

6
3

6
3
.1

6
4
0
.9

1
8
0
.0

0
8
1
.2

5
4
0
.9

1
8
1
.2

5
2
7
.

A
L

C
R

IQ
(D

)
h
tt

p
:/

/
w

w
w

.b
io

m
o
d
el

s.
n
et

/
k
is

a
o
/
K

IS
A

O
2
0
4
4

6
4
7

1
0
0
.0

0
4
2
.7

0
1
0
0
.0

0
9
2
.2

3
4
2
.8

2
9
2
.4

7
2
8
.

A
L

C
O

h
tt

p
:/

/
p
u
rl

.o
b

o
li
b
ra

ry
.o

rg
/
o
b

o
/
o
m

rs
e.

ow
l

9
9

2
5

1
0
0
.0

0
5
0
.0

0
0
.0

0
N

/
A

5
0
.0

0
N

/
A

T
a
b
le

3
.

D
a
ta

se
t

a
n
d

co
v
er

a
g
e

re
su

lt
s

p
re

se
n
te

d
in

S
ec

ti
o
n

4
.

O
n
to

lo
g
ie

s
1
4

a
n
d

1
5

a
re

p
a
rt

o
f

th
e

d
a
ta

se
t

u
se

d
b
y
O
n
to
lo
gy

A
li
gn

m
en

t
E
va
lu
a
ti
o
n
In
it
ia
ti
ve

,
a
n
d

a
re

av
a
il
a
b
le

a
t

h
tt

p
:/

/
o
a
ei

.o
n
to

lo
g
y
m

a
tc

h
in

g
.o

rg
/
.

C
ov

er
a
g
e

re
su

lt
s

a
re

u
n
a
g
g
re

g
a
te

d
a
n
d

b
a
se

d
o
n

th
e

d
a
ta

o
f

T
a
b
le

4
.

N
/
A

m
ea

n
s

th
e

o
n
to

lo
g
y

co
n
ta

in
s

n
o

ro
le

s/
a
d
a
p
ta

b
le

ro
le

s.

65

each ontology in our dataset, the following scenario: we simulate the deletion
of each single entity, in isolation, and we take into account the percentage of
adaptable ones (i.e., such that another entity suitable for reformulation exists).
For each of these adaptable entities, we also inspect how many axioms involving
them would be adapted instead of simply deleted. For this reference scenario we
defined Coverage measure as: (C.1) the percentage of adaptable concepts (resp.
roles (C.3)) out of the total number of concepts (resp. roles), and (C.2) the
percentage of adaptable axioms w.r.t. the deleted concept (resp. role, (C.4))
out of the number of axioms to be deleted (that is, presenting the deleted entity
in their signature). The (C.)* variants count the fully adaptable axioms, and
evaluate the completeness of our adaptation rules (the complement of the fully
adaptable axioms is not supported by our rules).

In Table 3 the coverage for each ontology in isolation is reported (computed
from the raw data of Table 4), while the result considering the dataset as a
whole ontology is the following: (C.1) 93.247%, (C.2) 41.757%, (C.2*) 44.185%,
(C.3) 73.647%, (C.4) 79.63%, (C.4*) 80.847%. Table 3 shows that 10 out of 12
of the worst performing ontologies w.r.t. role coverage ((C.3), (C.4) and (C.4)*)
are expressed in a DL missing role hierarchy constructs (identified by letter
H in the DL name). Without role hierarchy constructs only role equality can
be used for adaptation, thus reducing the number of adaptable roles. Concept
coverage (C.1) presents, instead, high values (above 60%) for all the considered
ontologies, independently from the DL they are expressed with. This is not
surprising because concept hierarchy constructs are available for DLs at least as
expressive asAL. On the contrary, coverage results for concept rules w.r.t. OWL2
axioms and constructors seem to be unrelated to either the underpinning DL or
the ontology size (in terms of number of axioms and/or entities). For instance,
the ontologies with worst values for (C.2)* are 2. (SHIN (D)), 8. (SHOIN (D))
11. (SROIF) 3. (ALEHI + (D)) and 15. (ALE), with very different number of
concepts and axioms (Table 4). Similarly, among the best results for (C.2)* the
expressivity ranges from AL(D) to SROIN (D), again with varying number of
axioms and concepts. Ideally the proposal should adapt all the axioms: (C.2)*,
in particular, is far from this result, but it is well known that OWL2, despite
being based on SROIQ, adds new constructors and axioms, that are derivable
from SROIQ ones (they do not add expressive power). For example, Concept
Disjointness axiom (i.e., Disjoint(C,D), with C,D ∈ NC) is only a shortcut for
C uD v ⊥5. Our prototype strictly applies the rules of Table 1 and Table 2, so
it cannot directly process the axioms and constructors not available in SROIQ
DL, thus diminishing the number of adaptable axioms.

5 Future Work

The paper represents, to the best of our knowledge, the first proposal for ontology
adaptation upon updates. In addition, the algorithm is totally automatic and
supports ontology expressivity up to SROIQ, on top of which OWL2 is defined.

5 Refer to [9], Chapter 9, for further examples and details.

66

The present paper could be extended in several directions. The set of adap-
tation rules is a preliminary proposal, we plan to further enrich it in order to
increase the coverage rate reported in Section 4 and to consider reasonable al-
ternatives for each single rule (e.g., sound alternatives for a.8 could be C v
D,E ≡ ∀R.C → ∀R.D v E or B0 . . . Bn v C,E ≡ ∀R.C → E v ∀R.

⊔n
i=0B).

We also plan to consider the integration of anonymous entities (e.g., using > as
superclass). Another possible extension is the integration of a complex update
(e.g., concept merge and split) proposals, such as [2]. The relationship between
DL updates and Belief Revision has been investigated [8], we plan to further
investigate it w.r.t. our proposal. We also intend to improve our prototype up to
a full support of OWL2. Our final goal will be a Protégé plugin, from which we
hope to receive feedbacks from the community of ontology engineers and practi-
tioners. The experimental evaluation will also be strengthened with an extended
ontology dataset and temporal profiling of the prototype.

References

1. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: On-
tology change: Classification and survey. Knowl. Eng. Rev. 23(2), 117–152 (2008)

2. Hartung, M., Groß, A., Rahm, E.: COnto–Diff: Generation of Complex Evolution
Mappings for Life Science Ontologies. Journal of Biomedical Informatics (2012)

3. Hartung, M., Groß, A., Rahm, E.: Rule-based Generation of Diff Evolution Map-
pings between Ontology Versions. CoRR abs/1010.0122 (2010)

4. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: Princi-
ples of Knowledge Representation and Reasoning – KR 2006. pp. 57–67 (2006)

5. Katsuno, H., Mendelzon, A.O.: Propositional Knowledge Base Revision and Min-
imal Change. Artificial Intelligence 52(3), 263–294 (1991)

6. Kondylakis, H., Plexousakis, D.: Ontology Evolution: Assisting Query Migration.
Conceptual Modeling – ER 2012 pp. 331–344 (2012)

7. Noy, N., Klein, M.: Ontology Evolution: Not the same as Schema Evolution. Knowl-
edge and Information Systems 6(4), 428–440 (2004)

8. Ribeiro, M.M., Wassermann, R., Antoniou, G., Flouris, G., Pan, J.: Belief Con-
traction in Web-Ontology Languages. In: Workshop on Ontology Dynamics, IWOD
(2009)

9. Rudolph, S.: Foundations of Description Logics. Reasoning Web. Semantic Tech-
nologies for the Web of Data pp. 76–136 (2011)

10. Stojanovic, L.: Methods and Tools for Ontology Evolution. Ph.D. thesis, University
of Karlsruhe (2004)

11. W3C as Hitzler, P. and Krötzsch, M. and Parsia, B. Patel-Schneider, P.F. and
Rudolph, S.: OWL 2 Web Ontology Language Primer. http://www.w3.org/TR/

owl2-primer/ (2009)

67

ID
C

o
n
c
e
p
t
s

A
d
a
p
t
a
b
le

C
o
n
c
e
p
t
s

C
o
n
c
e
p
t

A
x
io

m
s

A
d
a
p
t
a
b
le

C
o
n
c
e
p
t

A
x
io

m
s

R
o
le

s
A

d
a
p
t
a
b
le

R
o
le

s
R

o
le

A
x
io

m
s

A
d
a
p
t
a
b
le

R
o
le

A
x
io

m
s

U
n
s
a
t
is

fi
a
b
le

C
o
n
c
e
p
t

A
x
io

m
s

U
n
s
a
t
is

fi
a
b
le

R
o
le

A
x
io

m
s

1
.

1
0
0

1
0
0

1
9
8

9
8

2
0

0
0

0
0

2
.

7
3
6

7
3
6

5
1
2
9

9
1
9

3
6

3
5

2
5
6

1
9
5

8
0

3
.

4
3

4
2

1
3
1

4
6

2
5

9
3
1

1
4

7
0

4
.

7
7

7
3

4
1
1

2
7
9

1
3

1
1

3
4
5

2
3
1

9
5

0
5
.

9
2

9
2

1
6
8

8
4

0
0

0
0

0
0

6
.

8
7

7
9

3
6
7

1
6
7

4
4

0
0

0
1
1

0
7
.

1
0
2
1

1
0
2
1

2
8
2
3

1
3
5
7

1
8
4

1
8
4

9
4
6

8
8
5

2
1

0
8
.

1
0
0

1
0
0

1
4
7
7

3
2
7

8
6

1
8
0

1
8
0

1
0

9
.

1
2

1
2

1
8
3

1
5

6
2

1
3
7

0
1
4
8

1
3
6

1
0
.

1
9
3
0

1
8
5
7

9
8
0
9

3
7
7
9

4
0

0
0

2
3
2
1

0
1
1
.

5
0
9

5
0
9

2
1
8
9

7
5
9

3
0

2
6

2
8
5

1
9
1

1
3
3

3
1
2
.

3
5
2

3
5
2

7
0
0

3
5
0

0
0

0
0

0
0

1
3
.

1
2

1
2

4
6
0

4
6
0

6
6

4
8
8
8

4
8
8
8

0
0

1
4
.

3
3
0
4

3
2
9
8

1
0
8
8
0

5
4
2
3

2
0

0
0

0
0

1
5
.

2
7
4
4

1
8
3
9

6
2
5
6

2
3
1
4

3
0

0
0

3
1
2

0
1
6
.

6
0

6
0

1
7
3

1
2
1

1
4

1
0

4
8

3
9

3
0

1
7
.

1
6
2
8

1
6
2
4

6
1
1
6

2
4
2
3

1
1

2
8
6

8
6

0
0

1
8
.

2
1
3

2
1
3

4
4
7

4
4
7

1
9

1
9

8
3

8
3

0
0

1
9
.

1
8

1
7

3
5

2
7

4
3

2
0

2
0

8
0

2
0
.

9
6

9
6

3
7
7

2
1
5

6
0

0
0

0
1

0
2
1
.

3
7
3

3
7
3

7
9
4

3
7
1

2
0

0
0

0
0

2
2
.

3
5

3
5

1
2
9

6
4

6
2

1
1

1
1

1
0

2
3
.

9
2
5

9
2
5

4
5
8
9

2
3
7
2

1
8
3

1
7
5

1
5
4
2

1
8
0

0
0

2
4
.

5
8

4
9

1
0
5

4
5

9
2

6
6

0
0

2
5
.

3
0
1

3
0
1

5
8
0

2
9
0

0
0

0
0

0
0

2
6
.

1
9

1
2

2
2

9
2
0

1
6

4
8

3
9

0
0

2
7
.

2
0
2

2
0
2

1
3
3
5

5
7
0

9
9

3
8
6

3
5
6

4
1

2
8
.

2
7

2
7

5
0

2
5

2
0

0
0

0
0

T
a
b
le

4
.

R
aw

d
a
ta

u
sed

fo
r

cov
era

g
e

a
n
a
ly

sis
o
f

S
ectio

n
4
.

U
n
sa

tisfi
ed

a
x
io

m
s

sta
n
d
s

fo
r

a
x
io

m
s

m
a
tch

in
g

th
e

L
H

S
o
f

a
ru

le
h
av

in
g

a
p
reco

n
d
itio

n
n
o
t

sa
tisfi

ed
b
y

th
e

en
tity

u
n
d
er

d
eletio

n
.

68

Checking and Repairing Ontological Naming
Patterns using ORE and PatOMat

Ondřej Zamazal1, Lorenz Bühmann2, and Vojtěch Svátek1

1 Knowledge Engineering Group, University of Economics Prague, Czech Republic
{ondrej.zamazal}|svatek@vse.cz

2 AKSW research group, University of Leipzig, Germany,
buehmann@informatik.uni-leipzig.de

Abstract. Analysis of the naming of entities across ontological struc-
tures can help reveal both naming issues and underlying conceptualiza-
tion issues. Cross-entity naming analysis thus extends the standard logi-
cal satisfiability checking by an extra, less rigorous and reliable but often
farther reaching layer. We show how such naming patterns can be ap-
plied within the transformation pattern paradigm used by the PatOMat
transformation framework. We describe how the PatOMat tool has been
integrated into the (logic-oriented) Ontology Repair and Enrichment tool
(ORE), and present the results of application of a prominent naming pat-
tern, ‘non-matching child’, on a collection of linked data vocabularies.

Keywords: Naming pattern, Ontology Repair, PatOMat, ORE

1 Introduction

During the decades of knowledge engineering research, there has been recurrent
dispute on how the natural language structure influences the structure of formal
knowledge bases and vice versa. A large part of the community seems to recog-
nise that the content expressed in formal representation languages, such as the
semantic web ones, should be accessible not only to logical reasoning machines
but also to humans and NLP procedures, and thus resemble the natural language
as much as possible.3 We build upon the assumption that naming in ontologies
matters, can be sensibly designed, and to some degree even automatically iden-
tified in existing ontologies, with the help of naming patterns. Current ontology
debugging methods, mostly dealing with the logical structure of the ontology
only, can thus be extended by debugging of naming issues. Detecting improper
or awkward naming should be ideally followed by repairing suggestions. While
in the biomedical field there have already been efforts in naming analysis, e.g.,
in [2, 9], naming in the broad field of linked data vocabularies (where domain-
specific heuristics cannot be applied) has rarely been addressed. Generic tools
such as OntoCheck [8] have so far been only equipped with very simple tests such
as that of name length or presence of a concrete sub-token (such as ‘and’). The

3 See for example the arguments by Y. Wilks in [7]

69

presented approach thus contributes to filling in a missing piece: domain-neutral
cross-entity analysis.

The paper follows up on earlier research described in [11]. In contrast to [11],
where the analysis of presence of the ‘non-matching child’ pattern was carried
out manually and only qualitative results (for three ontologies) were presented,
we now

– carry out the pattern detection fully automatically, by means of a versa-
tile ontology transformation framework, PatOMat [12], with declaratively
represented patterns

– in this context, also consider a simple form of pattern-based repair of the
discovered issue

– provide a lightweight integration of naming analysis and logical satisfiability
analysis within the Ontology Repair and Enrichment tool (ORE) [5]

– present the empirical results of analysis on a larger number of linked data
vocabularies included in the respected Linked Open Vocabularies collection.

The paper is structured as follows. Section 2 briefly surveys the PatOMat
transformation framework. Section 3 explains the NMC (non-matching child)
pattern and describes its implementation via PatOMat transformation patterns.
Section 4 describes the integration of the whole functionality into ORE. Section 5
reports on an experiment in NMC pattern detection over 16 ontologies (namely,
popular linked data vocabularies). Section 6 then wraps up the paper.

2 PatOMat Framework and Naming Patterns

PatOMat framework principles The PatOMat Framework4 has been originally
designed with the goal of transforming ontologies between ‘structural’ modelling
styles, e.g., via de/reifying properties, metamodelling classes by individuals,
switching between object and data properties, and the like. However, the en-
tity naming aspect has been considered from the beginning.

The central notion in PatOMat is that of transformation pattern (TP). A TP
contains two ontology patterns (source OP and target OP) and the description
of the transformation betweem them, called pattern transformation (PT). For
instance, we can specify a very simple TP such that a subsumption relation be-
tween two classes (as source, OP1) should be transformed to a SKOS5 taxonomic
relationship between two individuals (as target, OP2). A schematic description
follows.6

OP1: Class: ?OP1_A subClassOf ?OP1_B
OP2: Class: ?OP2_A skos:broader ?OP2_B
PT: ?OP1_A = ?OP2_A ?OP1_B = ?OP2_B.

4 [12] provides more details about the framework, and at http://owl.vse.cz:8080/

tutorial/ there is a fully-fledged tutorial for the current version.
5 http://www.w3.org/TR/skos-primer/
6 OP1 and OP2 contain axioms in frame-based variant of Manchester syntax, http:
//www.w3.org/TR/owl2-manchester-syntax/

70

The representation of OPs is based on the OWL 2 DL profile. However,
while an OWL ontology refers to particular entities, e.g. to class Person, in
the patterns we generally use placeholders, e.g. ?OP1 A. Entities are specified
(i.e. placeholders are instantiated) at the time of instantiation of a pattern. An
OP consists of entity declarations (referring to placeholders or concrete entities),
axioms and naming detection patterns (NDPs); the last capture the naming
aspect of the OP important for its detection, see below. A PT consists of a set
of transformation links and a set of naming transformation patterns (NTPs).
Transformation links are either logical equivalence relationships or extralogical
relationships holding between pairs of entities of different type (such as class
vs. individual, as in our example above). NTPs serve for generating new names
for original or newly created entities.

PatOMat currently supports naming operations at the level of short URIs; its
extension to rdfs:label values would however be straightforward. Various token
separators, such as underscore, hyphen or camel-case, are supported.

PatOMat implementation The framework prototype implementation is available
either as a Java library or as three core services.7 The whole transformation is
divided into three steps, which correspond to the three services:

– The OntologyPatternDetection service takes the transformation pattern and
a particular original ontology on input, and returns the binding of entity
placeholders on output, in XML. The structural/logical aspect is captured
in the structure of an automatically generated SPARQL query;8 the naming
aspect is dealt with based on its description within the source pattern.

– The InstructionGenerator service takes the particular binding of placehold-
ers and the transformation pattern on input, and returns particular transfor-
mation instructions on output, also in XML. Transformation instructions are
generated according to the transformation pattern and the pattern instance.

– The OntologyTransformation service takes the particular transformation in-
structions and the particular original ontology on input, and returns the
transformed ontology on output. The service is based on our specific imple-
mentation over OWL-API,9 and enables operations on axioms, entities and
adding OWL annotations.

The process of transformation is decomposed into parts in order to enable
an user intervention within the whole workflow. User intervention can be carried
out using a generic graphical tool, GUIPOT [13].

7 All accessible via the web interface at http://owl.vse.cz:8080/.
8 http://www.w3.org/TR/rdf-sparql-query/
9 http://owlapi.sourceforge.net/

71

3 Non-Matching Child (NMC) Pattern

It is quite common in ontologies that a subclass has the same head noun as
its parent class.10 By an earlier study [11] we estimate that in ontologies for
technical domains this simple pattern is verified in 50–80% of class-subclass
pairs such that the subclass name is a multi-token one. This number further
increases if we consider thesaurus correspondence (synonymy and hypernymy)
rather than literal string equality. In fact, the set-theoretic nature of taxonomic
path entails that the correspondence of head nouns along this path should be
close to 100% in principle; the only completely innocent deviations from it should
be those caused by incomplete thesauri. In other words, any violation of head
noun correspondence may potentially indicate a (smaller or greater) problem in
the ontology. Prototypical situations are:

– Inadequate use of class-subclass relationship, typically in the place of whole-
part or class-instance relationship, i.e., a conceptualisation error frequently
occurring in novice ontologies.

– Name shorthanding, typically manifested by use of adjective, such as ‘State-
Owned’ (subclass of ‘Company’).

While the former requires complex refactoring of the ontology fragment, the
latter can be healed by propagation of the parent name down to the child name.

NMC pattern in PatOMat Let us now show how to capture the NMC pattern
within a PatOMat TP. The source OP is here just a subClassOf relationship
between two classes. There are however two variants of this source OP: one
using subClassOf and one using directSubClassOf, the latter operating on class
pairs identified by a reasoner.11

An NDP within the source OP can consist of several naming operations such
as detection of a head noun; their results can then be compared using different
methods. We designed two variants of such an NDP:

1. comparing whether ?OP1 A has the same head noun as ?OP1 P (e-variant,
for ‘equality’) or

2. comparing whether head noun of ?OP1 P is a hypernym of head noun of
?OP1 A (t-variant, for ‘thesaurus’).

The target OP has only one variant, which is structurewise identical to the
source OP, i.e., Class: ?OP2 A SubClassOf: ?OP2 P (and there is no NDP
part). Finally, the PT contains transformation links specifying equality of ?OP1 A
and ?OP2 A and analogously for ?OP1 P and ?OP2 P . More interestingly, it
also includes an NTP, which represents the naming repair step. It specifies that
?OP A should be extended by the head noun of ?OP1 P .

In combination, we can have four variants of the NMC pattern, of which we
consider three: (1) Se, St and Dt.12 The Se variant simply matches the head

10 The head noun is typically the last token, but not always, in particular due to
possible prepositional constructions, as, e.g., in ‘HeadOfDepartment’.

11 We used Pellet, http://pellet.owldl.com/.
12 All variants available at http://nb.vse.cz/~svabo/patomat/tp/np/

72

nouns, the Dt variant needs to employ a reasoner, and both t variants employ
a thesaurus in order to verify the hypernym relationships. In our case we use
WordNet [6]. In order to traverse hypernym relations we first get all senses of
a given word and retrieve hypernyms of all senses. Then we check whether the
lemma of a given word is the same as the lemma of one of hypernyms. If it is
not the case, it continues to the next level of hypernyms. By experience, we set
up the number of levels to five.

In the experiment described in Section 5, we used the St variant of the
pattern, but, referring to the conjecture formulated at the beginning of this
section, distinguished between single- and multi-token child.

4 Integration into ORE

The ORE13 (Ontology Repair and Enrichment) tool was designed so as to allow
knowledge engineers to improve knowledge bases in the form of SPARQL end-
points and OWL ontologies. ORE helps fixing several kinds of problems such as
logical errors, i.e., unsatisfiable classes and inconsistencies, by applying state-of-
the-art methods [3,4], and, newly, the naming problems described in this paper.
Additionally, ORE allows for the semi-automatic enrichment of knowledge base
schemas by suggesting OWL axioms generated by the application of machine
learning algorithms [1] on the underlying instance data. These data adhering
axioms, if accepted by the user, can result in a more expressive ontology, which
can for example enable more powerful querying.

The PatOMat framework is integrated into ORE by means of a separate task
and visualized in a single view as shown in Figure 1. Here the user can select a
naming pattern, as for example non-matching child1 (corresponding to the St
variant of the non-matching child pattern), in the leftmost list (1©). PatOMat
then detects instances of the selected pattern in the currently loaded ontology,
e.g., [?OP1 P=Contribution;?OP1 A=Poster](see 2©). For the selected pattern
instances the user will be provided a list of renaming instructions (see 3©), for
example to rename the class Poster to PosterContribution, which can then
be used to transform the ontology and solve the detected naming issues.

5 NMC Pattern Detection Experiment

We carried out a small experiment on 16 randomly selected vocabularies from
the Linked Open Vocabularies (LOV) catalog.14 They belong to four of the eight
major clusters suggested by the LOV curators: City (related to personal, social
and governmental data), Library, Media and Market. Four of the vocabularies,
ontopic, swc, wi and gc, imported other vocabularies; we considered them to-
gether with these imports. For completeness we also include two vocabularies
that did not contain any subclass axioms.

13 http://aksw.org/Projects/ORE.html
14 http://lov.okfn.org

73

Fig. 1. Screenshot of the PatOMat view in the ORE tool.

The summary of the results is in Table 1. The first two columns display
the nickname of the vocabulary within LOV,15 its catalogued name and cluster.
The next three columns show the total number of asserted subclass axioms, the
number of axioms matching the NMC pattern (the ordering in the table is in
the descending order of this field), and the respective ratio. The following three
columns are analogous, but only refer to subclass axioms where the subclass has
a multi-token name. The last two columns show the time spent (in seconds) and
the average time corresponding to one subclass axiom.

The proportion of axioms satisfying the NMC pattern (‘Ratio all’ column)
ranges from 0% to 87%. The results however seem to confirm our conjecture
that subclasses with multi-token names are more likely to follow (at least via
thesaurus correspondence) the head noun of their parent class name. For 11 of
the 16 vocabularies, the frequency of occurrence of the NMC pattern was reduced
by focusing on multi-token subclasses, and only for 2 (swc and gr) it increased.

Manual analysis of the ‘alerts’ revealed several interesting cases:

– Although possibly with some ‘philosophical’ excuse, the class-subclass pair
‘Topic’–‘TopicSignature’ in ontopic is suspect for tacit partonomy, as the
latter is commented as ‘the subcollection of terms populating a Topic’ (a set
of terms is likely not same as the topic it populates).

– Head noun of the superclass is sometimes a meta-level term. For example,
in swc the class ‘ProgrammeCommitteeMember’ is a subclass of ‘Role’; ob-
viously, if this subclass is populated by ‘Person’ entities, they would become
instances of ‘Role’, which would be undesirable. In gnd, which is a taxon-
omy of keyword types rather than a true data vocabulary, class ‘PlaceOr-
GeographicName’ has subclasses such as ‘MemberState’; however, the latter
could be, in the linked data setting, populated by true ‘state’ entities (rather
than just by their names viewed as keywords).

15 The URI of the catalog item page is http://lov.okfn.org/dataset/lov/details/

vocabulary_<nickname>.html.

74

Nick Name/topic Cluster Subcl Patt Ratio Subcl Patt Ratio Time Time
name all all all MT MT MT total avg.

ontopic Ontopic Library 182 91 50% 95 39 41% 33 0.18
swc SemWeb Conference City 100 36 36% 55 25 45% 17 0.17
gnd GND Library 47 31 66% 37 23 62% 17 0.36
mvco Media Value Chain Media 32 24 75% 13 6 46% 11 0.34
pattern Pattern Library 15 13 87% 0 0 - 9 0.60
gr GR - GoodRelations Market 19 10 53% 13 8 62% 12 0.63
wi Weighted Interests City 20 9 45% 8 2 25% 24 1.20
bibo Bibliographic Library 53 8 15% 15 2 13% 11 0.21
frbr Core FRBR Concepts Library 27 7 26% 6 0 0% 11 0.41
gc oeGOV Governm.Core City 11 6 55% 3 1 33% 14 1.27
foaf FOAF City 10 3 30% 4 0 0% 9 0.90
sioc SIOC City 6 2 33% 1 0 0% 9 1.50
pna Press.net Asset Media 3 2 67% 0 0 0% 8 2.67
chord OMRAS2 Chord Media 3 1 33% 2 0 0% 9 3.00
comm Incident communication City 0 0 - 0 0 - 8 -
part Participation Schema City 0 0 - 0 0 - 7 -

Total 528 243 46% 252 106 42%
Table 1. Results of vocabulary analysis wrt. the NMC pattern

– The previous is a special case of name shorthanding. A more typical case
is such that no head noun can be detected at all, e.g., with pair such as
‘PoliticalSystem’–‘Tribal’ (in gc) or ‘Publication’–‘Unpublished’ (in swc).

– Some vocabularies redefine common terms in their specific manner, which
generates false alerts. For example, in bibo, ‘CourtReporter’ is subclass of
‘Periodical’ (while a ‘reporter’ would not primarily be viewed as periodi-
cal) and ‘LegalCaseDecision’ is a subclass of ‘LegalCaseDocument’ (while a
‘decision’, in the general sense, is not a document). Similarly, ontopic has
‘TimeInterval’ as subclass of ‘Region’ (here the unusual choice of term ‘re-
gion’ follows from the upper-level nature of the ontology).

– Sometimes the head noun detection fails due to non-intuitive agglutination
of tokens. A grammatically sound one is ‘SubjectHeadingSensoStricto’ (in
gnd), unmatched to its parent ‘SubjectHeading’. Less sound seem to be,
e.g., ‘PaymentMethodCreditCard or ‘QuantitativeValueFloat’ (in gr).

– An unusual case setting may make the tokenizer fail and thus lead to a false
alert, e.g., for a class named ‘Vevent’ (a kind of ‘event’ in swc).

The relatively high computation times are partly owing to SPARQL query
evaluation and partly to WordNet traversal. However, given the offline nature of
the task, they are not prohibitive.

75

6 Conclusions and Future Work

Many ontologies, including linked data vocabularies, have recently been created,
often with little concern for naming coherence, and sometimes even with con-
ceptualization flaws (also reflected by naming incoherence). Visual analysis of
the naming aspect of their taxonomic structures is typically feasible, as most
ontologies/vocabularies are not extremely large. However, allowing the user to
focus on ‘suspicious’ cases (and ignoring those apparently sound) can be helpful.

We present a solution for such machine-supported analysis, which combines
the functionality of an ontology debugging (and enrichment) tool, ORE, with
that of a pattern-based ontology transformation framework, PatOMat, and with
online access to WordNet. Empirical results of naming analysis (regarding the
NMR pattern) on 16 linked data vocabularies have been presented.

In future we plan to come up with more sophisticated naming/transformation
patterns (e.g., indicating a taxonomy/partonomy mismatchh), and involve a
larger number of vocabularies in the experiment.

The research is supported by the EU ICT FP7 under No.257943, LOD2 project.

References

1. Bühmann L., Lehmann J.: Universal OWL Axiom Enrichment for Large Knowledge
Bases. In: EKAW 2012, Galway, Ireland, 2012.

2. Fernandez-Breis, J. T., Iannone, L., Palmisano, I., Rector, A. L., Stevens, R.: Enrich-
ing the Gene Ontology via the Dissection of Labels Using the Ontology Pre-processor
Language. EKAW 2010: 59-73.

3. Horridge M., Parsia B., Sattler U.: Laconic and Precise Justifications in OWL. In:
ISWC 2008, Karlsruhe, Germany, 2008.

4. Kalyanpur A., Parsia B., Horridge M., Sirin E.: Finding all justifications of OWL
DL entailments. In: ISWC 2007, 2007.

5. Lehmann J., Bühmann L.: ORE - a tool for repairing and enriching knowledge bases.
In: ISWC’10, Shanghai, China, 2010.

6. Miller G. A. WordNet: A Lexical Database for English. CACM, 1995.
7. Nirenburg S., Wilks Y.: Whats in a symbol: Ontology and the surface of language.

Journal of Experimental and Theoretical AI, 2001.
8. Schober, D., Tudose, I., Svátek, V., Boeker, M.: OntoCheck: verifying ontology

naming conventions and metadata completeness in Protégé 4. J. Biomed. Semantics,
2012, 3(Suppl 2):S4.

9. Schober, D., Smith, B., Lewis, S. E., Kusnierczyk, W., Lomax, J., Mungall, C.,
Taylor, C. F., Rocca-Serra, P., Sansone, S.-A.: Survey-based naming conventions
for use in OBO Foundry ontology development. BMC Bioinformatics 10 (2009).

10. Svátek V., Šváb-Zamazal O., Presutti V.: Ontology Naming Pattern Sauce for
(Human and Computer) Gourmets. In: Workshop on Ontology Patterns at ISWC09.

11. Šváb-Zamazal O., Svátek V.: Analysing Ontological Structures through Name Pat-
tern Tracking. In: EKAW-2008, Acitrezza, Italy, 2008.

12. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation
Service Exploiting OPPL and OWL-API. In: EKAW 2010.

13. Zamazal O., Dudáš M., Svátek V.: User-Friedly Pattern-Based Transformation of
OWL Ontologies. In: EKAW 2012, Galway, Ireland, 2012.

76

	preface
	empty
	invited
	paper3
	paper4
	paper5
	paper6

